Skip to main content
. 2018 Nov 16;9:1596. doi: 10.3389/fphys.2018.01596

Table 3.

Hierarchical linear regression models exploring joint bleeding as explanatory factors for other oxidative stress biomarkers in all 122 subjects with Heme or Hb entered last after age, sex, and diagnostic group.

. log10 sf-Heme as explanatory
log10 sf-Hb as explanatory
Dependent factors aEffect, unstandardized (95%CI) bStandardized effect p-Value Adjusted R2 for model Adjusted R2 change when adding sf-Heme Partial correlation aEffect, unstandardized (95%CI) bStandardized effect p-Value Adjusted R2 for model Adjusted R2 change when adding sf-Hb Partial correlation
sf-A1M 2.169 (0.634, 3.705) 0.267 0.006 0.063 0.057 0.257 0.420 (-0.250, 1.091) 0.118 0.217 0.009 0.005 0.114
Serum-A1M 1.934 (-0.272, 4.141) 0.150 0.085 0.227 0.013 0.163 0.263 (-0.674, 1.201) 0.047 0.579 0.206 -0.005 0.051
A1M ratio sf/serum 0.121 (0.036, 0.207) 0.264 0.006 0.083 0.056 0.257 0.038 (0.001, 0.075) 0.190 0.045 0.046 0.025 0.185
Log10 sf-Carbonyl 0.214 (0.015, 0.414) 0.206 0.036 0.035 0.030 0.198 0.082 (-0.002, 0.166) 0.183 0.056 0.026 0.023 0.176

aEffect (regression coefficient): the estimate in average change in a dependent factor that corresponds to a 1-unit change in the explanatory factor log10-transformed sf-Heme or sf-Hb. bStandardized effect: the estimate in average change in a dependent factor expressed in standard deviations that corresponds to a 1 standard deviation change in the explanatory factor log10-transformed sf-Heme or sf-Hb.

Numbers in bold face indicate statistically significance at the 0.05 level.