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Summary
Objectives: Precision medicine requires the measurement, 
quantification, and cataloging of medical characteristics to 
identify the most effective medical intervention. However, the 
amount of available data exceeds our current capacity to extract 
meaningful information. We examine the informatics needs to 
achieve precision medicine from the perspective of quantitative 
imaging and oncology.
Methods: The National Cancer Institute (NCI) organized several 
workshops on the topic of medical imaging and precision med-
icine. The observations and recommendations are summarized 
herein.
Results: Recommendations include: use of standards in data 
collection and clinical correlates to promote interoperability; data 
sharing and validation of imaging tools; clinician’s feedback 
in all phases of research and development; use of open-source 
architecture to encourage reproducibility and reusability; use of 
challenges which simulate real-world situations to incentivize 

Introduction
Precision medicine [1] requires the mea-
surement, quantification, and cataloging of 
medical characteristics to identify the most 
effective medical intervention. The National 
Academy of Sciences defines precision med-
icine as “the tailoring of medical treatment 
to the individual characteristics of each pa-

innovation; partnership with industry to facilitate commercialization; 
and education in academic communities regarding the challenges 
involved with translation of technology from the research domain to 
clinical utility and the benefits of doing so.
Conclusions: This article provides a survey of the role and 
priorities for imaging informatics to help advance quantitative 
imaging in the era of precision medicine. While these 
recommendations were drawn from oncology, they are relevant 
and applicable to other clinical domains where imaging aids 
precision medicine.
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tient. It does not literally mean the creation 
of drugs or medical devices that are unique 
to a patient, but rather the ability to classify 
individuals into subpopulations that differ in 
their susceptibility to a particular disease, 
in the biology and/or prognosis of those dis-
eases they may develop, or in their response 
to a specific treatment” [2]. In other words, 
through precision medicine we can classify 

patients into cohorts that share characteris-
tics such as diagnosis, prognosis, response 
to a certain therapy etc. This requires ready 
access to networks of data that can be queried 
using many different types of search criteria 
across many different types of data. And to 
create such classifiers, large quantities of 
diverse data must be accessed, analyzed, and 
reduced to actionable knowledge for patients 
and encounters. 

Imaging, which includes radiology, radi-
ation oncology, and pathology, complements 
clinical and molecular data and offers cru-
cial insights that help stratify patients into 
cohorts and guide care using the principles 
of precision medicine [3-7]. In addition to 
diagnosis and treatment planning, imaging 
also has the potential to provide deep and 
novel insights by evaluating a patient’s re-
sponse to therapy during treatment, as well 
as predicting outcome at an earlier time point 
[6-8]. Treatment response and early outcome 
prediction thus create opportunities for adap-
tive medicine. For example, in breast cancer 
patients with ER+, PR+, and HER2– inva-
sive ductal carcinoma MRI-based features 
(texture and morphological) could predict 
the likelihood of recurrence and magnitude 
of chemotherapy benefit [9]. Clustering 
morphological signatures extracted from 
digitized whole-slide pathology images of 
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glioblastoma patients helped identify signif-
icant prognostic sub-classifications, in which 
clusters are correlated with transcriptional, 
genetic, and epigenetic events [10]. Imaging 
can also be used for surveillance in certain 
low-grade cancers and help avoid unnecessary 
biopsies. In such patients, imaging features 
can also be used to identify sub-populations 
that are likely to advance to higher-grades, 
and would thus be candidates for specific 
treatments [11, 12]. These four examples, 
from breast cancer, glioblastoma, low-grade 
glioma, and prostate cancer, are illustrative 
of the role imaging can play in precision 
medicine for cancer. A more detailed survey 
of imaging and its role in precision medicine 
was recently reviewed by the Association of 
University Radiologists Radiology Research 
Alliance [13]. This survey, in many ways, 
complements the review by providing a 
survey of challenges, and an assessment of 
the needs of imaging informatics, for the 
advancement of precision medicine in cancer. 

Today, imaging is predominantly digital; 
however, image interpretation and its use 
in diagnosis and treatment assessment have 
remained largely qualitative. This has been 
changing steadily through initiatives such 
as the Quantitative Imaging Biomarker Al-
liance (QIBA) [14-16], as well as research 
programs such as the Quantitative Imaging 
Network (QIN) [16, 17]. This article surveys 
the landscape of quantitative imaging, its 
role in advancing precision medicine, some 
of the informatics priorities, and challeng-
es, and presents some recommendations. 
It should be noted, that while this article 
focuses on cancer imaging, the underlying 
needs and challenges are by no means unique 
to cancer. Domains such as neurology or 
cardiology have similar characteristics and 
requirements. For example, in neuroimaging, 
imaging data is closely linked with observa-
tional data or connectome data. These data 
types are not typically seen in oncology. 
However, both oncology and non-onco-
logical conditions share the pattern where 
the integration of imaging and associated/
derived non-imaging data with clinical and 
genomic data can be used to classify patient 
populations based on diagnosis and response 
to treatment [6, 7]. For the sake of readabili-
ty, this article does do not make a distinction 
between imaging and cancer imaging. The 

challenges, approaches, and recommenda-
tions surveyed here are applicable across the 
broad landscape of quantitative imaging and 
its application to precision medicine.

It is also worth emphasizing that while 
much of this work was predominantly geared 
in recent years towards radiology, there has 
been a steady increase in the research and 
development of similar techniques in pathol-
ogy. Cancer diagnosis is primarily based on 
pathology; outcome prediction and treatment 
recommendations are highly dependent on pa-
thologist observations. While digital patholo-
gy imaging has lagged behind radiology im-
aging due to the continuing use of glass slides 
in clinical diagnostic pathology, the advent of 
high quality, high throughput, digital scanners 
has led to the widespread adoption of digital 
pathology in cancer research studies. DICOM 
(Digital Imaging and Communications in 
Medicine), the de facto standard for medical 
imaging now includes specifications for 
digital pathology [18, 19]. Digital pathology 
data management, visualization, and analysis 
tools have been developed by both research 
groups and private companies. Work is rapidly 
progressing on the development of standards 
for pathology data management, annotation, 
and markup. Such advances as well as this 
increased adoption has led to digital pathol-
ogy sharing with radiology many of the same 
imaging-based, informatics design patterns 
for disease classification, patient stratification, 
response assessment, and outcome prediction. 

The inclusion of information obtained 
from digital pathology is crucial to the suc-
cess of efforts to improve precision of quanti-
tative imaging-based predictions. Diagnostic 
and treatment guidelines call for quantitative 
measurements that are challenging for 
human observers (e.g., tumor infiltrating 
lymphocytes, mitoses and immunohisto-
chemistry (IHC) staining). There is also an 
increasing tendency to mandate detailed 
assessments of tumor heterogeneity across 
tumor type. A highly pertinent example is 
non-small cell lung cancer (NSCLC) ade-
nocarcinoma WHO guidelines that specify 
that for each patient, pathologists break down 
sub-type composition in 5% increments. 
Digital pathology machine-learning meth-
ods also promise to reduce inter-observer 
variability arising from the sole reliance on 
human-generated pathology classifications. 

Quantitative Imaging, and 
Informatics Methodologies 
for Precision Medicine
Quantitative imaging is the process of ex-
tracting measurable (numerical) information 
from images to determine the amount, ex-
tent, or severity of disease, where imaging 
devices behave as standard measurement 
instruments providing reliable and repro-
ducible numerical results. It has benefitted 
from advances in image acquisition that 
have led to improvements in quality and 
resolution of imaging and diversity imaging 
modalities. Quantitative imaging, through 
advances in high performance computing 
and machine learning, has enabled the pro-
cess of radiomics (extraction and mining 
of quantitative imaging features) [18-20] 
and radiogenomics (integrating radiomic 
features with clinical and molecular data). 
It is enabling optimized treatments, sur-
veillance, and better prediction of response 
to treatment, and it offers great promise 
for precision medicine. Numerous groups 
have developed methodologies to extract 
rich collections of imaging features, linked 
them with clinical outcome and molecular 
characterizations, and studied their relevance 
in clinical research [10, 18-87]. 

Informatics is the practice of information 
processing and the engineering of informa-
tion systems, focusing on the collection, 
classification, storage, retrieval, and dissem-
ination of recorded knowledge. Quantitative 
imaging, therefore, benefits from the meth-
odologies, tools, and capabilities that are 
offered by informatics to help convert the 
information contained in images into action-
able knowledge. The combined information 
that is gathered can be used to enhance 
individual and population health outcomes, 
simplify patient care, and improve the qual-
ity of clinical workflow. One notable effort 
in this area is the National Cancer Institute 
(NCI) Quantitative Imaging Network (QIN). 
QIN has encouraged the development and 
validation of quantitative imaging methods 
for the measurement of tumor response to 
therapies in clinical trials and routine care. 

It is imperative that by incorporating the 
science of informatics into medical imaging 
we create a powerful driver for precision 
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medicine activities. Open and regular com-
munication among scientists, clinicians, in-
formatics specialists, and regulatory experts 
is needed. We discuss some of the highest 
priority informatics activities that will help 
bring quantitative imaging into the realm 
of clinical decision support. These priority 
activities were identified through a series of 
workshops, the first of which was convened 
in October 2015, to discuss the joint roles of 
quantitative imaging and informatics within 
the context of present and future precision 
medicine needs. The primary needs and 
challenges, as well as some representative 
efforts in areas, are presented here.

N1   Curated Data Repositories: 
Access to well-curated image repositories with support 
for semantically integrated datasets and the ability to 
integrate information across type and scale are critical.
Archiving vast amounts of existing data is 
a major informatics effort, not only because 
of the rapid growth in the volume of data to 
be stored, but also because of the challenges 
in accessing, retrieving, analyzing, and dis-
playing the results. Imaging datasets require 
hundreds of terabytes to petabytes of storage. 
Imaging features, produced by a pipeline, 
can depend on a variety of parameters, 
leading to an explosion of post-processing 
feature data. Meaningful comparison and 
subsequent downstream use of the imaging 
features necessitate a standardized repre-
sentation. Additionally, clinical information 
about each patient should be linked to the 
image data. The linked clinical data must 
be available when searching for sub-pop-
ulations. It is therefore imperative that the 
research community stops reinventing the 
wheel in the context of imaging biomarker 
development and comes up with common 
ways to share tools and data to help improve 
interoperability. There are three types of data 
that researchers and practitioners of quanti-
tative imaging share, namely:
•	 Clinical Data: Clinical data includes 

demographic information, diagnosis, 
exposure, family history, treatment, and 
outcomes data. Clinical data must be har-
monized against a common vocabulary. 
This is an active area of research. One 
possible direction is the use of DICOM 

to represent clinical data [88]. This is an 
attractive proposition given the near-uni-
versal acceptance of DICOM, especially 
in the clinical domain. However, the DI-
COM specification merely provides a data 
representation format. Work is needed 
to create an ontology that can be used to 
encode the data. An example of such an 
ontology that helps encode clinical data in 
DICOM has been developed for Head and 
Neck cancers [88]. Another option that is 
being explored is the use of the clinical 
data model used in The Cancer Genome 
Atlas (TCGA) [89]. The TCGA clinical 
data model includes site-specific terms, 
with mappings to the NCI Thesaurus, 
and would provide the ability to create 
image cohorts that span different imaging 
studies. The TCGA clinical data model 
has also been adopted by The Genomic 
Data Commons (GDC) [90, 91]. 

•	 Images and Image Metadata: This in-
cludes the raw pixels as well as metadata 
that describe the image such as patient 
level information, acquisition data, etc. 
Image metadata is frequently stored in 
DICOM formats and follows the DICOM 
information hierarchy. Other formats 
such as NIfTI (Neuroimaging Informatics 
Technology Initiative) are also widely 
used [92]. DICOM is not widely used in 
digital pathology, since most digital pa-
thology scanner vendors prefer their own 
formats. There are however open source 
libraries, such as OpenSlide [93], that 
allow researchers to interact with these 
images using a shared library and appli-
cation programming interfaces (APIs).

•	 Image Annotations and Features: These 
include human and machine generated 
annotations and features. QIN agreed to 
adopt DICOM as a standard for images 
and segmentation maps. The term “fea-
tures” refers to the quantitative charac-
teristics extracted from images; these are 
represented in various open formats. Since 
imaging features are at the core of quan-
titative imaging, a detailed description 
about their representation and storage is 
presented separately (see N3 & N4).

Data Curation: The data used in the devel-
opment of imaging-based methodologies 
for precision medicine must be well curated 

to reduce any uncertainty in its history 
or content. The use of standards such as 
DICOM is therefore essential. In addition 
to standards, the data management system, 
as well as the processes of data curation 
are very important. In recent years, several 
imaging repositories have come online line 
[92, 94-99], with The Cancer Imaging Ar-
chive (TCIA) being an exemplar of a well 
curated, diverse, imaging repository. Since 
its inception in 2011, TCIA has evolved 
into NCI’s primary resource for curating, 
managing, and distributing images. A sig-
nificant component of TCIA operations and 
tools involves the curation and de-identifi-
cation processes. With the adoption of data 
standards, as well as the deployment of easy 
to use tools and shared best practices, the 
process of data preparation and submission 
is greatly simplified. This results in reduc-
ing the burden of data sharing, and in faster 
submission and quicker dissemination of 
data. This has the added advantage of en-
couraging data sharing, since the burden 
of data sharing is frequently cited as one 
of the common roadblocks to data sharing.

De-identification: A key component 
of data curation is having well-document-
ed processes and tools that facilitate the 
de-identification of data and the removal of 
any patient identifiers. It is often assumed 
that de-identification involves the scrubbing 
of protected health information (PHI) from 
DICOM headers. However, in practice, it 
has been observed that scanners frequently 
encode identifiable information in private 
DICOM tags. There are additional chal-
lenges with de-identification when dealing 
with time-series data. In such situations, the 
chosen heuristic for date de-identification 
must be cognizant of time elapsed between 
successive studies. This information allows 
users to run queries such as: “find all lung 
screening studies where 3 or more studies 
were performed, and each study was within 
6 months of the prior study.” In addition to 
maintaining the elapsed time, users may want 
the ability to integrate these imaging studies 
with other non-imaging data. Therefore, 
enough metadata must be preserved to en-
sure compliance with appropriate rules and 
regulations, while ensuring that researchers 
can unambiguously locate imaging and as-
sociated non-imaging data [100].
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N2   Data Exploration, Access, and 
Integration
Exploring and accessing images along with associated 
data is critical to research in the era of Precision Medicine.
Data Exploration and Access: How data 
is managed is critical when it comes to 
versatility and ease of use of the data. While 
methods of storage are important for creating 
useful and minable image troves, efficient 
content-based methods of data retrieval 
may be even more essential to making these 
data accessible and usable. Search engines 
capable of returning image data along with 
all appropriate metadata are necessary assets 
in the era of large electronic datasets. It is 
necessary for data associated with the images 
(see N1) to be accessible and integrated with 
image data. It is not practical, nor are we 
advocating for a centralized meta repository 
that manages all data types. Rather a mech-
anism that allows one to use some of the 
data types to create a cohort and then access 
images and relevant data directly from the 
individual repositories that manage that data.

Data Integration: An example of this 
would be an integration of TCIA with the 
Genomic Data Commons (GDC).  It would 
give researchers the ability to create a co-
hort using genomic, clinical, and imaging 
attributes, and then access the images and 
genomic data for the identified cases. One 
popular and decentralized approach to 
achieving such integration is through the 
adoption of REST APIs. Our goal should 
be adoption of APIs and when appropriate, 
convergence on shared API specifications. 
The underlying API implementations are 
best left to the repositories, and will have 
minimal impact on facilitating an integrated 
exploration and retrieval of data.

The development and adoption of an 
API economy has the added advantage of 
encouraging developers to directly and pro-
grammatically integrate with the various data 
repositories. Doing so allows, for example, an 
image analysis algorithm to directly retrieve 
images from TCIA without requiring that a 
user first download a dataset, then upload it 
to a local cluster, and finally launch the al-
gorithm on this dataset. Integration via APIs 
allows one to run large, cloud-based, pipelines 
that can exploit the cost and scale benefits of 
clouds (See N6). Similarly, research worksta-

tions like 3DSlicer [101] can directly integrate 
with, and utilize the search and retrieval ca-
pabilities of image repositories, giving their 
users an optimized experience.

N3   Algorithm Validation and 
Reproducibility
In addition to the reduction of hardware er-
rors in data collection, quantitative imaging 
deals with the development and optimization 
of robust algorithms capable of extracting 
useful information from the collected im-
ages. The potential of quantitative imaging 
can only be realized if the algorithms are 
reproducible and validated. These algo-
rithms are individually designed to serve 
specific functions in a chain of analysis, that 
begins with the collected images, and ends 
with the extracted quantitative information. 
Functions such as segmenting suspicious 
regions in the image and then processing 
the information within those regions for 
information correlative with disease are 
included. Quantitative methods differ in 
how much information is extracted and used, 
and in how the information is assembled 
for dissemination. In addition, as there are 
many different imaging systems in use, the 
information extracted must be available in a 
standardized form that can be read and in-
terpreted across multiple devices. Using this 
information, researchers can then generate 
new diagnostic and prognostic techniques. 
One notable mechanism for advancing these 
goals are Grand Challenges that have prov-
en to be a successful means for promoting 
innovation in algorithm development [102]. 

Feature Generation: Imaging features 
cover the gamut of tumor segmentations, 
observations, and features captured by hu-
mans, as well as features that are computed 
by algorithms. They include qualitative, 
quantitative, and mixed features. The 
underlying objective is to capture a set of 
features that can act as numeric surrogates 
for an image and can then be used to explore 
correlations with clinical or genomic data. 
They could be used to train classifiers that 
can guide diagnosis, prognosis, or response 
to therapy. For example, Aerts et. al., extract 
~400 features from CT and MRI images of 
lung cancer, and head and neck cancer pa-

tients, and identify feature signatures that are 
strong predictors of outcome [18]. Features 
here included morphological features, tumor 
intensity, texture, and other higher-level fea-
tures. In digital pathology, a similar process 
is followed, leading to the coinage of the 
term pathomics. An illustrative example of 
pathomics is the work done by Cooper et. al., 
where they processed glioblastoma images 
and extracted 74 different features [103], 
that included morphological characteriza-
tions of nuclei, nuclear intensity, texture, 
and gradient statistics. These features were 
extracted from 200M nuclei and revealed 
three prognostically significant clusters 
with associations to genetic mutations and 
outcomes [10]. A similar study was done by 
Huang et. al. on breast cancer images [104].

Deep Learning and Medical Imaging: 
In recent years, there has been a strong in-
terest in the application of neural networks 
and deep learning for quantitative imaging. 
These methodologies have been around for 
a long time, and as far back as the early 90s, 
during the early days of digital imaging, they 
were used in a variety of applications, such 
as the detection of lung nodules [105, 106], 
and classification of regions of interest (ROIs) 
from mammograms as benign or malignant 
[107]. However, it was not until very recently 
that deep learning gained popularity and has 
emerged as one of the most promising tools 
for image classification. This popularity is 
driven, not only by advances in algorithms, 
but also, in large part, by advances in high 
performance computing (HPC), incl. graphics 
processing units (GPUs), and the fact that 
the cost of these HPC systems have come 
down significantly. Since these algorithms 
are easily parallelizable, they can take ad-
vantage of the inherent parallelization of 
GPUs. A comprehensive survey, as well as 
a series of articles, covering the use of deep 
learning and medical imaging can be found 
in an IEEE special issue on medical imaging 
and deep learning edited by Greenspan et. al. 
[108]. There are however a set of challenges 
that have slowed down the success of deep 
learning, the biggest one being access to 
large quantities of annotated data sets (see 
N1). Data needs to be well annotated (N4), 
and researchers should have the ability to 
integrate the extracted ‘hidden’ features with 
clinical and/or genomic data (N2).
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Algorithm Validation: The performance 
characteristics of the algorithms must even-
tually be tested and validated under a variety 
of clinically relevant conditions before they 
can be useful in clinical workflow.This often 
requires the use of large datasets of clinical 
images as an environment in which to test 
the performance and robustness of the algo-
rithms. Ideally, metadata such as annotations, 
clinical information from patient history, and 
patient outcomes will be a part of the infor-
mation included in algorithm validation. The 
need for informatics in this process is critical 
and is integral to the process not only through 
the function of the final quantitative algorithm 
as it performs in clinical workflow, but also 
during the degree of required testing and 
validation needed to ensure algorithm perfor-
mance before it reaches the clinical setting.

Role of Grand Challenges for Algorithm 
Validation and Reproducibility: Grand chal-
lenges have proven to be very successful in 
helping with the development and validation 
of novel and innovative algorithms such as 
brain tumor segmentation [109]. They are 
a good way to crowdsource the annotation 
of data. This results in an annotated data set 
which is critical to the advancement of quan-
titative imaging through deep learning. Grand 
challenges explicitly encourage open science 
and open source, best-of-breed algorithms. 
They do so, by presenting informaticians with 
specific problems, constraints, and incentives 
for innovation [110]. They also address re-
producibility and integration by providing 
access to clinical and -omics data that are not 
always readily available and can help move a 
tool to readiness for the commercialization 
pipeline. Grand challenges are conducted in 
specially-designed environments that import 
specific data sets from selected archives, for 
training and testing on the algorithms, and 
provide comparisons of results and perfor-
mance. However, they need to be organized 
in a manner that simulates clinical workflows 
and other real-world constraints (e.g., compu-
tational pathology challenges must use whole 
slide images (WSIs) at 40x magnification or 
higher depending on the task, or test datasets 
that are noisy and need cleaning). They also 
need to be organized in a manner where the 
submissions are run on the test data by or-
ganizers, thereby fostering a culture of tool 
reproducibility (more details in N5).

N4   Representing and Managing 
Quantitative Image Features: 
Effective curation of, and integration with, imaging features 
is critical to the realization of the potential of quantitative 
imaging. Non-proprietary annotation and markup will 
allow for cross-hardware compatibility, interoperability, and 
sharing of data from many sources and between institutions.
Feature Representation: Integrating ra-
diology, pathology, clinical, and -omics data 
requires that image annotations be stored in a 
standardized and interoperable manner. One 
example of image annotations is the segmen-
tation of the image regions corresponding to 
the tissues or objects of interest. Such annota-
tions can be displayed during image viewing, 
can be used to extract quantitative measures 
from the image (e.g., tumor volume, vessel 
permeability), and can capture aspects of key 
regions within images that are meaningful to 
the radiologist and oncologist. For example, 
image annotations can record the location 
and measurements of target lesions or point 
out non-target lesions. Frequently, the anno-
tations, created on commercial image viewing 
workstations, are collected and stored in either 
proprietary formats or as DICOM presenta-
tion state objects, which are like graphical 
overlay objects. This enables rendering the 
information visually, but does not support 
search of, and access to the annotations, nor 
any computation on them. One is therefore 
forced to rely on vendor-specific implemen-
tations and software. Even if one were to use 
vendor-specific software, these software tools 
are often closed, and do not adopt standards 
for annotation, thus hindering interoperability. 
Consequently, all annotations currently must 
be created and maintained within siloed com-
mercial applications, and there is no interoper-
ability of image annotations across platforms 
and applications. To realize the potential value 
of integrative radiology-pathology-omics, it 
is vital that image annotations be stored in 
standardized interoperable formats such as 
the Annotation and Image Markup (AIM) 
standard or DICOM; a harmonization effort 
is underway to unify these two standards.

The goal of the AIM project [111] is to 
provide a standardized, interoperable mecha-
nism for modeling, capturing, and serializing 
image annotation and markup data that would 
be adopted widely within the medical imaging 
community. Both human- and machine-read-

able artifacts are possible. The variability in 
methods of storing annotations with the image 
data is a concern that can be addressed by 
developing standard DICOM objects to store 
this information. DICOM Working Group 8 
is working to harmonize and unify the AIM 
and DICOM standards and create a DICOM 
Structured Reporting object to store AIM im-
age annotations. When adopted by commercial 
platforms, this will provide a standardized 
interoperable format for image annotations. 
Adopting this as the standard format to store 
image annotations will streamline software 
development and enable the work to focus on 
providing rich annotation features and func-
tionality and on amassing a large collection 
of minable image data. Designing the tools 
to be compatible with other standards will 
enable a high degree of interoperability and the 
incorporation of the annotation standard into 
commercial, clinical, information systems.

Data Visualization: Image viewing plat-
forms that support AIM/DICOM-SR will 
permit consuming annotations from a variety 
of sources and linking them to other types 
of image data as well as non-image data. 
Moreover, large collections of image data 
will become “minable” to enable discovery 
from historical collections of Radiology/
Pathology image data. Such activities will 
be particularly important in cooperative 
groups, who routinely collect and store large 
amounts of such image data and annotations 
during clinical trials.

N5   Scaling Quantitative Imaging via 
Container and Cloud Deployments:
Novel container technologies will allow for portability 
and interoperability, critical to sharing algorithms in a 
distributed research environment. Increasing adoption of 
cloud environments will allow researchers to compute and 
process at significantly larger scales.
Advances in systems software such as con-
tainers provide the ability to encapsulate 
algorithms, and their implementations, thus 
enhancing reuse and portability [89, 112]. 
Containers, popularized by Docker, make 
it possible for researchers to share their 
algorithms and pipelines in a robust and 
self-contained fashion. These systems inte-
grate nicely with modern distributed version 
control system, thereby greatly simplifying 
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the deployment of data processing codes. 
Additionally, in instances where investigators 
are unable to share source code, containers 
give them the ability to create images that 
are equivalent to platform-agnostic, binary 
executables of their data processing codes. 

In recent years, cloud computing has be-
come much more popular within the research 
community. This increased interest has been 
spurred, in part by the launch of the NCI 
supported, genomics cloud pilots [113]. These 
cloud pilots are now serving as exemplars 
that allow researchers to perform genomic 
studies on the cloud, without having to first 
download large quantities of genomic data 
and then upload them to institutional clusters 
for processing and analysis. The adoption of 
containers ease this migration by greatly sim-
plifying the complexity of deploying diverse 
code-bases on a single cloud [91, 114].

The imaging community should consider 
these technologies as a means of sharing 
methods and tools. Some key issues in this 
area are still to be addressed. The cost of pro-
cessing on the cloud is still high, though this 
is being addressed through the recent launch 
of the NCI Commons Credit Pilot [115]. 

Open Standards and Open Source 
Architecture: 
These enable flexible and more rapid technology develop-
ments, which are reproducible and are more likely to see 
an accelerated adoption in the marketplace.
Open source refers to software that is accom-
panied by its source code and is made avail-
able through a license which allows users to 
change and re-distribute the software under the 
conditions stipulated by the license. Different 
flavors of open source licenses exist [112]. 
Examples include GNU Public License (GPL) 
that limits commercial use of the source code, 
and MIT or FreeBSD licenses that do not limit 
modification and reuse of the source code by 
anyone and for any purpose, including com-
mercialization. There are numerous examples 
of software tools developed within NCI-sup-
ported programs that are being made available 
as open source. One example is ePAD [113, 
115], a quantitative imaging informatics 
platform that provides web-based access to 
AIM-compliant metadata and semantic image 
annotation on any platform and any image 

workstation. Another open source solution is 
LIBRA [95, 116], a software package devel-
oped at the University of Pennsylvania that is 
a fully-automated breast density estimation 
solution based on a published algorithm that 
works on both raw and vendor post-processed 
digital mammography images. The DICOM 
Toolkit (DCMTK) is another example of 
openly available software [117]. DCMTK is 
a collection of libraries and applications that 
implement large components of the DICOM 
standard, including software for examining, 
constructing, and converting DICOM image 
files, handling offline media, and sending and 
receiving images over a network connection. 

For the developer of quantitative imag-
ing algorithms, whether for data collection 
or image analysis, the use of open source 
software as modules or components in the 
total algorithm package can be a shortcut to 
success. Open source development has seen 
a significant growth and transformation with 
the release of git [118] (a distributed version 
control systems) and github.com (a publically 
accessible, centralized, hosted git service). 
A commitment on the part of the developer 
to use a modular, open-source architecture, 
encourage reuse, thereby introducing efficien-
cies in algorithm development is required. A 
significant development is the widespread use 
of containerization platforms such as Docker 
[119, 120] and related projects, which are en-
abling more broad dissemination of methods 
through facile packaging and execution of 
algorithms. In other words, the inherent flex-
ibility in open source programming permits 
the programmer to focus on building custom 
interfaces, to create new capabilities, and to 
customize the performance of the overall 
algorithm. It also allows for parallel devel-
opment on independent components. Impor-
tantly, open source development is critical for 
community building and a continuity of the 
development that might be more tolerant to 
the interruptions in funding or fluctuations 
in the personnel at individual academic labs.

Innovation is important to science, but 
we also need to balance that innovation with 
pragmatism, developing what researchers need 
today and what can facilitate progress in steps. 
We can learn from the success of communities 
such as DICOM and The Biomedical Research 
Integrated Domain Group (BRIDG) [121] to 
make sure what we develop resonates with 

research communities. If we do not take this 
approach, reproducibility of research results 
and outputs, which is critical to scientific 
research, will never be a reality. Additionally, 
there is an urgency to demand and reward the 
sharing of both imaging data and data analysis 
results to enable secondary analysis, support 
reproducibility of findings, and to allow 
aggregation of standardized datasets. These 
datasets can include radiological images, digi-
tal pathology, immunohistochemistry, and data 
from other modalities that can be standardized 
and integrated for analysis. Efforts such as the 
Informatics Technology for Cancer Research 
(ITCR) Program [101], which is funding the 
development of open source tools and algo-
rithms, have been very successful in generat-
ing interest and engagement with the imaging 
community. Over a dozen tools that support 
visualization, storage, and analysis have been 
developed from ITCR funding. 

Bringing Quantitative Imaging 
into the Clinical Workflow
For quantitative imaging to become a part of 
precision medicine, it is critical that images 
and features connect with other diagnostic ap-
proaches. Genomics, for example, is receiving 
a great deal of scientific focus for its ability to 
chart the progression of disease and to unlock 
the molecular basis for cancer. Radiomics and 
radiogenomics are creating a culture change 
in imaging and in the use of informatics to 
predict patient outcome. Showing the ben-
efit in combining genomic information with 
subtle imaging results to gain greater insight 
into cancer progression is important to speed 
adoption of imaging methods and incorporate 
them into the clinical workflow.

Educating clinicians on the benefits of 
imaging methods in clinical practice is key to 
their adoption. For example, morphologic di-
agnosis is required in many cases, as genomic 
analysis alone is sometimes inadequate. 
Genomic analysis will not reveal carcinoma 
versus benign growth and mutations analyses 
alone cannot provide a specific diagnosis. For 
example, in the case of Leiomyoma (benign 
disease) vs. Leiomyosarcoma (cancer), the 
genetic mutation is the same, but human 
cognition and the use of microscopes are 
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required to accurately diagnose cancer versus 
benign growth, although novel deep learning 
techniques may be helpful in aiding differen-
tial diagnosis in the future. Spatial phenotypic 
heterogeneity is not captured by genomic 
data. There is no way of understanding in-
teractions between the various cell types in a 
tumor microenvironment (TME). If the cell 
composition is the same, but the interactions 
are different, in two different TMEs, genomics 
cannot tell them apart. Hence, the study of 
images, and their spatial data, is crucial.

A Case Study - The Open Health 
Imaging Foundation at Dana Farber / 
Harvard Cancer Center: One of the fun-
damental drivers for an integrated cancer 
imaging informatics infrastructure is the 
ability to easily view and share images 
across sites and modalities, and provide 
a standards-based platform and plug-in 
architecture for developers. There are many 
proprietary commercial web-viewers on the 
market, which are not easily customized 
or open to collaborative development, and 
those systems that are open are not typically 
of a professional grade that would allow 
translation and collaboration between ac-
ademics and industry.

The Tumor Imaging Metrics Core (TIMC) 
at Harvard created the Open Health Imaging 
Foundation (OHIF; http://ohif.org). OHIF 
supports open-source, web-based, imaging 
technologies, and is building a vendor-neu-
tral, open source, extensible, zero-footprint 
web-viewer and supporting server for 
display and analysis of DICOM images. 
The platform is designed with a plug-in 
architecture to allow the group to integrate 
this web-viewer with oncology applications 
across the cancer research community.

One use case of this zero-footprint 
web-viewer is the replacement of the group’s 
existing thick-client with an open source im-
age workstation from the Precision Imaging 
Metrics [116] clinical trials management 
system. The system was developed by the 
Dana Farber / Harvard Cancer Center (DF/
HCC) TIMC and is presently in use across 
six NCI-designated Cancer Centers. To make 
the system broadly available to the oncology 
research community, the team is developing 
an interface to the TIMC’s Precision Im-
aging Metrics web-based application, and 
implementing an annotation and overlay 

standards-compatible interface. The group 
has been actively working with investigators 
from several other NCI-funded projects to 
integrate their viewer with other oncology 
research platforms. The viewer will meet 
all the basic requirements for radiology tu-
mor measurements specific to the needs of 
oncology clinical trials, yet also be flexible 
enough to be configured for user preferences 
and extended via plug-ins to support varied 
research workflows as a shared research 
resource. To achieve these design goals, 
the viewer and all its functionality will be 
delivered to client machines exclusively 
through the web browser requiring nothing to 
install on client computers or mobile devices, 
which greatly simplifies and reduces the 
cost and support requirements of software 
deployments, and increases accessibility. 
The proposed viewer will enable researchers, 
imaging software developers, clinicians, and 
patients to access oncology clinical trials 
images in a freely available and openly 
extensible environment. This will facilitate 
remote image viewing and collaborative 
image consultations among a wide-range of 
imaging professionals.

On-Going and Future 
Initiatives
There are numerous ongoing initiatives that 
help advance the integration of imaging 
into the clinical and research workflow. 
We summarize a few of these that cover a 
cross-section of research and clinical use 
cases, ranging from those that enable imag-
ing-based epidemiologic studies, to others 
that advance the quality and reproducibility 
of imaging algorithms, to a few that enable 
the management and processing of imaging 
data at large scales. This is by no means a 
comprehensive list, rather a sampling of 
informatics projects with a shared theme; 
one that includes a focus on quantitative 
imaging, informatics methodologies, and a 
specific facet of precision medicine.

Development of a Cancer Imaging 
Commons: The Blue Ribbon Panel work-
ing as part of the Vice President’s Cancer 
Initiative (the Moonshot) made several rec-
ommendations [122], including the creation 

of a National Cancer Data Ecosystem. This 
ecosystem will comprise several commons, 
like the Genomic Data Commons [123], and 
include an Imaging Commons. The concept 
of a commons includes the data, compute, 
and analytical tools residing in one place, 
presumably in the cloud, for easy access 
and computation by researchers. The task 
of getting TCIA data into the CGC Pilots 
is a first step towards the development of a 
Cancer Imaging Data Commons.

Virtual Tissue Repository (VTR): The 
NCI Surveillance, Epidemiology, and End 
Results (SEER) program is working with 
participating registries to create the VTR, 
which will allow researchers to select cases 
and request that the tumor registries gather 
tissue, slides, and images, and generate Pa-
thology imaging features and/or additional 
information. A pilot VTR is using caMicro-
scope [124] for online viewing of digital 
pathology images and will employ ITCR 
tools to carry out analyses on Pathology 
imaging features along with an integrative 
query system.

Prototype Data Harmonization and 
Integration Project: Using an NCI Early 
Detection Research Network (EDRN) 
breast cancer study containing clinical trial 
data, in-vivo images, pathology images, and 
biomarker images, the aim is to build the 
informatics connections between imaging 
and clinical data based on ISO standards.

Imaging and Cloud Computing: The 
Cancer Genomics Cloud (CGC) Pilots, fund-
ed by NCI, has been launched in 2016. The 
three platforms provide access to genomic 
data in combination with clinical data from 
The Cancer Genome Atlas. In 2017, these 
cloud pilots expanded their scope by incor-
porating proteomic data and imaging data to 
allow for cross-domain analysis. Such collo-
cation of data simplifies data access (N1) and 
facilitates an integrated exploration of data 
(N3). CGCs all rely on containerized appli-
cations (N5 & N6). Thus, they meet many 
of the informatics needs that are outlined 
here. Recent NCI initiatives, encouraging the 
use of these resources in research activities, 
could provide a real-world assessment of 
the informatics needs that were identified in 
this paper, and help develop a road map for 
the advancement of quantitative imaging in 
clinical and research settings.
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Conclusion
This article provides a survey of the role and 
priorities for imaging informatics to help 
advance quantitative imaging in the era of 
precision medicine. It came about from a 
series of workshops, and dialogues between 
NCI staff and the academic and industrial 
scientists involved with imaging informatics. 
The community continues its work through 
various initiatives, and ongoing dialogues 
on the subject, and working to translate 
informatics developments to clinical utility 
as rapidly as possible. In addition to the six 
needs and challenges outlined above, there 
are some other broad recommendations, 
listed below:
•	 Ensure buy-in from clinicians and make 

sure the tools developed will work in the 
clinical workflow. Educate clinicians on 
the value of imaging and its potential con-
tribution to diagnosis, guiding treatment 
plans, and scientific research.

•	 Incentivize and reward sharing of both 
the imaging data and the data analysis re-
sults to enable secondary analysis, support 
reproducibility of findings, and to allow 
aggregation of standardized datasets. 

•	 Create solutions that ensure data quality 
and veracity, for ease of retrieval and 
clinical utility.

•	 Work towards a flexible, extensible, inte-
grated framework but not a single, mono-
lithic platform; encourage APIs, agile data 
management systems, and use of standards 
and semantics for interoperability.

•	 Work within organizations to educate 
tech transfer and legal departments on 
the importance of industry partners and 
to set reasonable expectations for such 
partnerships.
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