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Abstract

Background: Recent studies, primarily in non-Hispanic whites, suggest that dietary patterns have distinct metabolomic

signatures that may influence disease risk. However, evidence in South Asians, a group with unique dietary patterns and

a high prevalence of cardiometabolic risk, is lacking.

Objective: We investigated the metabolomic profiles associated with 2 distinct dietary patterns among a sample of

Asian Indians living in the United States. We also examined the cross-sectional associations between metabolomic

profiles and cardiometabolic risk markers.

Methods: We used cross-sectional data from 145 Asian Indians, aged 45–79 y, in the Metabolic Syndrome and

Atherosclerosis in South Asians Living in America (MASALA) pilot study. Metabolomic profiles were measured from

fasting serum samples. Usual diet was assessed by using a validated food-frequency questionnaire. We used principal

components analysis to derive dietary and metabolomic patterns. We used adjusted general linear regression models

to examine associations between dietary patterns, individual food groups, metabolite patterns, and cardiometabolic risk

markers.

Results:We observed 2 major principal components or metabolite clusters, the first comprised primarily of medium- to

long-chain acylcarnitines (metabolite pattern 1) and the second characterized by branched-chain amino acids, aromatic

amino acids, and short-chain acylcarnitines (metabolite pattern 2). A “Western/nonvegetarian” pattern was significantly

and positively associated with metabolite pattern 2 (all participants: β ± SE = 0.180 ± 0.090, P = 0.05; participants

without type 2 diabetes: β ± SE = 0.323 ± 0.090, P = 0.0005). In all participants, higher scores on metabolite pattern

2 were adversely associated with measures of glycemia (fasting insulin: β ± SE = 2.91 ± 1.29, P = 0.03; 2-h insulin:

β ± SE = 22.1 ± 10.3, P = 0.03; homeostasis model assessment of insulin resistance: β ± SE = 0.94 ± 0.42, P = 0.03),

total adiponectin (β ± SE = −1.46 ± 0.47, P = 0.002), lipids (total cholesterol: β ± SE = 7.51 ± 3.45, P = 0.03; triglyc-

erides: β ± SE = 14.4 ± 6.67, P = 0.03), and a radiographic measure of hepatic fat (liver-to-spleen attenuation ratio:

β ± SE = −0.83 ± 0.42, P = 0.05).

Conclusions: Our findings suggest that a “Western/nonvegetarian” dietary pattern is associated with a metabolomic

profile that is related to an adverse cardiometabolic profile in Asian Indians. Public health efforts to reduce car-

diometabolic disease burden in this high-risk group should focus on consuming a healthy plant-based diet. J Nutr

2018;148:1150–1159.
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Introduction

The human metabolome, a collection of >40,000 metabolites
or small molecules, provides a comprehensive summary of an
individual’s chemical status and reports on the interaction be-
tween a person’s genome and his or her environment. In recent
years, the field of nutritional epidemiology has rapidly evolved
by integrating metabolomic profiling with nutrition in complex
biosystems.Metabolomics, the measurement of small molecules
in biological samples, offers a unique opportunity to identify
new biomarkers of diet and to examine the complex molec-
ular mechanisms affecting disease risk (1). Diet can affect the
human metabolome by either directly contributing metabolites
or by indirectly influencing metabolic pathways that consume
or produce specific metabolic intermediates (2). It is therefore
plausible that individuals with different dietary patterns might
present with distinct metabolomic signatures that could influ-
ence disease risk. For example, few studies have shown that
individuals who consume a Western-style dietary pattern, de-
fined by high intakes of red meat, potatoes, and sweets, have
a metabolomic signature enriched with BCAAs (3) and short-
chain acylcarnitines (ACs) (3, 4). Several studies have shown
an association of a very similar metabolite cluster with obe-
sity, insulin resistance, type 2 diabetes, and cardiovascular dis-
ease (5–11).However, associations between dietary patterns and
metabolite classes related to disease risk have not been exam-
ined in a South Asian population known to have unique dietary
patterns (12) and a high prevalence of cardiometabolic risk (13–
16).

With the use of data from the Metabolic Syndrome and
Atherosclerosis in South Asians Living in America (MASALA)
pilot study, our aim was to investigate the associations between
2 dietary patterns and serummetabolomic profiles derived from
a panel of 45 ACs, 15 amino acids including BCAAs and aro-
matic amino acids, nonesterified FAs, ketones, and lactate. To
elucidate potential mechanisms by which diet may influence car-
diometabolic risk in South Asians, we further examined asso-
ciations between metabolomic profiles and biomarkers of car-
diometabolic risk in this high-risk population.

Methods
Study population. We used cross-sectional data from the MASALA
pilot population-based study. The study design and methods of the
MASALA pilot study are described in detail elsewhere (17). Briefly, the
study enrolled 150 participants, aged 45 to 79 y, who self-identified as
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Asian Indians living in the San Francisco Bay Area between August 2006
and October 2007. The pilot study was modeled after the Multi-Ethnic
Study of Atherosclerosis (MESA) and used similar recruitment methods,
inclusion and exclusion criteria, and study measurements. Accordingly,
we excluded participants with a physician-confirmed diagnosis of car-
diovascular disease or a history of coronary artery bypass graft surgery,
angioplasty, valve replacement, pacemaker or defibrillator implantation,
and surgery on the heart or arteries. We also excluded participants who
used nitroglycerin, those undergoing active cancer treatment, those with
impaired cognitive ability, those with a life expectancy <5 y, those living
in a nursing home, and those planning to move. Participants who could
not speak or understand Hindi or English were also excluded.

Eligible participants completed an in-person interview to ascertain
their age, sex, medical history, smoking and alcohol use, physical activ-
ity, and dietary intake. In addition, fasting blood samples were collected
by a certified phlebotomist after a 12-h fast. For the current analyses, we
excluded 4 participants who reported implausible energy intakes (<500
or >5000 kcal/d) and 1 participant with missing data on metabolites.
The present study included 145 participants with complete data at the
time of analyses. All of the study protocols were approved by the Uni-
versity of California, San Francisco, Institutional Review Board, and all
of the participants provided written informed consent.

Metabolomics analysis and metabolite patterns. Targeted
metabolomics analyses were performed on fasting serum samples at the
Stedman Center/Duke Molecular Physiology Institute Metabolomics
Core at Duke University. Concentrations of lactate, total ketones, and
nonesterified FAs were measured by standard clinical chemistry meth-
ods on a Beckman DxC600 autoanalyzer. With the use of a targeted
MS-based approach, we determined the concentrations of 45 ACs and
15 amino acids. Proteins were first removed by precipitation with
methanol. Aliquoted supernatants were dried and esterified with either
hot acidic methanol (for ACs) or n-butanol (for amino acids) (18, 19).
Analysis was done by using tandem flow injection MS with a TQD
instrument (Waters Corporation). Quantitation of the “targeted” in-
termediary metabolites was facilitated by the addition of mixtures of
known quantities of stable-isotope internal standards, as detailed pre-
viously (20). The use of internal standards enabled absolute quantita-
tion in micromolar units, and values below the practical lower limits of
quantitation were reported and analyzed as “0”.

Dietary intake. Habitual food consumption and nutrient intakes
were captured by using an ethnicity-specific semi-quantitative FFQ, de-
signed and validated among South Asians in the Study of Health As-
sessment and Risk in Ethnic Groups (SHARE) (21). The FFQ consists
of 163 items, including 61 items unique to the South Asian diet. The to-
tal quantity of consumption (servings per day) for each food item was
computed from the frequency of consumption (assessed as per day, per
week, per month, per year, or never) and the serving size (average, small,
or large). For each food item, the average serving size was provided. A
small serving size was considered to be 0.5 of the average serving size,
whereas a large serving size was 1.5 of the average. Foods were catego-
rized in 29 predefined subgroups on the basis of similarity of nutrient
content, likeness, and their culinary use in an Asian-Indian diet (12)
(Supplemental Table 1). Foods such as coffee were retained as individ-
ual categories given their high reported intake. The FFQ was previously
validated against 7-d diet records. Energy-adjusted and deattenuated
(corrected for measurement error) correlation coefficients for micronu-
trients ranged from 0.45 for total protein intake to 0.73 for intakes of
vitamin E and cholesterol (21).

Measurement of covariates. Weight was measured by using a
standard balance-beam scale, and height was measured by using a sta-
diometer. Three blood pressure measurements were obtained in the
seated position with the use of an automated blood pressure moni-
tor (Philips-Agilent V24C). Mean systolic and diastolic blood pressures
were computed as averages of the second and third readings. Hyperten-
sion was defined as systolic blood pressure ≥140 mm Hg or diastolic
blood pressure ≥90 mm Hg or the use of antihypertensive medication.
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Biomarkers of cardiometabolic risk. Fasting plasma glucose
was measured by using a glucose oxidase method (YSI 2300 STAT
Plus; YSI Life Sciences). Total adiponectin and fasting insulin were mea-
sured by RIA (Linco Research, Inc.). HOMA-IR was calculated as fol-
lows: glucose (mmol/L) × insulin (mU/L)/22.5 (22). Participants were
administered 75 g oral glucose, and blood samples were obtained at
120 min for the measurement of plasma glucose and insulin. Diabetes
was defined as the use of a hypoglycemic medication or fasting plasma
glucose ≥126 mg/dL or a 2-h postchallenge glucose concentration of
≥200 mg/dL (23). Prediabetes was defined as a fasting plasma glucose
concentration of 100–125mg/dL or a 2-h postchallenge glucose concen-
tration of 140–199 mg/dL (23). Participants with normal glucose toler-
ance had both fasting plasma glucose concentrations <100 mg/dL and
a 2-h glucose concentration <140 mg/dL. Insulin sensitivity index was
computed as 10,000/square root of (fasting glucose × fasting insulin)
× (mean glucose × mean insulin during an oral-glucose-tolerance test)
(24).

Total cholesterol, TGs, and HDL cholesterol were measured by en-
zymatic methods (Quest Diagnostics). LDL cholesterol was calculated
by using the Friedewald formula (25).Visceral fat area was measured
by using DXA (Hologic Discovery-Wi) at the L4–L5 level after par-
ticipants were placed in a supine position. We obtained nonenhanced

computed tomography (CT; Philips Medical Systems) images of liver
and spleen density to quantify hepatic fat content. The presence of fatty
liver was defined by a liver-to-spleen attenuation ratio of <1, and lower
values represent higher amounts of hepatic fat (26–28). A trained vascu-
lar technician performed a carotid ultrasound examination to quantify
maximal intimal medial thickness of the internal and common carotid
artery (17). Cardiac CT scans were performed by using a gated-cardiac
CT scanner with the use of either the 16D scanner (Philips Medical
Systems) or the MSD Aquilion 64 model (Toshiba Medical Systems).
All CT scans were read centrally at Harbor–University of California
Los Angeles Medical Center. Coronary artery calcium (CAC) Agatston
scores were reported for each of the 4 major coronary arteries, and the
summed score was used (15). For the current analysis, we modeled CAC
scores as a binary outcome (<10 compared with ≥10).

Statistical methods. We applied a log (x + 1) transformation to
the metabolite data to improve normality. We used the FACTOR proce-
dure in SAS to derive metabolomic signatures and dietary patterns. Log-
transformed metabolites were entered into principal components analy-
sis, and the varimax option was specified. Dietary patterns were derived
as previously described (12). Briefly, food groups were entered into prin-
cipal components analysis as servings per day and factors were rotated

TABLE 1 Descriptive characteristics of Asian Indians, aged 45–79 y, in the MASALA pilot study, by their predominant metabolomic
signature1

Medium- to BCAAs, AAAs,
Characteristic Overall long-chain ACs2 short-chain ACs P3

n 145 70 75
Age, y 57.1 ± 0.7 59.1 ± 1.1 55.2 ± 0.8 0.003
Female, % 50 60 40 0.02
BMI, kg/m2 26.2 ± 0.4 24.8 ± 0.5 27.5 ± 0.6 0.0004
Education, % 0.80
High school or less 12.4 14.3 10.7
Bachelor’s degree or less 9.0 8.6 9.3
More than Bachelor’s degree 78.6 77.1 80.0

Family income, % 0.17
<$40,000 14.5 18.6 10.7
$40,000–$99,999 33.8 27.1 40.0
≥$100,000 51.7 54.3 49.3

Smoking, % 0.68
Never 84.1 81.4 86.7
Past 12.4 14.3 10.7
Current 3.5 4.3 2.7

Metabolic equivalents of task exercise,4 min/wk 1313 (1885) 1444 (1530) 1155 (420) 0.21
Alcoholic drinks/wk, n 4.1 ± 0.6 3.2 ± 0.7 4.9 ± 1.0 0.19
Diabetes, % 0.16
None 35.2 42.9 28.0
Impaired fasting glucose and/or impaired glucose tolerance 37.2 34.3 40.0
Type 2 diabetes 27.6 22.9 32.0

Hypertension, % 42.1 40.0 44.0 0.63
Parental history of diabetes, % 47.6 44.3 50.1 0.72
Time in the United States, y 23.9 ± 1.0 23.2 ± 1.5 24.5 ± 1.3 0.48
Traditional Indian beliefs, %
Weak 31.0 30.0 32.0 0.89
Intermediate 36.6 38.6 34.7
Strong 32.4 31.4 33.3

Score on nonvegetarian dietary pattern −3.37 ± 0.08 −0.24 ± 0.10 0.23 ± 0.13 0.004
Score on vegetarian dietary pattern 4.21 ± 0.08 0.06 ± 0.15 −0.05 ± 0.08 0.54
Total energy intake, kcal/d 1918 ± 58 1856 ± 80 1976 ± 83 0.30

1Values are means ± SEMs or percentages calculated by using t tests for continuous variables and chi-square tests for categorical variables. AAA, aromatic amino acid; AC,
acylcarnitine; MASALA, Metabolic Syndrome and Atherosclerosis in South Asians Living in America.
2Participants whose factor scores for the medium- to long-chain AC pattern were higher than the BCAA, AAA, and short-chain AC pattern were assigned to the medium- to
long-chain ACs group. Participants whose factor scores for the BCAA, AAA, and short-chain AC pattern were higher than those for the medium- to long-chain AC pattern were
assigned to the BCAA, AAA, and short-chain AC group.
3P values comparing differences between metabolomic signature 1 and metabolomic signature 2.
4Due to the skewed distribution, values shown are medians (IQRs).
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TABLE 2 Cross-sectional associations between dietary pattern scores and 2 major metabolomic signatures among Asian Indians,
aged 45–79 y, in the MASALA pilot study1

All participants (n= 145)2 Participants without type 2 diabetes (n= 105)3

Western/nonvegetarian dietary
pattern Vegetarian dietary pattern Nonvegetarian dietary pattern Vegetarian dietary pattern

β ± SE P β ± SE P β ± SE P β ± SE P

Metabolite pattern 14

Model 1 −0.131 ± 0.080 0.10 0.034 ± 0.078 0.67 −0.162 ± 0.090 0.08 0.027 ± 0.089 0.77
Model 2 −0.173 ± 0.100 0.09 0.070 ± 0.097 0.47 −0.188 ± 0.104 0.07 0.060 ± 0.106 0.57
Model 3 −0.173 ± 0.103 0.10 0.065 ± 0.100 0.52 −0.189 ± 0.105 0.07 0.061 ± 0.108 0.57

Metabolite pattern 25

Model 1 0.144 ± 0.075 0.06 0.008 ± 0.074 0.91 0.257 ± 0.080 0.002 −0.042 ± 0.082 0.61
Model 2 0.189 ± 0.090 0.04 0.010 ± 0.087 0.91 0.323 ± 0.089 0.0005 −0.064 ± 0.095 0.51
Model 3 0.180 ± 0.090 0.05 0.014 ± 0.088 0.87 0.323 ± 0.090 0.0005 −0.068 ± 0.097 0.48

1Values are βs ± SEs for each metabolite pattern score per 1-unit increase in the dietary pattern factor score calculated by using linear regression. Model 1 adjusted for age (years)
and sex; model 2 adjusted as for model 1 plus for smoking (never, past smoker, or current smoker), education (high school or less, less than Bachelor’s degree, Bachelor’s degree,
or more than Bachelor’s degree), BMI (kg/m2), physical activity (metabolic equivalent task hours per week), and total energy intake (kilocalories per day); model 3 adjusted as for
model 2 plus for prevalent hypertension (yes or no). AAA, aromatic amino acid; AC, acylcarnitine; MASALA, Metabolic Syndrome and Atherosclerosis in South Asians Living in
America.
2Among all participants, model 3 was additionally adjusted for prevalent diabetes status (yes or no).
3Among participants without type 2 diabetes, a vegetarian pattern was identified in the first principal component, whereas a nonvegetarian pattern was identified in the second
principal component.
4Medium- to long-chain ACs.
5BCAA, AAA, and short-chain AC pattern.

orthogonally. To determine the number of factors to retain for both
metabolomics signatures and dietary patterns, we examined principal
components with Eigenvalues>1, scree plots, variance explained, factor
loadings, and overall interpretability. Metabolites or food groups with
factor loadings ≥0.5 were considered to contribute significantly to the
principal component. We used the SCORE procedure in SAS to derive a
score for each factor for each participant by summing intakes of the food
groups (or metabolomic signature groups) multiplied by their respective
factor loadings. Higher scores indicate a greater degree of conformance
to the respective principal component.Dietary pattern scores were mod-
eled as both continuous and categorical variables (<0 and ≥0).

Participants who received higher factor scores for metabolomic
pattern 1 than for metabolomic pattern 2 were categorized into
metabolomic signature 1. Likewise, those who had higher factors
scores for metabolite pattern 2 than for pattern 1 were categorized
into metabolomic signature 2. Differences in descriptive characteristics
of study participants by metabolomic signature categories were deter-
mined with the use of t tests for continuous variables and chi-square
analyses for categorical variables. We used Pearson correlations to
examine associations between dietary pattern scores and metabolite
patterns, adjusting for total energy intake. We used a general linear
regression model to examine associations between dietary pattern
scores (continuous and categorical: <0 and ≥0) and metabolite pattern
scores (continuous). In our first model, we adjusted for age and sex. In
model 2, we additionally adjusted for total energy intake, educational
status, and traditional cardiometabolic risk factors, such as smoking,
BMI, and physical activity. Because alcohol was listed as a food group in
our principal components analysis, we did not adjust for this variable.
In our final model, to account for potential reverse causation due to
the diagnosis of a cardiometabolic outcome, we further adjusted our
models for the presence of prevalent type 2 diabetes and hypertension.
In a secondary analysis, in order to understand if associations between
dietary pattern scores and metabolite patterns were driven by certain
food groups, we examined cross-sectional associations between food
groups with factor loadings ≥0.5 (continuous) and metabolite pattern
scores adjusting for the covariates listed above.

Given our previous findings that greater adherence to a Western
pattern was associated with adverse measures of glycemia and insulin
resistance (29), we examined the cross-sectional associations between
metabolite pattern scores and several biomarkers of cardiometabolic
risk with the use of linear regression. For models with CAC as a binary
outcome, we used logistic regression. In these models, in addition to

the covariates listed above, we further adjusted for medication use, in-
cluding cholesterol-lowering medications. Because the presence of type
2 diabetes can significantly alter the metabolomic profile (30, 31), we
repeated all analyses restricting to those without type 2 diabetes. For all
linear models, we checked for evidence of violations of the assumptions
of normality, linearity, and homogeneity by examining plots of residu-
als compared with predicted values and the normal probability plots of
residuals. All of the statistical analyses were conducted with the use of
SAS version 9.4 (SAS Institute).A significance level of P≤ 0.05was used.

Results

Dietary patterns and metabolite patterns. We derived 2 ma-
jor dietary patterns: a Western/nonvegetarian pattern, charac-
terized by high intakes of poultry, fish, red meat, coffee, pizza,
and alcohol, and a vegetarian pattern, characterized by high in-
takes of rice, legumes, sugar-sweetened beverages, and snacks.
When we restricted the analyses to those without diabetes, we
observed a nonvegetarian and a vegetarian pattern. Similar to
the overall population, the nonvegetarian pattern was charac-
terized by higher intakes of red meat, poultry, and fish as well
as eggs and vegetables. Foods that loaded heavily on the vegetar-
ian pattern included rice, snacks, legumes, and sugar-containing
beverages (Supplemental Table 2). In all of the participants,
we derived 2 major metabolomic signatures. The first pattern
was enriched primarily with medium-chain (C8–C14) and long-
chain (C16 –C20) ACs and accounted for 15.9% of the vari-
ance. The second metabolite pattern was characterized primar-
ily by BCAAs and aromatic amino acids plus short-chain (C2
and C5) ACs (Supplemental Table 3). Among participants with-
out type 2 diabetes,we observed similar metabolomic signatures
(Supplemental Table 3).

Descriptive characteristics. We included data on 145 partici-
pants with complete information on diet and metabolites. In the
overall sample, half of the participants were women, and the av-
erage age was 57 y. A large majority of the participants had at
least a bachelor’s degree, a family income ≥$100,000, and were
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never smokers. Participants with higher factor loadings on the
BCAA, aromatic amino acid, and short-chain AC pattern than
on the medium- to long-chain AC pattern were younger, more
likely to be male, and had a significantly higher BMI. These
participants were also more likely to have higher factor scores
on the nonvegetarian dietary pattern (Table 1).

Cross-sectional associations between dietary patterns and
metabolomic signatures. In the overall sample (n = 145),
after adjusting for age, sex, smoking status, education, BMI,
physical activity, total energy intake, and comorbidities in-
cluding type 2 diabetes and hypertension, we found a positive
association between a Western/nonvegetarian dietary pattern
and a metabolite pattern enriched with BCAAs, aromatic
amino acids, and short-chain ACs (Table 2). At the same
time, compared with those with low scores (<0) on the West-
ern/nonvegetarian dietary pattern, those with high scores (≥0)
had significantly higher adjusted mean BCAAs, aromatic amino
acids, and short-chain ACs in their metabolite pattern scores
(Table 3). When we restricted the analysis to those without
type 2 diabetes (n = 105), a nonvegetarian dietary pattern was
strongly and positively associated with BCAAs, aromatic amino
acids, and short-chain ACs. Likewise, compared with those
with low factor scores (<0) on the nonvegetarian dietary pat-
tern, those with high factor scores (≥0) had significantly higher
BCAA, aromatic amino acid, and short-chain AC metabolite
pattern scores (Table 3). In both the overall sample and among
those without type 2 diabetes, we found no significant associ-
ations between a vegetarian dietary pattern and metabolomic
signatures (P > 0.05).

Metabolite patterns and food groups. In a secondary anal-
ysis, we examined cross-sectional associations between serv-
ings of individual food groups with factor loadings ≥0.5
and metabolite patterns. In the overall sample, we found
a positive and significant association between red meat in-
take and BCAAs, aromatic amino acids, and short-chain
ACs. Among those without type 2 diabetes, higher in-
takes of poultry, red meat, and vegetables were associated
with a BCAA, aromatic amino acid, and short-chain AC
metabolomic signature (Table 4). However, after perform-
ing Bonferroni correction (P < 0.006), only vegetables were
associated with a BCAA, aromatic amino acid, and short-
chain AC metabolomic signature. We found no association
between any of the individual food groups and the medium-
to long-chain AC metabolite pattern.

Metabolomic signatures and biomarkers of car-
diometabolic risk. Among all participants and in those
without type 2 diabetes, we found that higher scores on the
medium- to long-chain AC pattern were associated with higher
concentrations of total adiponectin (Table 5). In the entire
sample, higher scores on the BCAA, aromatic amino acid,
and short-chain AC metabolomic pattern were significantly
associated with higher fasting insulin and 2-h insulin concen-
trations, higher insulin resistance, and lower concentrations of
total adiponectin and a lower insulin sensitivity index. At the
same time, the BCAA, aromatic amino acid, and short-chain
AC metabolomic pattern was also positively associated with
total cholesterol and TG concentrations and lower liver-to-
spleen attenuation. In analyses restricted to those without
type 2 diabetes, this metabolomic pattern was associated with
higher concentrations of fasting glucose, lower concentrations
of total adiponectin, and a lower insulin sensitivity index.
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TABLE 4 Cross-sectional associations between food groups (servings per day) and metabolite pattern scores among Asian Indians,
aged 45–79 y, in the MASALA study1

All participants (n= 145)3 Participants without type 2 diabetes (n= 105)

Metabolite pattern 1 Metabolite pattern 2 Metabolite pattern 1 Metabolite pattern 2
(Medium- to long-chain AC

pattern)
(BCAA, AAA, and short-chain AC

pattern)
(Medium- to long-chain AC

pattern)
(BCAA, AAA, and short-chain AC

pattern)

Food groups2 β ± SE P β ± SE P β ± SE P β ± SE P

Rice 0.069 ± 0.090 0.45 0.060 ± 0.079 0.45 0.070 ± 0.087 0.42 0.032 ± 0.078 0.68
Legumes 0.085 ± 0.095 0.37 −0.070 ± 0.082 0.40 0.033 ± 0.103 0.75 −0.080 ± 0.092 0.38
Sugary drinks 0.156 ± 0.180 0.39 0.071 ± 0.157 0.66 0.127 ± 0.174 0.47 −0.011 ± 0.157 0.94
Snacks 0.031 ± 0.101 0.76 −0.040 ± 0.088 0.65 0.060 ± 0.110 0.59 −0.067 ± 0.099 0.50
Poultry −0.168 ± 0.198 0.40 0.118 ± 0.173 0.50 −0.193 ± 0.345 0.58 0.760 ± 0.300 0.01
Fish −0.318 ± 0.378 0.40 0.624 ± 0.328 0.06 −1.001 ± 0.577 0.09 0.935 ± 0.518 0.07
Red meat 0.031 ± 0.249 0.90 0.512 ± 0.213 0.02 −0.197 ± 0.262 0.45 0.534 ± 0.229 0.02
Coffee −0.084 ± 0.077 0.28 0.006 ± 0.068 0.93 — — — —
Pizza −0.666 ± 0.527 0.21 −0.732 ± 0.460 0.11 — — — —
Alcohol 0.062 ± 0.116 0.60 0.040 ± 0.101 0.69 — — — —
Eggs — — — — −0.392 ± 0.209 0.06 0.198 ± 0.191 0.30
Vegetables — — — — −0.045 ± 0.035 0.21 0.087 ± 0.031 0.005

1Values are βs ± SEs for each metabolite pattern score per 1-serving increase in the corresponding food group calculated by using linear regression. Models were adjusted for
age (years), sex, smoking (never, past smoker, or current smoker), education (high school or less, less than Bachelor’s degree, Bachelor’s degree, or more than Bachelor’s degree),
BMI (kg/m2), physical activity (metabolic equivalent task hours per week), total energy intake (kilocalories per day), and prevalent hypertension (yes or no). AAA, aromatic amino
acid; AC, acylcarnitine; MASALA, Metabolic Syndrome and Atherosclerosis in South Asians Living in America.
2Food groups are those with factor loadings ≥0.5 in all dietary patterns.
3Models in all participants additionally adjusted for prevalent diabetes status (yes or no).

In both the overall sample and the subgroup restricted to
those without type 2 diabetes, we found no associations be-
tween metabolomic patterns, visceral fat area, and subclinical
measures of atherosclerosis.

Discussion
In this cross-sectional pilot study in middle-aged immigrant
Asian Indians living in the United States, we confirmed 2 major
dietary patterns—a Western/nonvegetarian and a vegetarian di-
etary pattern—and documented 2 major metabolomic profiles,
including one enriched with medium- to long-chain ACs and
another characterized by higher concentrations of BCAAs, aro-
matic amino acids, and short-chain (C2, C5) ACs. In both the
overall sample and in the subset of participants without type 2
diabetes, a Western or a nonvegetarian dietary pattern was pos-
itively associated with a BCAA, aromatic amino acid, and short-
chain AC metabolomic pattern. In particular, higher intakes of
red meat were positively associated with this metabolite pat-
tern. Among those without type 2 diabetes, in addition to red
meat intake, intakes of fish and vegetables were additionally as-
sociated with the BCAA, aromatic amino acid, and short-chain
AC pattern. We also found this metabolomic pattern to be sig-
nificantly and positively associated with measures of glycemia,
insulin resistance, TGs, and liver-to-spleen attenuation ratio.

A direct comparison of our findings with the existing litera-
ture is not straightforward because, to our knowledge, no pre-
vious study has examined associations between a South Asian
dietary pattern and metabolomic profiles. However, our results
are broadly consistent with studies that examined dietary
sources of metabolites and with studies that identified a
“Western” or “meat” pattern. For example, in a cross-sectional
analysis of 210 participants, aged 18 to 50 y, recruited from the
greater Quebec City area, a Western dietary pattern defined by
higher intakes of refined-grain products, desserts, sweets, and
processed meats was positively associated with a metabolomic

signature comprised of leucine, methionine, arginine, pheny-
lalanine, proline, ornithine, histidine, and ACs C0, C3, C4, and
C5 (r = 0.38, P = 0.03) (3). In the Oxford arm of the European
Prospective Investigation into Cancer and Nutrition (EPIC)
study, consistent with our finding that a “nonvegetarian”
pattern was associated with short-chain ACs, Schmidt et al. (4)
found that meat and fish eaters had the highest concentrations
of tryptophan and ACs C0, C4, and C5. At the same time, fish
eaters had the highest concentrations of the BCAAs leucine and
valine and the amino acids methionine and tyrosine (4, 32), all 4
of which are essential amino acids. When examining individual
food groups, similar to our findings, several studies documented
elevated concentrations of acetylcarnitine (C2) with meat con-
sumption. In a short-term feeding study, acetylcarnitine
concentrations were significantly elevated in 12 healthy men
after a “high-meat” diet (33). In a double-blind, randomized,
placebo-controlled dietary intervention trial in 160 participants,
a positive association between red meat intake and urinary
concentrations of O-acetylcarnitine was documented (34).
Likewise, in a recent randomized, controlled, crossover trial,
urinary concentrations of O-acetylcarnitine were significantly
higher with increases in red meat intake (35). In a case-control
study, red and processed meat intake was found to be positively
associated with urinary, but not serum, concentrations of acetyl-
carnitines (36). In a more recent analysis, 3 short-chain ACs,
including acetylcarnitine (C2), propionylcarnitine (C3), and
2-methylbutrylcarnitine (C5), were found to be generic markers
of meat and fish intake (37). Our finding of higher concentra-
tions of the ACs C2 and C5 with the “nonvegetarian” pattern
is consistent with these findings. Interestingly, C3 and C5 ACs
are generated from BCAA catabolism and have been previously
reported to be associated with obesity and insulin resistance. It
is worth noting that red meat is a major source of l-carnitine,
a trimethylamine, which could contribute to the association
of particular AC species with increased red meat and fish
consumption (38). In fact, acetylcarnitine has been reported to
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TABLE 5 Cross-sectional associations between metabolite pattern scores and biomarkers of cardiometabolic risk among Asian
Indians, aged 45–79 y, in the MASALA study1

All participants (n= 145) Participants without type 2 diabetes (n= 105)

Metabolite pattern 1 Metabolite pattern 2 Metabolite pattern 1 Metabolite pattern 2
(medium- to long-chain AC

pattern)
(BCAA, AAA, and short-chain AC

pattern)
(medium- to long-chain AC

pattern)
(BCAA, AAA, and short-chain AC

pattern)

β ± SE P β ± SE P β ± SE P β ± SE P

Laboratory measures2

Fasting glucose, mg/dL −1.44 ± 1.98 0.47 4.36 ± 2.30 0.06 −1.66 ± 0.99 0.10 3.19 ± 1.17 0.008
2-h Glucose, mg/dL −3.61 ± 6.42 0.57 10.8 ± 7.42 0.15 0.68 ± 3.39 0.84 −0.19 ± 4.19 0.96
Fasting insulin, µU/mL −0.69 ± 1.12 0.54 2.91 ± 1.29 0.03 −0.32 ± 0.66 0.63 0.61 ± 0.81 0.45
2-h Insulin, µU/mL 2.61 ± 9.02 0.77 22.1 ± 10.3 0.03 −2.23 ± 10.4 0.83 18.5 ± 12.5 0.14
HOMA-IR, glucose (mmol/L)
× insulin (mU/L)/22.5

−0.27 ± 0.36 0.46 0.94 ± 0.42 0.03 −0.14 ± 0.18 0.44 0.18 ± 0.22 0.42

Total adiponectin, µg/mL 0.91 ± 0.40 0.03 −1.46 ± 0.47 0.002 0.87 ± 0.44 0.05 −1.16 ± 0.53 0.03
Insulin sensitivity index 0.24 ± 0.21 0.25 −1.07 ± 0.22 <0.0001 0.33 ± 0.28 0.24 −1.12 ± 0.32 0.0006

Lipids2,3

Total cholesterol, mg/dL 1.05 ± 2.93 0.72 7.51 ± 3.45 0.03 0.34 ± 3.36 0.92 1.83 ± 4.08 0.66
TGs, mg/dL −7.09 ± 5.63 0.21 14.4 ± 6.67 0.03 −8.79 ± 6.35 0.17 3.34 ± 7.79 0.67
LDL cholesterol, mg/dL 0.27 ± 2.59 0.92 4.39 ± 3.08 0.16 −0.14 ± 2.94 0.96 −0.40 ± 3.57 0.91
HDL cholesterol, mg/dL 2.00 ± 1.08 0.07 0.42 ± 1.31 0.75 1.94 ± 1.47 0.19 1.72 ± 1.79 0.34

Body composition2,3

Visceral fat area, cm2 −0.79 ± 3.59 0.83 3.02 ± 4.29 0.48 −1.61 ± 3.93 0.68 −1.81 ± 4.78 0.71
Liver-to-spleen attenuation,
Hounsfield units

−0.12 ± 0.35 0.74 −0.83 ± 0.42 0.05 −0.02 ± 0.44 0.96 −0.62 ± 0.53 0.25

Subclinical atherosclerosis2,3

Common carotid intima medial
thickness, mm

−0.003 ± 0.014 0.84 0.026 ± 0.017 0.12 0.017 ± 0.015 0.27 0.004 ± 0.018 0.82

Internal carotid intima medial
thickness, mm

0.007 ± 0.032 0.82 0.054 ± 0.037 0.15 0.035 ± 0.032 0.27 0.047 ± 0.038 0.23

Coronary artery calcium,
Agatston scores <10 vs. >10

−0.152 ± 0.236 0.52 −0.421 ± 0.287 0.14 0.118 ± 0.328 0.72 −0.711 ± 0.424 0.09

1Values are βs ± SEs for each corresponding cardiometabolic outcome per 1-unit increase in the metabolite pattern score calculated by using linear regression. AAA, aromatic
amino acid; AC, acylcarnitine; MASALA, Metabolic Syndrome and Atherosclerosis in South Asians Living in America.
2Models were adjusted for age (years), sex, smoking (never, past smoker, or current smoker), education (high school or less, less than Bachelor’s degree, Bachelor’s degree, or
more than Bachelor’s degree), BMI (kg/m2), physical activity (metabolic equivalent task hours per week), total energy intake (kilocalories per day), prevalent hypertension (yes or
no), medication for high cholesterol (yes or no), and statin use (yes or no).
3In all participants, models with lipids, body-composition measures, and measures of subclinical atherosclerosis were additionally adjusted for prevalent diabetes status (yes or
no).

be a marker for prediabetes and diabetes in previous studies
(39, 40).

Our finding of a positive association between vegetable con-
sumption and a metabolite pattern characterized by BCAAs,
aromatic amino acids, and short-chain ACs was unexpected.
Given that previous studies have found these metabolites to
be associated with higher meat consumption and because
vegetables are traditionally included in some South Asian meat
preparations, it is likely that the observed associations could
be confounded by meat intake. However, when we additionally
adjusted for red meat and poultry, the association, although
attenuated, remained significant. It may also be that the major
unhealthy components of the vegetarian pattern, such as rice,
sugar-containing beverages, and snacks, could confound this
association. It is also likely that oils and clarified butter, typi-
cally rich in saturated fats, which are added to vegetable curries
during the cooking process, could be driving this association.

Consistent with our findings, several studies have sug-
gested that BCAAs and aromatic amino acids are predictors of
insulin resistance and cardiometabolic risk (41–43). In large-
scale cohorts such as the Framingham Heart Study, the Fram-
ingham Heart Study Offspring Study, and the Insulin Resis-
tance Atherosclerosis Study, higher BCAA concentrations were

inversely associated with insulin sensitivity (43) and positively
with insulin resistance (42, 44) and fasting glucose (44) and TG
(42, 44) concentrations.However, unlike in the Framingham co-
horts (42, 44), we were unable to find an association with HDL
cholesterol. Only 3 other studies in South Asians have exam-
ined associations between metabolomic profiles and measures
of glycemia and insulin resistance (9, 45, 46). In a cohort of
nondiabetic South Asian men from the Southall and Brent Re-
visited (SABRE) study, BCAAs or aromatic amino acids were
not correlated with fasting or 2-h glucose, fasting or 2-h insulin,
and HOMA-IR. However, both BCAAs and aromatic amino
acids were strongly and adversely associated with incident di-
abetes, even after adjusting for metabolic risk factors (46). In a
small cross-sectional study in 83Asian-Indianmen in Singapore,
strong associations, independent of BMI and dietary protein,
were reported between BCAAs, aromatic amino acids, methio-
nine, and insulin resistance (9). In a third study in Indians from
South India, BCAAs and aromatic amino acids were elevated in
participants with a high BMI and type 2 diabetes and in obese,
nondiabetic participants (45).

To our knowledge, this is the first study to evaluate associ-
ations between dietary patterns, metabolomic signatures, and
cardiometabolic risk in an Asian-Indian population that is a
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distinctly high-risk phenotypic group. The strengths of the cur-
rent study include the availability of validated dietary data,
absolute quantitation of plasma metabolites, and a well-
phenotyped study population. Still, our results need to be inter-
preted in the context of a few limitations. First, given the over-
all small sample size of our pilot study, the possibility of a type
II error cannot be excluded. Second, given the cross-sectional
nature of the study, we cannot ascertain if changes in diet be-
fore the start of the study or the presence of disease at baseline
changed a participant’s metabolomic profile.However, when we
restricted our analyses to those without type 2 diabetes at base-
line, our results remained largely consistent. Third, the use of
an FFQ to measure diet may introduce some degree of mea-
surement error. However, given that measurement errors in diet
are unlikely to be related to objective measures of metabolite
data, observed associations are likely to be attenuated toward
the null. Fourth, our study population was limited to Asian Indi-
ans living in the United States, and it remains unclear if our find-
ings can be generalized to other ethnic groups or South Asians
living in South Asia. Still, the consistency of our findings with
those in European populations and in a smaller study in south
Indians in India enhances the external validity of our findings.
Fifth, although we carefully adjusted for several known factors
that could confound the association between diet and metabo-
lites, reverse causation due to prevalent disease and residual con-
founding remain a strong possibility. Nevertheless, to address
the issue of reverse causation,whenwe restricted our analyses to
those without type 2 diabetes, the results remained largely con-
sistent with the overall study sample. Finally, although there is
some evidence from European populations that polymorphisms
associated with insulin resistance may have an effect on cir-
culating concentrations of BCAAs (47), to our knowledge, no
such study exists in Asian Indians. Furthermore, it is unlikely
that any such polymorphisms, which would differentially affect
BCAA concentrations, would be more prevalent among those
who consume a Western dietary pattern.

Taken together, our findings shed some insights into po-
tential mechanistic pathways through which diet can influence
cardiometabolic risk. Because a Western/nonvegetarian pattern
was associated with a metabolomic signature known to be re-
lated to disease risk, our findings support public health recom-
mendations to adopt a healthy eating pattern that focuses on
a high variety of vegetables from all subgroups, fruit, whole
grains, fat-free or low-fat dairy, a variety of plant proteins (e.g.,
nuts, legumes, seeds, and soy products), seafood, and lean meats
and poultry, and limiting saturated fats, trans fats, added sug-
ars, and sodium (48). Although Asian Indians are at a higher
risk of cardiometabolic diseases than their white counterparts
(17), it is important to note that nearly 90% of the study partic-
ipants were immigrants and many may have acculturated and
adopted a “Western”-style diet, thereby potentially compound-
ing their risk for cardiometabolic diseases. Although the vege-
tarian diet pattern was not associated with an adverse metabolic
profile in this study, it is worth mentioning that this pattern
was not “healthy”because it loaded heavily on unhealthy foods
such as rice (primarily white rice), sugar-containing beverages,
and snacks, which have been shown previously to increase car-
diometabolic risk (49, 50). In fact, the only healthy food group
that defined this vegetarian pattern was legumes. Although we
do not have data from the Indian subcontinent, the composition
of the vegetarian pattern may be a reflection of the global nu-
trition transition in which traditional diets rich in whole grains,
legumes, fruit, and vegetables are being replaced with more re-
fined grains, sugar-sweetened beverages, and increasing intakes

of meat products and salt (51). In fact, we found that among
those without type 2 diabetes, vegetable consumption was
positively associated with a BCAA, aromatic amino acid, and
short-chain ACmetabolite pattern which is likely due to unmea-
sured confounding due to these other unhealthy components. It
is therefore imperative to examine how “vegetarianism,” cook-
ing methods of vegetables, particularly with regard to exposure
to such refined fats as ghee, and the overall quality of a vegetar-
ian diet among Asian Indians relate to cardiometabolic risk.

In conclusion, we found that a Western/nonvegetarian
dietary pattern in Asian Indians was positively associated with
a metabolomic signature characterized by BCAAs, aromatic
amino acids, and short-chain ACs, which, in turn, were ad-
versely associated with measures of glycemia, lipid measures,
and the liver-to-spleen attenuation ratio. Public health efforts to
lower cardiometabolic risk should focus on adapting a healthy
plant-based diet as outlined in the 2015 Dietary Guidelines for
Americans (48). Given the cross-sectional nature of our study,
future prospective studies should confirm our findings and
explore the association between the quality of plant-based
diets, metabolomic signatures, and cardiometabolic risk. At the
same time, to elucidate the diet-metabolome-disease relation, it
is important to examine whether changes in diet can influence
the metabolic profile and the development of cardiometabolic
disease.
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