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ABSTRACT

Nephrologists and kidney disease researchers are often inter-
ested in monitoring how patients’ clinical and laboratory
measures change over time, what factors may impact these
changes, and how these changes may lead to differences in
morbidity, mortality, and other outcomes. When longitudinal
data with repeated measures over time in the same patients are
available, there are a number of analytical approaches that
could be employed to describe the trends and changes in these
measures, and to explore the associations of these changes
with outcomes. Researchers may choose a streamlined and
simplified analytic approach to examine trajectories with sub-
sequent outcomes such as estimating deltas (subtraction of the
last observation from the first observation) or estimating per
patient slopes with linear regression. Conversely, they could
more fully address the data complexity by using a longitudinal
mixed model to estimate change as a predictor or employ a
joint model, which can simultaneously model the longitudinal
effect and its impact on an outcome such as survival. In this re-
view, we aim to assist nephrologists and clinical researchers by
reviewing these approaches in modeling the association of lon-
gitudinal change in a marker with outcomes, while appropri-
ately considering the data complexity. Namely, we will discuss
the use of simplified approaches for creating predictor vari-
ables representing change in measurements including deltas
and patient slopes, as well more sophisticated longitudinal
models including joint models, which can be used in addition
to simplified models based on the indications and objectives of
the study as warranted.

© The Author 2017. Published by Oxford University Press
on behalf of ERA-EDTA. All rights reserved.
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INTRODUCTION

In a large number of survival analysis studies, laboratory and
clinical measurements are measured at a single-point-in-time at
the beginning of the study (baseline), and patients are then fol-
lowed for a period of time subsequent to this baseline time point
to examine associations of these markers with morbidity and
mortality outcomes. However, when researchers have data with
repeated measurements, they may prefer to measure variability
that occurs over a specified time period and investigate how
changes in these variables impact outcomes after the exposure
period. They may use methods such as time-dependent (or
time-varying covariate) analyses, where the single measurement
may be updated over time and replaced with subsequent meas-
urements to examine short-term associations, or time-averaged
analyses, where a patient’s baseline measurement is represented
by a single estimate derived from the average of measurements
over a specified period. Additionally, with repeated measure-
ments, researchers can also examine changes or fluctuations in
these laboratory measurements and how it impacts clinical out-
comes. Researchers may use these changes and variations as a
predictor of an outcome or examine and describe trends and
the factors that impact these trends. A previous review by
Leffondre et al. [1] superbly summarizes and compares three
methods of estimating trajectories of renal function over time
and discusses their advantages and limitations, especially when
renal function trajectories are not completely observable due to

ii77


Deleted Text: &eacute;
Deleted Text: ,

FULL REVIE‘NI

patient dropout. In this review, we will extend this discussion by
examining the modeling of repeated measures as predictors
used in survival analyses. We will provide a brief overview of
the basics of linear and longitudinal modeling based on the texts
of Weiss [2] and Fitzmaurice et al. [3], and additionally explain
how longitudinal models can be used to provide better estimates
of patient slopes to be used as predictors in survival models.

DELTA METHOD

In change analyses, a researcher may be interested in addressing
how a change in a laboratory marker of two time points affects
the outcome. In this case, the researcher will estimate a ‘delta’, or
examine the difference between the latter measurement sub-
tracted from the first measurement. This method may closely
represent a situation in clinical practice, where a physician must
determine an action by examining the change between the cur-
rent visit marker levels and the previous marker levels. In our
study [4] on mortality prediction by surrogates of body compos-
ition, we examined the associations of changes in dry weight and
serum creatinine over a 6-month period with mortality. We sub-
tracted the patients’ dry weight and serum creatinine values at
6 months from their baseline value to calculate the delta and esti-
mated survival differences after this point. As change and its im-
pact on outcomes may be relative to baseline values, we
additionally adjusted for the baseline value of each marker. Since
the delta of weight and creatinine were the exposures of interest,
analyses were restricted to patients with an available delta esti-
mate, i.e. measurements at both baseline and 6 months of follow-
up. Similar analyses were conducted in more recent studies by
our group examining changes in mineral and bone disorder
markers over 6 months or residual kidney function over 1 year
with mortality outcomes in hemodialysis patients [5, 6]. The
limitation of this delta method is the restriction of analyses to
only patients with measurements at both time points who can
contribute to the evaluation of subsequent outcomes.

to patients with the available amount of data. However, when
repeated measures data are available for a population of pa-
tients, an analyst may want to estimate the exposure of the pa-
tient slope as a function of what is occurring for all patients in
the population. In this case, more considerations are needed for
the data structure in longitudinal (or repeated measures) ana-
lysis. Of benefit, appropriate longitudinal modeling can max-
imally leverage the rich data available and provide correct
standard error estimates or better estimates of slopes for use as
predictors. Although seemingly complex, examining trends in
repeated measures with longitudinal models is an extension of
simple linear regression analysis.

SLOPE METHOD

If more than two data points are available, one may examine as-
sociations of marker change with outcomes by estimating the
individual slope of that marker in each patient. The estimated
slopes (calculated by simple or ordinary least squares (OLS) lin-
ear regression in each patient) would be used as the exposure.
In such studies, some analysts may choose to limit their analyses
to patients with at least three data points measured at specified
times (such as beginning, middle and end, or at least 3 months
apart) during a specified discrete time period. In a study by
Derose et al. [7], analyses were restricted to patients who had
more than two creatinine measurements at least 180 days be-
tween measurements in order to estimate perpatient slopes of
estimated glomerular filtration rates (eGFR) during 1, 3 and 5
years after entry as a predictor of subsequent mortality after the
exposure period.

In both delta and slope analyses, researchers can estimate
change as a predictor for an outcome and analyses are restricted
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LINEAR REGRESSION REVIEW

In an elementary statistics course, researchers learn the basics of
linear regression (or OLS regression) modeling where the rela-
tionship between a continuous predictor variable and outcome
variable is modeled with an equation representing this best fit
line, Y = o + X + & where Yis the outcome variable, X is the
predictor variable, o is the intercept, which represents the popula-
tion mean of the outcome variable, fis the slope of regression
line or regression model coefficient for X and ¢ is the total error
of difference from observed to predicted values. Researchers also
learn that in order to use the linear regression model appropri-
ately, assumptions regarding the data must be satisfied. First is
the ‘assumption of linearity’, or that the relationship between the
predictor and outcome follows a linear or straight pattern. In
practice, the assumption of linearity is checked by examining the
absence of clustering patterns within the subjects or that there is a
clear linear pattern when the residuals per patient are plotted
against the predictor. Second is the ‘assumption of independence’
that the residuals or difference from the actual points measured
to the estimated outcome from the model or best fit line are inde-
pendent or random, and that there is no correlation between re-
siduals for consecutive predictor values. To further this point are
the third and fourth assumptions, the ‘assumption of homosce-
dasticity’ and the ‘assumption of error normality’, which states
that the residuals or error values must be normally distributed
and have an equal variance across values of the predictor estimate.
This ensures that the model does not have a smaller error or cre-
ates a better prediction dependent on the predictor value. It is
also crucial for these assumptions to hold when using linear re-
gression models for correct inference about regression coeffi-
cients, e.g. computing P-values or confidence intervals (ClIs).

In longitudinal studies, the goal is to ‘characterize trends in
patients’ repeated measurements over time’. In this case, the
predictor becomes time and the outcome is the variable of inter-
est. However, by the nature of longitudinal data, the ‘assump-
tion of independence’ is violated. Since repeated measures come
from the same patient, repeated values would naturally not be
independent or random. There would be ‘within-patient’ factors
that impact the measurement values repeated from the same pa-
tient. We would expect that two measurements taken from the
same person would be more similar than two measurements
from different people. For example, if a patient’s first measure-
ment is higher than average, we anticipate that the same patient
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will have a higher than average second measurement. The dis-
tance between the actual value and predicted value for each
measurement from that patient would be correlated. That is to
say, in longitudinal data the error would be correlated across re-
peated values. This information about how the repeated meas-
ures or errors are correlated must be modeled in the analysis to
properly analyze the data. Not accounting for a correlated error
or treating the error as independent can lead to large under- or
overestimates of the predictor-outcome relationship.
Therefore, in longitudinal models, the overall model error from
the regression model is partitioned into two parts: the ‘subject-
specific random error’ and the remaining model ‘random error’.
The ‘subject-specific random error’ accounts for the fact that re-
peated measures are derived from the same subject and these re-
peated measures are most likely correlated, while the remaining
model ‘random error’ accounts for how much the regression
model differs from patients’ actual measured data points overall
after accounting for the ‘subject-specific error’. The modeled
‘subject-specific error’ is also known as the ‘random effects’ of
the longitudinal model.

FIXED AND RANDOM EFFECTS ON
LONGITUDINAL MODELS

Longitudinal models are often referred to as mixed models,
since they account for both ‘fixed’ and ‘random effects’. The
‘fixed-effects’ components are the relationships between expos-
ure and confounder variables with outcomes at the population
level, assuming fixed and common relationships across individ-
uals. Similar to the simple linear regression model, ‘fixed effects’
are expressed as betas (f3). If the ‘fixed-effects’ relationships are
not perfectly linear, we can include interaction terms of the ex-
posure (time) with itself to represent logarithmic, quadratic,
cubic or higher order polynomial relationships, or generate
spline functions of time in the model.

The ‘random-effects’ component is the subject-specific effect,
which recognizes that multiple observations should be clustered
together in the analysis, since they are derived from the same per-
son. When modeling the ‘random effects’ or ‘subject-specific’
contribution to the model, we can account for the correlation of
values in repeated measurements taken from the same person. In
addition, we can account for whether effects at the subject level
differ from the overall population by their baseline levels, the rate
of their trajectories or a combination of both. In longitudinal re-
gression models, the error of ¢ in Y= a+ X+ ¢ is split into
Y= o + X+ D + ¢, where D represents the subject-specific
contribution or that multiple measures are taken from the same
person.

MODELING THE PATTERN OF REPEATED
MEASUREMENTS: COVARIANCE STRUCTURE

An appropriate longitudinal model accounts for how repeated
measurements taken from the same individual are correlated
over time. In longitudinal models, the correlation between
measurements being modeled is called the ‘covariance
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structure’. Covariance, similar to correlation, is a measure of the
relationship or linear dependence between two measurements.
Unlike correlations, which are unitless, covariances account for
the units of the measured variables. The covariance of a variable
with itself is called the variance or the spread of distribution of
values about the variable’s mean. Covariances are interpreted
relative to the variance of the variable. When the covariance is
zero, we say that there is no relationship between the two re-
peated measurements. Otherwise, the value of the covariance
needs to be interpreted relative to the variance of the evaluated
variable.

In general, there are three basic covariance model structures:
(i) unstructured, (ii) compound symmetry and (iii) autoregres-
sive. Evaluating which covariance structure best fits the data is a
separate step when running a longitudinal model. Inspecting
the covariance between observations helps determine the co-
variance model structure that should be used. For each pair of
time points, we would measure the covariance of values from
the first and second time points (or each respective pair) for all
subjects that had data for those two time points. Using most
statistical software programs, researchers can request a table
summary of the covariance matrix representing the covariances
of all paired measured observations. For ease of interpretation,
the statistical program can also output the normalized correl-
ations or correlation structure between measurements instead.

Unstructured

In an ‘unstructured covariance’, there is no discernible pat-
tern of covariances. The pattern appears ‘arbitrary’ and no ex-
plicit structure is assumed, thus making covariances the most
flexible. In unstructured covariance models, a parameter is cre-
ated for each unique pair of observations (first-second, first-
third, etc.), and thus increases the degrees of freedom. This can
be problematic, especially when dealing with small sample sizes,
or if the number of parameters (or degrees of freedom) is large
relative to the number of observations and patients. When there
are too many parameters in a model for a given sample size, or
the model is ‘overfit’ for that particular dataset, the model esti-
mates can become unstable (leading to imprecise standard
errors) and are less likely to be replicated in another random
sample of the data. In order to simplify the model and have
fewer parameters, it is best if covariance patterns are found.

Compound symmetry

Compound symmetry covariance pattern is when the covari-
ance is constant, i.e. there is no pattern in covariance due to the
proximity measurements in time. The value of the covariance
between measures is solely due to the contribution that the
measurements are derived from the same individual.

Autoregressive

‘Autoregressive covariance’ is when the covariance is a func-
tion of the absolute difference in times such that the correlation
between measures decreases with increasing separation. The co-
variance is a function of the absolute difference in time between
repeated measures. This pattern stipulates that measurements
taken closer together in time tend to be more highly correlated
than measures far apart in time, or that the correlation/
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covariance weakens even more with more time between meas-
urements of the pair.

DESCRIPTION OF RANDOM INTERCEPT
AND SLOPE

In a longitudinal model, the ‘fixed-effect’ component describes
the mean population response for that variable over time, and
the random component of a ‘random effect’ accounts for the
error in that trajectory explained by differences in patient char-
acteristics. Each patient has a subject-specific trajectory over
time. There are many characteristics that vary randomly be-
tween patients and can account for the heterogeneity in
observed trends or the model error. Patients may start at a dif-
ferent baseline point or intercept or have a different trajectory
or slope from the overall population.

Random intercept model

In building a longitudinal model, it is possible that individual
patients may start at a different baseline point from the rest of
the population. Although their trajectory of change may be
similar, the model would need to account for the fact that the
patient’s starting point may be different. This can be modeled in
a ‘random intercept model’. In a random intercept model, the
trend over time may deviate from the population on average be-
cause the baseline (intercept) value differed from the population
average. ‘Random intercept models’ are synonymous with
‘compound symmetry’ covariance models. In both models, the
only component accounting for a ‘random effect’ is the specific
patient’s baseline characteristic contributing to the patient’s
starting point or the fact that repeated measures are correlated
the same over time specific to that patient. However, random
intercept models assume that the patient measurement trajecto-
ries (slopes) or covariance between measurements over time do
not vary.

Random slope model

In a ‘random slope model’, the subject may have a starting
point similar to the population mean, but the patient’s trajec-
tory is different from that of the population average (i.e. increas-
ing while the population mean decreases, or may be faster or
slower). In this model, the trend over time deviates from the pa-
tient, because of the patient’s trajectory, but not because they
started at a different level than the population average.

Random intercept and random slope

In some models, both the intercept and slope are different
for individuals compared with the population average. Thereby,
both a random intercept and random slope need to be ac-
counted for in the subject-specific error component of the
model. In this model, each subject varies not only in their base-
line level of response, but also in terms of their responses over
time.

Although there are a number of random effects and covari-
ance structures that can be specified in a longitudinal model,
the above-listed are the most common. Statistical programs can
assist in determining which effect structure best fits the data
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using ‘goodness of fit criteria’, such as the Akaike information
criterion (AIC). AIC provides an estimate of model fit known as
the log likelihood (how well the specified model fits the data)
and corrects for the number of parameters in the model. When
selecting the random effect and/or covariance structure, one
may consider using the restricted maximum likelihood option,
which will allow the program to focus on examining the ran-
dom or repeated effect. However, for comparing nested regres-
sion models for the fixed effect, the maximum likelihood option
should be used. The analyst should run a number of different
structures, and compare the AIC, with priority given to the
model with the smallest AIC value. Researchers can use a com-
bination of the AIC values and assumptions about the known
pathophysiology of the data in order to select an appropriate
model.

In our recent article [8], we examined trends in the change in
ferritin over time in incident hemodialysis patients. We ad-
justed for demographics and markers of malnutrition-
inflammatory-cachexia syndrome to account for their effects on
ferritin trends, and also examined trends in strata according to
baseline ferritin, and intravenous iron and erythropoietin use.
Ferritin trajectories were best described using a random inter-
cept only mixed-effects model. The results showed that ferritin
increased over time on dialysis in most models independent of
fixed-effects covariates. In another article, we examined pa-
tients’ hemoglobin trajectories and their responsiveness to
erythropoietin [9]. In this analysis, the best specified model was
a combined random slope and random intercept model.
Furthermore, we were able to additionally estimate per patient
slopes from the mixed-effect model and use them as outcomes
in further analyses examining odds of the erythropoietin re-
sponsiveness slope. Patient slopes estimated from a mixed-
effect model take into account subject level effects and are esti-
mated as a function of trends occurring over the entire popula-
tion. These slopes are distinct from simplified methods using
linear regression of at least three measurements for each patient,
which does not account for population effects and requires a
certain number of measurements. We have additionally used
post-estimation patient slopes from mixed-effects models when
examining eGFR trajectories [10, 11]. Estimating patient slopes
as a predictor using post-estimation from a mixed-effects
model, rather than using regression slopes individually for each
patient, may allow for more inclusion of patients and account
for the patient’s parameters as a function of what is occurring at
the population level. As compared with patient slopes estimated
by OLS regression, patient slopes from post-estimations in
mixed-effects models describe how the patient slope compares
to the mean slope over the entire population of patients, and
examines the association of this slope with clinical outcomes.

MIXED-EFFECT MODELS FOR DISCRETE
OUTCOMES

We have discussed obtaining slopes by modeling continuous
outcomes in longitudinal models; however, outcomes may be
discrete: binary, ordinal or count data. The term ‘generalized lin-
ear mixed model’ is used to represent regression for both

E. Streja et al.
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continuous and discrete outcomes. In fixed-effects-only models,
generalized linear models such as logistic or Poisson regression
are used to model associations for binary and count data out-
comes, respectively. However, when examining discrete outcomes
over time, one must similarly model the repeated or subject-
specific contribution. For nonparametric continuous outcomes, a
generalized linear mixed model may be preferred, since it does
not require the outcome variable to be normally distributed.
Similar to mixed-effects models, patient slopes from generalized
linear models can be obtained through post-estimation.

DIFFERENCES IN PREDICTOR ESTIMATES
OF CHANGE IN A MARKER OVER TIME
ACROSS THREE MODELS

For this illustration, we identified four patients at random from
an incident hemodialysis cohort who survived the first year of
hemodialysis [12]. We estimated per patient slopes of monthly
averaged post-dialysis weight (kg) over 1 year (13
months = baseline month + 12 months) using OLS regression
per patient, and post-estimation from a longitudinal mixed-ef-
fects model with unstructured covariance and random slope.
Output from the mixed-effect model using time as a predictor
for the outcome of weight (kg) showed that for each unit in-
crease in time (1 year), on average a patient’s weight decreased
by —0.87 [(95% CI) —0.92, —0.81] kg/year. Averages (+/—
standard deviation) of the patient slopes were —1.11 (* 10.72)
kg/year for the OLS regression-estimated slopes and —0.87
(£7.38) kg/year for slopes generated from the longitudinal
mixed model. Patients had an average of 11 monthly averaged
weight measurements from start of dialysis to the end of the
1 year period. As observed in Table 1, the differences between
patient slope estimates from mixed models and OLS regression
may become more extreme when fewer data points are available
to estimate the slope predictor. In Table 1, we provide examples
of patient measurements over time, showing that Patient A had
only two data points available at Month 2 and Month 3. Over
this period, Patient A experienced a 2 kg weight loss from 75 kg
to 73 kg. In the OLS regression, the patient trajectory of change
was extended to reflect this change if it persisted throughout the
entire observation period and thereby the patient would lose
24 kg over a year. However, the mixed model takes into consid-
eration the patients’ measurements as a function of the popula-
tion trajectory of weight change over a year and provides a
more conservative estimate of 1.5kg/year decrease in weight,
which may seem more reasonable given the population average
estimate of —0.87 kg/year. For patients who had only two data
points, but only at the beginning and end of the exposure time
period, the OLS regression slope would equal the delta estimate
of difference. Again, the mixed-model slope would provide a
more conservative slope estimate in reflection of the slope as a
function of the population trajectory. Theoretically, as patient
slopes generated from longitudinal mixed models are a function
of the population trajectory of the marker, patients with as little
as one measurement can contribute to the population slope esti-
mated and thereby have an estimated per patient slope to be
used in subsequent analyses. However, the interpretation of

Table 1. Random example of four patients comparing slopes estimated
from mixed-models OLS regression, and the delta method

Delta
(Month 13 -
Month 1)

Mixed-
models

OLS
slope

Month Weight
(kg)

Patient Count of
ID measures

slope

75 —1.49

73
107
107
109
108

74 0.68

69

73

72

65 423

65

65

66

66

66

66

68

68

68

68

69

69

—24.00 n/a

0.21 6.00 n/a

—2.00

N = B W N = W N

——
NS

O 00 N O\ Ul R W =W

4.48 4.00

— =
— O O 00 N N U R W = R W =R W N = N
— =
— O

OOOOOUOY 0000000000 ER S > >
o
o

13

—
)

n/a, not applicable.

survival estimates for those patients may lead to results more
biased towards the null.

In a subset of 67 007 patients who had measurements at the
time points of baseline Month 1 (time 0), and 1 year and Month
13 (time 1), the average patient estimate slopes by OLS regres-
sion, longitudinal mixed model and delta method were
—0.87 £ 7.76, —0.87 = 7.36 and —1.83 = 7.80 kg/year, respect-
ively. Since the delta could not take into account fluctuations in
weight that occur over a year, the estimated average changes in
the predictor were larger than those estimated by the mixed
models and OLS regression, which better accounted for weight
fluctuations. Nonetheless, mixed models may provide superior
estimates of exposure trajectories when time point measure-
ments are missing because it can estimate a patient’s exposure
trajectory as a function of the population trajectory. Yet, the
delta method may better reflect clinical practice when a clinician
can only observe a patient’s two exposure time points and does
not have the opportunity to estimate a marker fluctuation or
change over time. The delta method may also be preferred
when estimating change in an exposure to a landmark or pivotal
time point. In our recent manuscript, Chang et al. [12] charac-
terized that the average hemodialysis patient experiences a J-
shaped trajectory of weight change, where patients lose weight
in the first 5 month of dialysis to a nadir weight loss and regain
weight in subsequent months up to Month 12 before reaching a
plateau. Thereby in our above example, delta methods could
not accurately reflect this weight change trajectory. In Chang’s
analysis, the delta method was not used to examine weight tra-
jectories and fluctuation, but only to estimate subsequent sur-
vival as a function of the delta change of weight to the nadir at

Longitudinal datainnephrology
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the 5 month mark of hemodialysis. Other models such as latent
class models have also been developed to identify distinct pat-
terns of change in an exposure trajectory over time and associ-
ations of subsequent outcomes depending on trajectory pattern
exposure category [13].

JOINT MODELS

In recent years, statistical methods have been developed to further
characterize changes in patient markers and their impact on sur-
vival or clinical outcomes by modeling both simultaneously using
a joint model. In contrast to the above-mentioned models where
time periods of exposure must be specified to estimate marker
changes prior to the start of follow-up for the survival model, in a
joint model both the start of follow-up in modeling patient trajec-
tories and survival estimates occur simultaneously. The shared
parameter in the joint model would measure the strength of the
association between the longitudinal responses to any particular
time point with the hazard of an event at the same point. Asar
et al. [14] provide a stellar point-by-point explanation and ex-
ample of joint modeling using the change of kidney function as a
predictor of transition to renal replacement therapy. In their
manuscript, Asar et al. explained how joint models can overcome
bias in trajectory estimates from longitudinal mixed models due
to informative right censoring from survival differences. Mixed
models provide superior estimates of population slopes compared
with linear regression models because the model is unaffected by
data missing at random due to dropout or in their example where
the dropout occurs due to previously observed data. However, lin-
ear mixed-effects models may still be subject to informative right
censoring if the patients may have dropped out (or were cen-
sored) over time due to data missing not at random or ‘unob-
served’ correlations between censoring and the trajectory of the
exposure. Conversely, the joint model can utilize information
about drop-out time or right censoring to inform on the missing
data and the longitudinal process of an exposure prior to dropout.
Subsequently, in joint models there would be better estimates of
survival from a time-varying exposure that may be impacted by
measurement errors, missing data not at random or censored
data. Joint models achieve this superiority by fully exploiting the
totality of the data and the dependence between repeated meas-
urements, measurement error and the hazard for survival by ac-
counting for random-effects estimates in models. Asar’s
explanation of joint models builds upon the seminal works by
Waulfsohn and Tsiatis [15], and Crowther et al., who further ex-
tend joint models to include more flexible modeling estimators
[16]. Wulfsohn and Tsiatis additionally provide an in-depth ex-
planation of how the joint model supersedes measurement errors
and may provide a more precise estimate of a marker’s measure-
ment at any given time point; thereby this more precise estimate
can better describe longitudinal trajectories and impact of the
marker on survival outcomes.

The major drawback of joint models is that they are compu-
tationally expensive and time-consuming, particularly in data-
sets with larger numbers of patients and repeated measures.
These factors may need to be taken into account in consider-
ation of model selection for analyses. In our manuscript
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examining the impact of age on the obesity paradox in dialysis
patients, we provided survival estimates by body mass index
from computation of joint models in the supplement, which
provided mostly similar results to that of the main analyses
[17]. Joint models may be superior when examining the longitu-
dinal outcome of a variable and time-to-event data, where con-
siderations for the interdependency between these two are
needed. However, if the research question involves investigating
the association of the linear trajectory of a variable during a set
exposure period with subsequent mortality, where consider-
ations for measurement errors or data missingness are less war-
ranted, then models using slope estimates from longitudinal
models with subsequent survival modeling may be preferred.

CONCLUSION

In summary, numerous methods can be used to analyze the asso-
ciations between change in a marker over time and risk of an out-
come such as survival. These methods include estimating marker
change as a predictor using deltas, and patient slopes from OLS
regression or longitudinal mixed models. However, in order to
appropriately evaluate and understand how clinical measure-
ments in a population change over time and in turn understand
how those changes impact survival outcomes, models that maxi-
mize partitioning of the model error with considerations of re-
peated measurement structure or contribution of subject-level
effects are necessary. Appropriate longitudinal modeling (includ-
ing joint models) efficiently uses all available data, leading to valid
results and conclusions. However, consideration for computa-
tional efficiency and data availability is of essence.
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