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Abstract

Background: Both systemic redox status and diet quality are associated with risk outcomes in chronic disease. It is not

known, however, the extent to which diet quality influences plasma thiol/disulfide redox status.

Objective: The purpose of this study was to investigate the influence of diet, as measured by diet quality scores and

other dietary factors, on systemic thiol/disulfide redox status.

Methods:We performed a cross-sectional study of 685 working men and women (ages ≥18 y) in Atlanta, GA. Diet was

assessed by 3 diet quality scores: the Alternative Healthy Eating Index (AHEI), Dietary Approaches to Stop Hypertension

(DASH), and the Mediterranean Diet Score (MDS). We measured concentrations of plasma glutathione (GSH), cysteine,

their associated oxidized forms [glutathione disulfide (GSSG) and cystine (CySS), respectively], and their redox potentials

(EhGSSG and EhCySS) to determine thiol/disulfide redox status. Linear regression modeling was performed to assess

relations between diet and plasma redox after adjustment for age, body mass index (BMI), sex, race, and history of

chronic disease.

Results:MDS was positively associated with plasma GSH (β = 0.02; 95% CI: 0.003, 0.03) and total GSH (GSH + GSSG)

(β = 0.02; 95% CI: 0.003, 0.03), and inversely associated with the CySS:GSH ratio (β = –0.02; 95% CI: –0.04, –0.004).

There were significant independent associations between individual MDS components (dairy, vegetables, fish, and mo-

nounsaturated fat intake) and varying plasma redox indexes (P < 0.05). AHEI and DASH diet quality indexes and other

diet factors of interest were not significantly correlated with plasma thiol and disulfide redox measures.

Conclusion: Adherence to the Mediterranean diet was significantly associated with a favorable plasma thiol/disulfide

redox profile, independent of BMI, in a generally healthy working adult population. Although longitudinal studies are

warranted, these findings contribute to the feasibility of targeting a Mediterranean diet to improve plasma redox status.
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Introduction

Poor diet quality is a major factor in compromised health sta-
tus and contributes to the promotion of many chronic dis-
eases, such as cardiovascular disease (CVD), obesity, and type 2
diabetes mellitus. Diet quality can be assessed by categorizing
dietary intake components based on a priori dietary recommen-
dations and assigning specific diet indexes or scores. Three di-
etary patterns that are often used to examine chronic disease
risk are the Alternative Healthy Eating Index (AHEI), the Di-
etary Approaches to Stopping Hypertension (DASH), and the

Mediterranean Diet Score (MDS). Adherence to these dietary
patterns is associated with a reduced risk of type 2 diabetes mel-
litus and CVD (1–8). To facilitate the interpretation of dietary
patterns in relation to health outcomes, there is a need to un-
derstand the mechanistic underpinnings supporting the benefits
of such diets and diet quality indexes. Mitigation of oxidative
stress, as determined by a disruption of the balance of reversible
oxidation-reduction (redox) reactions (9),may provide one such
mechanism (10).

Redox balance can be assessed by the measurement of
the major intra- and extracellular thiol and disulfide couples,

© 2018 American Society for Nutrition. All rights reserved.
245Manuscript received May 21, 2017. Initial review completed June 28, 2017. Revision accepted November 16, 2017.

First published online February 27, 2018; doi: https://doi.org/10.1093/jn/nxx045.



glutathione (GSH)/glutathione disulfide (GSSG) and cysteine
(Cys)/cystine (CySS), respectively, within the plasma (11). High
plasma CySS, low plasma GSH, and a high plasma CySS:GSH
ratio are indicative of increased oxidative stress, and are asso-
ciated with cellular dysfunction, aging, subclinical vascular dis-
ease, and an increased risk of death in patients with CVD (12,
13). Total plasma Cys (Cys + CySS) and other plasma thiol re-
dox markers are also positively associated with BMI and obe-
sity risk (12, 14). Dai et al. (10) showed that adherence to the
Mediterranean diet is associated with lower plasma GSSG con-
centrations (the oxidized form of the GSH/GSSG redox couple)
and a higher plasma GSH:GSSG concentration ratio. The in-
fluence of other dietary patterns on plasma redox has not been
studied, and it is not known if intake of specific dietary compo-
nents, such as meat, fish, and plant-derived foods, contributes
to plasma thiol and disulfide redox status.

The aim of this study was to examine the associations of
diet, as measured by diet quality scores derived from 3 dietary
patterns (AHEI, DASH, and MDS), and other dietary factors,
on systemic thiol and disulfide redox status in a large cohort of
US adults. We hypothesized that higher scores for all diet qual-
ity indexes would be associated with higher plasma GSH and
lower CySS concentrations, a lower CySS:GSH ratio, and more
reduced redox potentials for GSSG and CySS—all indicative of
lower oxidative stress. As BMI is often a major confounder in
such studies, a secondary aim was to explore the relations of
obesity status with plasma redox and related dietary factors.

Methods
Study population. Participants from the Emory University/Georgia
Tech Predictive Health Initiative cohort within the Center for Health
Discovery and Well Being (CHDWB) were included in this cross-
sectional study (15). The cohort has been previously described (3, 16).
In short, the cohort consists of Emory employees and other members
of the Emory and Georgia Tech communities. All participants met the
inclusion criteria, namely: age ≥18 y, living in the Atlanta area, and be-
ing generally healthy and ambulatory. The following criteria excluded
participants: hospitalization for acute or chronic disease within the past
year; severe psychosocial disorder; addition of new medications to treat
a chronic condition within the previous year (with the exception of
antihypertensive or antidiabetic agents); history of substance or drug
abuse; current active malignant neoplasm; history of malignancy other
than localized basal cell cancer during the previous 7 y; uncontrolled or
poorly controlled autoimmune, cardiovascular, endocrine, gastrointesti-
nal, hematologic, infectious, inflammatory, musculoskeletal, neurologic,
psychiatric, or respiratory disease; and any acute illness in the 12 wk
before baseline visits. Participants were enrolled between January 2008
and September 2015. The current study only includes participants for
whom food intake data and plasma redox status were available.
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Height and weight were measured in light clothing without shoes
with a Tanita TBF-215 Total Body Composition Analyzer (Tanita
Health Management). BMI was calculated as kg/m2. Weight status
was classified according to WHO guidelines, with BMI <25 as nor-
mal weight, BMI 25–29.9 as overweight, and BMI ≥30 as obese
(17). Race/ethnicity, education, income, and smoking status were self-
reported. Subjects were classified as having a combined history of dia-
betes, hypertension, and/or hyperlipidemia if they self-reported any of
these diseases or were taking medications to control blood pressure or
blood glucose or lipid concentrations. Physical activity was measured
with the use of the Cross-Cultural Activity Participation Study survey
(18). Participants were coded as meeting the 2007 CDC and American
College of Sports Medicine recommendations for moderate physical ac-
tivity or not (19). Blood draws occurred following an overnight fast.
All procedures involving human subjects were approved by the Emory
University Institutional Review Board. Written informed consent was
obtained from all participants.

Dietary intake assessment. Reported dietary intake over the past
year was assessed with the 2005 Block FFQ (NutritionQuest). All FFQ
data were energy adjusted per 1000 kcal. FFQ participants who re-
ported consuming <500 or >5000 kcal/d were considered outliers by
a priori criteria and were excluded from our analysis. Dietary intake
patterns were assessed with the use of 3 validated diet quality indexes:
AHEI (8),DASH (20, 21) andMDS (22). Components of all diet quality
scores are summarized in Supplemental Tables 1–3. We defined MDS
components by servings per day except for ratio of monounsaturated
to saturated fatty acids. Among other dietary components, total sulfur
amino acid (SAA), total red meat, and total protein consumption were
specifically investigated based on previous research indicating that in
humans a short-term increase in dietary SAAs (which are primarily de-
rived from animal protein food sources) intake acutely increases plasma
Cys and CySS (23).

Plasma thiol and disulfide redox status. Plasma redox out-
comes were measured via HPLC, as detailed by Jones and Liang (11).
Briefly, a fasted blood sample was collected and added to a preserva-
tion solution consisting of a borate buffer stock solution with iodoacetic
acid and γ -glutamylglutamate. The samples were stored at –80°C un-
til ready for analysis, whereupon samples were treated with a dansyl
chloride solution for derivatization to allow for quantification of Cys,
CySS, GSH, and GSSG with fluorescence detection via HPLC (Waters
2690 HPLC and autosampler system). Total GSH incorporates both
GSH and GSSG. The Nernst equation was used to calculate the re-
dox potential (Eh) in mV for the Cys/CySS and GSH/GSSG couples
(EhCySS and EhGSSG, respectively), which provides a measure of the
tendency of redox couples to accept or donate electrons (11). A more
negative plasma Eh is indicative of a more reducing redox status and
lower oxidative stress. The CySS:GSH ratio was also calculated, where
a higher ratio indicates greater oxidative stress (13).

Statistical analysis. Descriptive characteristics were examined for
all variables via univariate analysis. Continuous variables were re-
ported as means and SDs for normally distributed variables or medi-
ans and IQRs for nonnormally distributed variables. Continuous vari-
ables that did not follow a normal distribution (plasma GSH, GSSG,
and CySS/GSH) were logarithmically transformed on the natural loga-
rithm scale for modeling. Differences in demographic and biochemical
variables by gender were examined with the use of 2-sample t tests.
We performed ANOVA with Tukey’s multiple comparison tests to com-
pare race-specific means of demographic and clinical characteristics as
well as BMI category-specific (normal weight, overweight, obese) means
of plasma and dietary outcomes. Because of the small sample size of
non-white and non-black subjects (n = 42), only comparisons of black
with white subjects were interpreted. Associations between plasma re-
dox and dietary intake variables were assessed with the use of multiple
linear regression, while controlling for age, BMI, sex, race, and history
of diabetes, hypertension, or hyperlipidemia. Physical activity, educa-
tion, income, tobacco use, and presence of hypertriglyceridemia based
on fasting triglyceride concentrations were considered as potential con-
founders. However, controlling for these variables did not influence
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associations between dietary measures and plasma redox measures and
were not included in the final models. Each model included a single
dietary measure and a single plasma measure. Interactions between di-
etary components and BMI were tested. Covariates were chosen based
on inclusion in existing literature and significant associations in bivari-
ate analyses. ANCOVA with Tukey’s post-hoc analyses were also per-
formed with the use of dietary intake variables categorized by quartiles.
All analyses were performed with the use of SAS v. 9.4 (SAS Institute,
Inc.), with a 2-sided P < 0.05 used to define statistical significance.

As a complementary analysis and to increase confidence of the multi-
variate results, bootstrap bagging was used to identify stable and reliable
predictors of the diet quality scores (24–26). A dataset was constructed
of size equal to the original (685 patients) by random sampling with re-
placement (bootstrap sampling). On average, approximately one-third
of patients were not sampled,whereas some patients were sampledmore
than once. The bootstrap sample was analyzed with the use of a multiple
linear regression model with an automated forward stepwise algorithm
with entry criterion of P < 0.20. The result was stored. This process
of sampling, automated analysis, and storing was repeated 1000 times.
The number of times a predictor appeared in these 1000 analyses was

taken as a reflection of the reliability (signal). Following Breiman’s me-
dian rule (devised to balance type I and type II errors), predictors were
determined to be reliably associated with the outcome if they appeared
in ≥50% of the models (24, 26). The adjusted mean diet quality score
and its 95% CI were calculated for each factor in the presence of the
others in the final model identified with bootstrap bagging.

Results
Participant characteristics
This analysis included 685 ambulatory adults with available
plasma redox and FFQ data. (See Supplemental Figure 1 for
detailed flowchart of study inclusion.) The majority (66%)
of the sample was female. The ethnic/racial composition was
72% white, 22% black, and 6% American Indian or Alaska
Native, Asian, or Asian Indian. The mean BMI was in the
overweight category. Additional demographic and clinical char-
acteristics of subjects overall and by sex are summarized in
Table 1. In brief, women’s calculated AHEI total scores were,

TABLE 1 Demographic, clinical, and redox characteristics of a cohort of working adults1

Characteristic All Males Females Pgender

Subjects, n (%) 685 (100) 236 (34) 449 (66)
Age, y 48.5 ± 10.9 49.91 ± 11.9 47.73 ± 10.2 0.02
Race, n (%) <0.001

White 494 (72) 198 (84) 296 (66)
Black 151 (22) 19 (8) 132 (29)
Other 40 (6) 19 (8) 21 (5)

Weight, kg 79.3 ± 19.7 85.9 ± 14.9 75.9 ± 21.0 <0.001
BMI,2 kg/m2 27.8 ± 6.4 27.36 ± 4.1 28.04 ± 7.3 0.12
Reported history of diseases,3 n (%) 219 (32) 76 (34) 135 (31) 0.29

Diabetes 36 (5) 14 (6) 22 (5) 0.62
Hypertension 127 (19) 40 (18) 87 (20) 0.61
Hyperlipidemia 117 (18) 47 (21) 70 (16) 0.08

Currently smoking, n (%) 35 (5) 17 (7) 18 (4) 0.11
Meet moderate physical activity guidelines, n (%) 170 (25) 53 (22) 117 (26) 0.25
Education completed, y 19 ± 5 21 ± 5 18 ± 4 <0.001
Income ≥$100,000, n (%) 388 (57) 163 (74) 225 (52) <0.001
AHEI score 49.0 ± 10.0 47.4 ± 10.0 49.8 ± 11.3 0.006
DASH score 5.0 ± 1.0 5.2 ± 1.0 5.0 ± 1.0 0.01
MDS score 4.4 ± 1.8 4.4 ± 1.9 4.3 ± 1.8 0.42
Carbohydrates,4 % energy 47.9 ± 7.6 47.2 ± 8.1 48.3 ± 7.2 0.07
Protein,4 % energy 16.1 ± 2.9 15.8 ± 2.7 16.2 ± 3.0 0.09
Fat,4 % energy 35.6 ± 6.1 35.2 ± 6.6 35.8 ± 5.9 0.25

Saturated fat 19.7 ± 9.2 21.8 ± 10.5 18.6 ± 8.2 <0.001
Monounsaturated fat 27.2 ± 11.8 29.6 ± 12.5 25.9 ± 11.2 <0.001
Polyunsaturated fat 16.3 ± 7.3 17.3 ± 7.7 15.7 ± 7.0 0.006

Energy intake, kcal/d 1713 ± 623 1883 ± 656 1624 ± 586 <0.001
Plasma Cys, μmol/L 9.31 ± 2.18 8.94 ± 2.09 9.51 ± 2.20 0.001
Plasma CySS, μmol/L 84.27 ± 18.01 82.85 ± 15.16 85.01 ± 19.32 0.11
Plasma total Cys, μmol/L 180.28 ± 37.20 177.10 ± 31.36 182.00 ± 39.85 0.08
Plasma GSH,5 μmol/L 1.63 ± 0.58 1.60 ± 0.55 1.64 ± 0.59 0.35
Plasma GSSG,5 μmol/L 0.049 ± 0.032 0.053 ± 0.033 0.047 ± 0.032 0.05
Plasma total GSH,5 μmol/L 4.22 ± 1.34 4.28 ± 0.08 4.19 ± 1.38 0.41
Plasma CySS/GSH,5 μmol/L 50.6 ± 23.1 51.0 ± 21.9 50.4 ± 23.7 0.79
Plasma EhCySS, mV –70.0 ± 5.7 –69.1 ± 5.7 –70.4 ± 5.6 0.003
Plasma EhGSSG, mV –135.9 ± 9.6 –134.6 ± 10.4 –136.6 ± 9.1 0.01

1Values are means ± SDs or n (%). AHEI, Alternative Healthy Eating Index; CHDWB, Center for Health Discovery and Well Being;
CySS, cystine; DASH, Dietary Approaches to Stop Hypertension; Eh, redox potential; GSH, glutathione; GSSG, glutathione disulfide;
MDS, Mediterranean Diet Score.
2n = 683.
3n = 658.
4Percentage of total calorie intake.
5Values were back-transformed from the natural-log values used in analyses and reported as geometric means ± geometric SDs.
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TABLE 2 Plasma redox measures and diet intake factors by BMI category in a cohort of working adults1

BMI level

BMI < 25 (n= 238) BMI 25–29.9 (n= 254) BMI ≥ 30 (n= 191) P2

Plasma redox measures
Cys, μmol/L 9.15 ± 2.05a 9.16 ± 2.14a 9.68 ± 2.30b 0.02
CySS, μmol/L 78.04 ± 15.26a 83.20 ± 16.37b 93.53 ± 19.59c <0.001
GSH,3 μmol/L 1.80 ± 0.58a 1.65 ± 0.57b 1.41 ± 0.51c <0.001
GSSG,3 μmol/L 0.050 ± 0.034a 0.050 ± 0.032a 0.045 ± 0.032b 0.05
Total GSH,3 μmol/L 4.51 ± 1.37a 4.31 ± 1.31a 3.78 ± 1.22b <0.001
EhCySS, mV –70.5 ± 5.5 –69.7 ± 5.8 –69.5 ± 5.6 0.18
EhGSSG, mV –137.8 ± 8.5a –136.1 ± 10.0a –133.3 ± 9.9b <0.001
CySS/GSH3 42.4 ± 21.9a 49.5 ± 21.3b 65.1 ± 27.9c <0.001
Diet characteristics
Mediterranean score 4.7 ± 1.7a 4.3 ± 1.9b 4.1 ± 2.0b 0.002
AHEI score 51.7 ± 10.7a 47.9 ± 10.5b 46.9 ± 11.0b <0.001
DASH score 5.3 ± 1.1a 5.0 ± 1.0b 4.7 ± 0.9c <0.001
Protein,4 g/(d × 1000 kcal) 39.1 ± 6.6a 40.6 ± 7.6b 41.1 ± 7.4b 0.008
Red meat,4 g/(d × 1000 kcal) 34.4 ± 27.5a 44.1 ± 34.9b 57.6 ± 39.5c <0.001
Total sulfur amino acids,4 mg/(d × 1000 kcal) 1.7 ± 0.3a 1.8 ± 0.4b 1.8 ± 0.4b <0.001

1Values are means ± SDs. BMI categories (in kg/m2) correspond to normal weight (≤25), overweight (25.0–29.9), and obese (≥30). Out-
comes within a row that are not connected by a common superscript letter are significantly different (P < 0.05). All dietary measures are
adjusted for age, BMI, race, sex, and history of diabetes, hypertension, or hyperlipidemia. AHEI, Alternative Healthy Eating Index; CySS,
cystine; DASH, Dietary Approaches to Stopping Hypertension; Eh, redox potential. GSH, glutathione; GSSG, glutathione disulfide.
2ANOVA was used for the analysis.
3Values were back-transformed from the natural-log values used in analyses and reported as geometric means ± SDs.
4Diet intake factors adjusted to 1000 kcal with the use of the formula: (food component intake × 1000)/energy intake (kcal).

on average, higher than men’s (P = 0.006); but men’s calculated
DASH scores were, on average, higher than women’s (P = 0.01)
(Table 1).Of the plasma redoxmeasures,women had higher Cys
(P = 0.001); men had higher EhCySS (P = 0.003) and EhGSSG
(P = 0.01). Supplemental Table 4 provides additional details of
demographic, clinical, and redox variables stratified by race and
sex.

Among all subjects, the MDS was positively associated with
the AHEI score (r = 0.74, P < 0.001) and with the DASH score
(r= 0.51,P< 0.001). The AHEI score was positively associated
with the DASH score (r= 0.46,P< 0.001). The associations be-
tween the plasma redox variables are presented in Supplemental
Table 5.

Associations between plasma thiol and disulfide
redox measures and diet characteristics with BMI
levels
Among the plasma redox measures, CySS concentrations and
CySS:GSH ratio were significantly higher in overweight (BMI
25–29.9) participants compared to normal weight (BMI <25)
participants, while GSH concentrations were lower in over-
weight than in normal weight participants (Table 2). Plasma
Cys and CySS concentrations, EhGSSG, and the CySS:GSH
ratio were significantly higher; and GSH and total GSH were
lower in obese (BMI ≥ 30) compared to overweight individuals.
All diet quality scores were lower among overweight compared
to normal weight participants, while reported intake of protein,
red meat, and total SAAs were higher among overweight com-
pared to normal weight participants. Compared to overweight
participants, those who were obese had a lower DASH score
and reported higher intakes of red meat.

Associations between plasma thiol and disulfide
redox measures across dietary measures
The independent associations between plasma thiol and disul-
fide redox measures and dietary measures are shown in

Table 3. A 1-point higher MDS was associated with a 1.4%
higher plasma GSH (β = 0.02; 95% CI: 0.003, 0.03; P = 0.02)
and a 0.1% higher total GSH concentration (β = 0.02; 95%
CI: 0.003, 0.03; P = 0.02) and a 0.1% lower CySS:GSH ratio
(β = − 0.02; 95% CI: –0.04,− 0.004; P = 0.01). Plasma redox
outcomes were not associated with AHEI or DASH diet scores.
Results were similar when dietary outcomes were categorized
based on quartiles (Supplemental Table 6). There were no sta-
tistically significant interactions between diet quality scores and
BMI for any of the plasma redox outcomes.

In bootstrap bagging analyses, plasma redox measures that
were reliably and independently associated with MDS were
CySS/GSH (52% reliability) and GSSG (58% reliability). Re-
liability scores for additional potential covariates are shown in
Supplemental Table 7. In a reduced model including only reli-
able covariates identified by bootstrap bagging, MDS was sig-
nificantly inversely associated with the CySS:GSH ratio (β =
–0.007 ± 0.003; regression coefficient ± SE; P = 0.02,
Table 4).

Associations between thiol and disulfide redox
measures and Mediterranean diet components
Table 5 displays exploratory independent associations be-
tween plasma redox measures and the individual food
components of the Mediterranean diet. A greater vegetable
consumption (1 serving/d) was associated with a 0.44-μM
higher plasma Cys concentration (95% CI: 0.08, 0.80 μM;
P = 0.01) and a 1.18-mV lower plasma EhCySS redox potential
(95% CI: –2.12, −0.24 mV; P = 0.01). A greater fish consump-
tion (1 serving/d) was associated with a 3.30-μM lower CySS
concentration (95% CI: –5.83, −0.08 μM; P = 0.01). A 1-unit
higher ratio of monounsaturated to saturated fat was associated
with a 0.12-μM higher GSSG concentration (95% CI: 0.01,
0.23 μM; P = 0.03). Greater dairy consumption (1 serving/d)
was associated with a 0.08-μM(95%CI: 0.02, 0.13μM) higher
plasmaGSH, a 0.12-μM (95%CI: 0.01, 0.23μM) higher GSSG
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TABLE 3 Associations between measures of diet quality and plasma redox measures in a cohort of working adults1

Plasma redox measure

Dietary measure Cys, μM CySS, μM GSH,2 μM GSSG,2 μM Total GSH,2 μM EhCySS, mV EhGSSG, mV CySS/GSH2

Mediterranean score 0.02 ± 0.05
(0.73)

–0.28 ± 0.33
(0.39)

0.02 ± 0.01
(0.02)*

0.02 ± 0.01
(0.09)

0.02 ± 0.01
(0.02)*

–0.08 ± 0.12
(0.53)

–0.11 ± 0.20
(0.58)

–0.02 ± 0.01
(0.01)*

AHEI score –0.01 ± 0.01
(0.37)

–0.05 ± 0.06
(0.37)

0.001 ± 0.001
(0.40)

0.001 ± 0.002
(0.69)

0.001 ± 0.001
(0.31)

0.02 ± 0.02
(0.45)

–0.02 ± 0.03
(0.66)

–0.002 ± 0.001
(0.27)

DASH score –0.07 ± 0.08
(0.38)

–0.23 ± 0.60
(0.70)

0.02 ± 0.01
(0.08)

–0.002 ± 0.03
(0.92)

0.02 ± 0.01
(0.08)

0.18 ± 0.22
(0.41)

–0.64 ± 0.36
(0.08)

–0.03 ± 0.02
(0.08)

Protein, g/(d × 1000 kcal)3 0.003 ± 0.01
(0.82)

–0.04 ± 0.08
(0.65)

0.001 ± 0.002
(0.57)

0.0002± 0.004
(0.96)

0.0001 ± 0.002
(0.94)

0.004 ± 0.03
(0.89)

–0.02 ± 0.05
(0.63)

–0.001 ± 0.002
(0.51)

Red meat, g/(d × 1000
kcal)3

0.001 ± 0.003
(0.69)

0.005 ± 0.018
(0.79)

0.0002 ± 0.0004
(0.54)

0.001 ± 0.001
(0.47)

0.0003 ± 0.0004
(0.48)

–0.004 ± 0.007
(0.57)

0.001 ± 0.011
(0.93)

–0.0002 ± 0.0005
(0.63)

Total sulfur amino acids,
mg/(d × 1000 kcal)3,4

–0.13 ± 0.23
(0.57)

–0.34 ± 1.65
(0.84)

–0.01 ± 0.04
(0.76)

0.01 ± 0.07
(0.91)

–0.02 ± 0.03
(0.46)

0.32 ± 0.60
(0.59)

0.38 ± 1.00
(0.70)

0.01 ± 0.04
(0.86)

1Data are β ± SE (P value). Multiple linear regression was used for the analysis. Statistically significant relations (P < 0.05) are denoted with an asterisk. All models are adjusted
for age, BMI, race, sex, and history of diabetes, hypertension, or hyperlipidemia. AHEI, Alternative Healthy Eating Index; CySS, cystine; DASH, Dietary Approaches to Stopping
Hypertension; Eh, redox potential; GSH, glutathione; GSSG, glutathione disulfide.
2Analyses were conducted on natural log-transformed values.
3Diet intake factors adjusted to 1000 kcal with the use of the formula: (food component intake × 1000)/energy intake (kcal).
4Total sulfur amino acid = dietary CySS + dietary Cys + dietary Met.

concentration, and a 0.09-unit (95% CI: −0.015, −0.02 units)
lower CySS:GSH ratio (P = 0.01, P = 0.03, and P = 0.01, re-
spectively). Analyses of different dairy sources (milk, cheese, yo-
gurt) resulted in an inverse relation between yogurt intake (cups)
and plasma CySS:GSH ratio (β = –0.27 ± 0.12; 95%CI: –0.50,
–0.03; P = 0.02). Neither milk nor cheese intake were associ-
ated with plasma CySS/GSH (β = –0.02 ± 0.04, P = 0.66 and
β = –0.03 ± 0.06, P = 0.69, respectively). There were no sta-
tistically significant interactions between diet components and
BMI for any of the plasma redox outcomes.

Discussion

In this study of a working adult population, participants re-
porting greater adherence to a Mediterranean diet pattern had

lower thiol-related oxidative stress. This was shown by a higher
plasma GSH concentration and a lower plasma CySS:GSH ra-
tio. Our results are consistent with those of Dai et al. (10)
who showed an inverse association between adherence to the
Mediterranean diet and oxidative stress, as measured by the
GSH:GSSG ratio, in male twin pairs from the Vietnam Era
Twin Registry. We have expanded these findings to a more het-
erogeneous population. Although randomized trials are needed
to confirm effects on plasma GSH/GSSG systemic redox, other
markers of oxidative stress, such as F2-isoprostane and total
antioxidant capacity, were shown to respond to Mediterranean
diet-based interventions (27–34). Taken together, these consis-
tent results provide a strong rationale for recommending dietary
pattern changes, such as the Mediterranean diet, to improve ox-
idative stress.

TABLE 4 Correlates of the MDS using multiple linear regression with a bootstrap model selection procedure1

Variable β ± SE2 Adjusted mean MDS [95% CI] P Reliability (%)3

Intercept 3.27 ± 0.43
Currently smoking 0.68 ± 0.33 0.04 79
No 4.2 [3.9, 4.5]
Yes 3.5 [2.8, 4.1]

Meet moderate physical activity guidelines −0.32 ± 0.17 0.05 76
No 3.7 [3.3, 4.1]
Yes 4.0 [3.5, 4.5]

Age4 0.02 ± 0.01 4.0 [3.4, 4.6] 0.03 63
Diabetes 0.55 ± 0.31 0.08 63
No 4.1 [3.8, 4.5]
Yes 3.6 [2.9, 4.2]

Plasma GSSG5 3.01 ± 1.59 3.4 [2.6, 4.2] 0.06 58
Income ≥$100,000 −0.32 ± 0.15 0.03 58
No 3.7 [3.3, 4.1]
Yes 4.0 [3.6, 4.4]

Plasma CySS/GSH6 −0.007 ± 0.003 2.9 [2.1, 3.8] 0.02 52

1Covariates with reliability <50% were not included in the final MDS multivariable model. CySS, cystine; GHS, glutathione; GSSG, glutathione
disulfide; MDS, Mediterranean Diet Score.
2Estimated regression coefficient (β) ± SE for MDS.
3Percentage of time each factor appears in 1000 multiple linear regression models. Factors appearing in ≥50% of models are reliable.
4Mean = 48.5 y.
5Mean = 0.05 µmol/L.
6Mean = 50.6.
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TABLE 5 Associations between MDS components and plasma redox measures in a cohort of working adults1

Plasma redox measure

MDS component Cys, μM CySS, μM GSH,2 μM GSSG,2 μM Total GSH,2 μM EhCySS, mV EhGSSG, mV CySS/GSH2

Vegetables, servings/d 0.44 ± 0.18
(0.01)*

0.06 ± 1.33
(0.97)

–0.02 ± 0.03
(0.44)

–0.08 ± 0.06
(0.13)

–0.02 ± 0.03
(0.38)

–1.18 ± 0.48
(0.01)*

–0.52 ± 0.81
(0.52)

0.02 ± 0.03
(0.58)

Legumes, nuts, and soy,
servings/d

–0.19 ± 0.18
(0.30)

–0.54 ± 1.32
(0.68)

–0.0004 ± 0.03
(0.99)

0.08 ± 0.06
(0.15)

0.01 ± 0.03
(0.61)

0.39 ± 0.48
(0.42)

1.06 ± 0.80
(0.19)

–0.01 ± 0.03
(0.86)

Fruit, servings/d –0.22 ± 0.17
(0.21)

–0.48 ± 1.27
(0.71)

0.03 ± 0.03
(0.29)

0.005 ± 0.05
(0.93)

0.03 ± 0.03
(0.23)

0.54 ± 0.46
(0.24)

–0.71 ± 0.77
(0.36)

–0.04 ± 0.03
(0.22)

Total grains, servings/d –0.22 ± 0.18
(0.24)

0.46 ± 1.33
(0.73)

–0.01 ± 0.03
(0.84)

–0.02 ± 0.06
(0.73)

–0.02 ± 0.03
(0.41)

0.70 ± 0.48
(0.15)

–0.08 ± 0.81
(0.92)

0.01 ± 0.03
(0.67)

Fish, servings/d –0.08 ± 0.18
(0.66)

–3.30 ± 1.29
(0.01)*

0.02 ± 0.03
(0.46)

0.07 ± 0.05
(0.23)

0.01 ± 0.03
(0.70)

–0.26 ± 0.46
(0.58)

0.33 ± 0.78
(0.67)

–0.06 ± 0.03
(0.07)

Monounsaturated-to-saturated
fat ratio

0.20 ± 0.18
(0.27)

2.03 ± 1.32
(0.12)

0.05 ± 0.03
(0.09)

0.12 ± 0.06
(0.03)*

0.05 ± 0.03
(0.06)

–0.19 ± 0.48
(0.68)

0.33 ± 0.80
(0.68)

–0.02 ± 0.03
(0.48)

Alcohol, servings/d 0.11 ± 0.18
(0.54)

0.58 ± 1.31
(0.66)

0.01 ± 0.03
(0.69)

–0.07 ± 0.06
(0.24)

0.01 ± 0.03
(0.62)

–0.29 ± 0.47
(0.54)

–1.15 ± 0.79
(0.15)

0.002 ± 0.03
(0.96)

Dairy, servings/d 0.03 ± 0.19
(0.88)

–0.62 ± 1.35
(0.64)

0.08 ± 0.03
(0.01)*

0.12 ± 0.06
(0.03)*

0.08 ± 0.03
(0.004)*

–0.09 ± 0.49
(0.85)

–0.35 ± 0.82
(0.67)

–0.09 ± 0.03
(0.01)*

Red and white meat,
servings/d

0.09 ± 0.18
(0.64)

–0.85 ± 1.34
(0.52)

0.01 ± 0.03
(0.64)

–0.03 ± 0.06
(0.66)

–0.01 ± 0.03
(0.69)

–0.35 ± 0.48
(0.46)

–0.64 ± 0.81
(0.43)

–0.02 ± 0.03
(0.48)

1Data are β ± SEs (P value). Multiple linear regression was used for the analysis. All models are adjusted for age, BMI, race, sex, and history of diabetes, hypertension, or
hyperlipidemia. Statistically significant relations (P < 0.05) are denoted with an asterisk. Diet intake factors were adjusted to 1000 kcal with the use of the formula: (food
component intake × 1000)/energy intake (kcal). CySS, cystine; Eh, redox potential; GSH, glutathione; GSSG, glutathione disulfide.
2Analyses were conducted on natural log-transformed values.

To expand on our findings and those of Dai et al. (10),
we performed exploratory analyses to determine which spe-
cific components of the MDS were most strongly associated
with plasma redox indicators. A novel finding in our cohort
was that dairy intake was positively associated with plasma
GSH, GSSG, and total GSH concentrations, and inversely
associated with CySS:GSH ratio. A previous study by Choi et
al. (35) similarly found a positive association between dairy in-
take and brain GSH concentrations. Intervention studies have
also indicated an oxidative stress–lowering effect of high dairy
intake (36, 37). Further exploration of our data showed that
intake of yogurt, but not cheese and milk, was inversely as-
sociated with CySS:GSH ratio. Yogurt intake, specifically, has
been shown to inversely correlate with type 2 diabetes risk in
the PREDIMED cohort (38, 39). The mechanisms mediating a
positive relation between dairy intake and favorable redox out-
comes are unknown; however, it is possible that a number of
components of dairy foods, such as calcium, vitamin D, vita-
min B-12, Cys-rich casein and whey proteins, riboflavin, and
probiotics (in the case of yogurt), may contribute (16, 35, 36,
40–43). Whether dairy fat content influences plasma redox re-
mains to be studied. Fish consumption was also associated with
lower plasma CySS, a previously unreported finding. Diets rich
inω-3 FAs have been found to decrease oxidation of LDLs in hu-
mans (44).Our results are also consistent with existing literature
(45), in that vegetable consumption was associated with higher
plasma Cys and a lower EhCySS, indicative of lower oxidative
stress.

The dietary factors varied in association with the GSH/GSSG
and Cys/CySS redox couples. The GSH and Cys thiol and disul-
fide systems represent 2 distinct redox pools and are not in
equilibrium in the plasma (46). The GSH/GSSG couple is more
reflective of tissue redox status, whereas the Cys/CySS cou-
ple is more reflective of extracellular oxidation and/or CySS
uptake and reduction by systems that are distinct from the
GSSG reductase (9, 12). Thus, the nonuniformity of dietary cor-
relations with the redox pools was not unexpected. A novel

outcome variable was the CySS:GSH ratio. The CySS:GSH ra-
tio can be considered a mechanistic biomarker that provides
a measure of the overall health of the redox networks that
influence aging and chronic disease, with CySS serving as an
indicator of oxidant burden and GSH reflecting the NADPH-
reductive capacity within the redox network (47). This ratio
was recently shown to be a stronger predictor of cardiovascular
outcomes compared to the individual thiol and disulfide systems
(13).

Based on clinical studies showing changes in plasma redox
following manipulations in SAA intake (23, 48) and on the high
concentrations of SAA in animal proteins (49), we expected to
find significant relations between dietary intake of SAAs, total
protein, and/or meats with plasma redox biomarkers. In con-
trast, these individual dietary components were not significantly
associated with any plasma redox biomarkers. In a Dutch co-
hort of older adults, Elshorbagy et al. (50) reported a positive
association between animal-derived protein intake and plasma
total Cys. The discordance between these 2 cohort studies may
stem from differences in diet, age, race, health status, country,
or redox methodology. It is possible that dietary components
that we did not assess have a greater influence on plasma thiol
and disulfide redox in our population. Our study highlights the
importance of assessing overall diet quality indexes as a com-
plement to focusing on individual nutrients when investigating
contributors to plasma redox status.

The AHEI and DASH scores were not associated with any of
the plasma measures of thiol and disulfide redox. Other studies
have noted the superiority of the MDS over other diet quality
indexes in relation to metabolic risk factors (51, 52). Nonethe-
less, adherence to the AHEI and DASH diets has been associated
with improved health status (2, 3). It is possible that the diets
and diet quality scores of participants in this southern US city
may not be as diverse or variable enough to observe significant
relations with plasma redox. Another possible explanation for
the lack of association is that the AHEI and DASH score cal-
culations were based on published cut-points; in contrast, the
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MDS was based on median intakes of specific nutrients within
our population. Therefore, the MDS may better capture dietary
quality in our sample, which may explain the stronger associa-
tions observed in our analysis.

In this study, BMI was strongly associated with plasma
thiol and disulfide redox, diet quality indexes, and SAA-related
dietary outcomes. Our study is the first to our knowledge to re-
port the association between BMI and the CySS:GSH ratio and
corresponding redox potentials. Those with higher BMI demon-
strated a more-oxidized plasma Cys/CySS redox state and lower
plasma GSH. Similar results have been previously reported for
the relation of GSH and other oxidative stress markers with obe-
sity (53–55). In vitro data show that an oxidized state of the ex-
tracellular Cys/CySS redox environment promotes adipogenesis
and expression of pro-adipogenic genes (56). Alternatively, it is
possible that high oxidative stress is not a predictor of obesity
development, but rather a biomarker for obesity-related disease
development (57, 58).

Positive associations of obesity or BMI with protein, red
meat (59, 60), and methionine (the precursor of cysteine) in-
take (57) have been previously reported. A causal relation be-
tween adiposity and dietary SAAs in humans has not yet been
established; however, animal studies have indicated that dietary
Cys/CySS promotes obesity by decreasing energy expenditure
(57). Because of the cross-sectional design, our study cannot
confirm that this relation is mediated by changes in the plasma
redox environment.

Strengths of this study include the large sample size and
detailed assessment of the plasma thiol and disulfide redox
state. The plasma thiol and disulfide redox systems represent
nonfree radical–mediated oxidant mechanisms (11), which are
a distinguishing feature of our redox endpoints. Given that
interventions targeting free-radical oxidant mechanisms have
generally been clinically unsuccessful (61), the plasma redox
outcomes we utilized may be relevant biomarker targets for
future dietary interventions. A limitation is that no causality
of the effect of diet on plasma redox concentrations or obesity
can be inferred. Because this was an exploratory analysis, we
did not consider the interdependence between endpoints and
performed multiple linear regression for each outcome as if
they were independent of one another, and a priori correction
for multiple testing such as Bonferroni’s correction was not
performed. To address the issue of multiplicity and balance
type I and type II errors, the bootstrap bagging method was
employed (24), eliminating the need for additional adjustment
and increasing the confidence that the MDS is associated with
plasma thiol and disulfide redox. Nevertheless, reproduction of
the observed associations and their magnitudes requires further
independent studies. Another limitation is that the calculation
of dietary index scores is not standardized and may differ based
on investigator interpretations. Furthermore, the diet scores
were created with the use of self-reported data and, thus, sus-
ceptible to recall bias or over- and underreporting. Finally, our
population consists primarily of generally healthy university
employees with relatively high education and income levels and
low smoking levels, limiting the generalizability of our results.
However, the implications for simple dietary adjustments and
lifestyle changes to influence systemic redox are applicable to all
populations.

In summary, a higher MDS was associated with healthier
plasma redox status indexes. Dairy, fish, and vegetable intakes
were positively associated with a more favorable plasma redox
status, while obesity status was highly correlated with a more-
oxidized plasma redox state. This study indicates the feasibility

of targeting diet to improve systemic redox status and dictates
a need for Mediterranean-diet-based interventions. Longitudi-
nal analyses and randomized controlled trials are required to
further study the effect of diet, in particular, the Mediterranean
diet, on plasma redox status over time and the long-term effects
on chronic disease risk.
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