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ABSTRACT

Objective: Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on

the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is

usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensive-

ness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping.

While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In

this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for

training.

Methods: The most predictive features, such as the number of International Classification of Diseases, Ninth Re-

vision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble

a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The trans-

formed features are then denoised and combined into a score for accurate disease classification.

Results: We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthri-

tis, Crohn’s disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for

the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with

sample sizes of 100–300, with no statistically significant difference.

Conclusion: The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples.

PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity

for EHR-driven annotations to scale to the next level – phenotypic big data.
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INTRODUCTION

New health problems, medications, and regimens emerge on a daily

basis. To understand their clinical impact in a timely manner, large

amounts of accurate genotypic and phenotypic data must be readily

available for research in a cost-effective manner. The advent of high-

throughput gene sequencing technologies has reduced the cost of

obtaining genomic data exponentially, from 2.7 billion USD for the

first human genome (the Human Genome Project)1 down to 1000

USD per genome in 2016. Currently, million-people-scale sequenc-

ing projects are under way to generate genomic data for research.2

However, amassing phenotypic data remains a challenge,3 as it tra-

ditionally takes human effort to record the phenotypes of patients.

To overcome the scarcity of phenotypic data, genomic and other

medical studies have begun to extract phenotypic information from

electronic health records (EHRs) to augment existing biorepositories

or quickly create new ones.4,5 Notable efforts include the i2b2 effort

led by Harvard University and Partners HealthCare,6–16 the BioVU

effort led by Vanderbilt University,17 and the multicenter eMERGE

Network.18–20 Typically, EHR-based phenotyping extracts features

from the patient’s EHR and assembles them into a classification rule

(called a “phenotyping algorithm”) to infer whether the patient has

a target phenotype. The features often involve the patient’s demo-

graphic information, such as age and sex; codified information, such

as diagnosis, medication, lab, and procedure codes (codified fea-

tures); and information extracted from the narrative notes via natu-

ral language processing (NLP features). It has been demonstrated

that studies utilizing such data-driven phenotypes can reproduce

previously established results based on phenotypic data obtained by

traditional means21,22 and can drive novel studies, such as genome-

wide and phenome-wide association studies.19,23 However, the cur-

rent approach to algorithm development relies on tremendous do-

main expert participation and takes many months to complete.

In most settings, a “supervised” machine learning method is

employed to estimate a statistical model that outputs the probability

or classification of the target phenotype based on a number of input

features and a training dataset consisting of a few hundred patients

with “gold-standard” phenotype labels. The features are curated

and engineered by a panel of clinicians, informaticians, statisticians,

and computer scientists, while the labels are obtained by experts via

laborious manual chart review. Feature curation and sample annota-

tion, requiring up to months of human effort, are thus the

rate-limiting factors in phenotyping, due to the heavy human input

required. Research is now under way to automate algorithm devel-

opment to fully leverage the efficiency of EHR-based research and

achieve so-called high-throughput phenotyping.24,25

Toward the goal of automating feature curation, some studies

have attempted to use all available codified and NLP features poten-

tially predictive of the phenotype of interest for algorithm estima-

tion.26–29 Though this approach eliminates the feature selection step

entirely, it tends to be suboptimal when the number of codified and

NLP features is substantially larger than the size of the labeled train-

ing set. Supervised algorithms trained with a large number of noisy

features and a small number of labeled examples can suffer from sig-

nificant overfitting and instability, leading to suboptimal out-of-

sample performance.30 While overfitting can be reduced with esti-

mation procedures that penalize model complexity (penalized re-

gression procedures are a common choice31–33) a price is paid in

terms of sampling variability that reduces the out-of-sample accu-

racy; the more unnecessary complexity, the heavier the price. It is

therefore essential to use only informative features in the model.

Wright et al. mined codified EHR data to look for possible associa-

tions between problems, medications, and lab tests, which can po-

tentially be used for automated feature selection. Unfortunately,

their remaining modeling steps involved a large amount of manual

screening and design.34,35 More recently, fully automated feature se-

lection has been achieved with satisfying results. The automated fea-

ture extraction for phenotyping (AFEP) method36 calls on online

sources for the knowledge originally provided by domain experts by

scanning articles concerning target phenotypes on Wikipedia and

Medscape to extract relevant medical concepts as candidate NLP

features. Informative features are then identified by analyzing the

co-occurrence patterns of the features in the EHR database. The per-

formance of the automatically selected features is comparable to

those designed by experts. The surrogate-assisted feature extraction

(SAFE) method37 improved upon AFEP, and was able to cut the fea-

ture set down to 10–30 highly informative features that outperform

the AFEP features significantly for classifying disease phenotypes

when the number of training samples is small.

Despite the success in automated feature curation, sample anno-

tation remains a major obstacle to achieving high-throughput phe-

notyping. In addition to feature selection, feature refinement or

selective prioritization of representative samples for annotation can

work to reduce the sample size needed for the training.37–39 How-

ever, manual annotation must be entirely removed from the algo-

rithm development process to truly achieve scalable phenotyping. It

is therefore desirable to move toward learning associations between

the features and the target phenotype without using any gold-

standard labels to guide the learning. A feasible approach is to rely

on “silver-standard labels” automatically generated from the EHR

in place of human-annotated labels for training, such as counts of

relevant billing codes or NLP mentions, which are strong but imper-

fect predictors of true disease status. This approach is known as

“distant supervision” in the machine learning community and was

employed by Yu et al.37 with SAFE for feature selection but not for

model estimation. Recently, Agarwal et al.29 proposed XPRESS to

use the silver-standard labels directly for training the phenotyping

algorithm in order to completely eliminate the human annotation

step. However, the simplistic choice of their silver-standard labels –

an indicator of whether the phenotype is positively mentioned in the

narrative notes – leads to suboptimal performance of their algorithm

when compared to supervised counterparts.

This paper presents PheNorm, a completely annotation-free 2-

step classification method for phenotyping involving an initial nor-

malization step of highly predictive features of the target phenotype

followed by a denoising step to leverage additional information con-

tained in the remaining candidate features. We validate the perfor-

mance of our method with 4 phenotypes from the Partners

HealthCare EHR and compare the area under the receiver operating

curve (AUC) of the PheNorm score to that of the supervised algo-

rithms trained with gold-standard labels.

METHODS

The 2 steps of the PheNorm procedure are outlined in Figure 1. The

first step transforms a highly predictive feature of the target pheno-

type, such as the number of International Classification of Diseases,

Ninth Revision, Clinical Modification (ICD-9-CM) codes of the tar-

get phenotype in the patient records, to resemble a 2-component

normal mixture distribution with high accuracy for prediction. The

second step involves self-regression with dropout to denoise the
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transformed feature based on additional candidate features, simi-

larly transformed, to further improve the prediction. The output is a

linear combination of all the transformed features.

Raw feature preparation
The input for the PheNorm algorithm consists of unlabeled data on

a set of potentially informative features, either automatically curated

or designed by experts. For the purpose of illustration in a high-

throughput phenotyping scenario, we use SAFE37 to automatically

curate features (listed in the Supplementary Material). Briefly, online

articles about the target phenotype from publicly available knowl-

edge sources, such as Wikipedia and Medscape, are scanned with

NLP software to extract medical concepts recorded in the Unified

Medical Language System.40 These concepts are potentially related

to the target phenotype. Then, narrative notes in the EHR database

are processed with NLP software, which identifies mentions of the

above medical concepts. We include only positive mentions, ie, men-

tions confirming the presence of a condition, the performance of a

procedure, the prescription of a medication, etc., in all analyses. The

patient-level counts of these concept mentions are assembled as can-

didate feature data. The SAFE procedure selects a subset of the can-

didate features via frequency control and repeated fitting of sparse

logistic regressions to predict silver-standard labels created from

combinations of ICD-9-CM diagnosis codes and NLP counts of the

target phenotype. Features predictive of the silver-standard labels

are deemed as informative features for further algorithm training.

The NLP analyses used for processing the notes are provided in

many out-of-the-box software tools,41–45 and some hospitals and re-

search institutions have their own NLP implementations.

Throughout, we denote by xICD and xNLP the counts of ICD-9-

CM codes and free-text positive mentions of the target phenotype,

respectively. In addition, we let xi, i ¼ 1; . . . ; p be the counts of posi-

tive mentions of all remaining concepts selected by SAFE and xnote

be the count of narrative notes for the patient. The input data for

the PheNorm algorithm is then the patient-level data on

(xICD;xNLP;xnote; x1; . . . ; xpÞ. We also include a simple derived fea-

ture, xICDNLP ¼ xICD þ xNLP.

Normal mixture normalization
Since xICD; xNLP; and xICDNLP are expected to be fairly predictive

of the underlying phenotype, we expect them to follow mixture

distributions: the counts of phenotype-positive patients cluster

around the upper end and the counts of phenotype-negative

patients cluster around the lower end. However, xICD, xNLP, and

xICDNLP tend to be higher for patients with more health care utili-

zation regardless of their true underlying phenotype status. There-

fore, we propose to normalize each of these 3 main features by

xnote based on our observation that, for x ¼ xICD, xNLP, or xICDNLP,

with appropriate choice of a, the distribution of the normalized

count

z ¼ log 1þ xð Þ � alog ð1þ xnoteÞ;

approximately follows a normal mixture distribution (see top right

of Figure 1) with zjY � NðlY ;r
2Þ, where Y 2 f1; 0g is the true

phenotype status. The optimal a is chosen as the minimizer of the

difference between the empirical distribution of z and its normal

mixture approximation,

Figure 1. Workflow of PheNorm. Top left: density plot (after logarithm transformation) of a highly predictive feature (illustrated here using the ICD-9-CM count of

ulcerative colitis from a Partners HealthCare EHR datamart), denoted by x, in patients who do (the right curve) and do not (the left curve) have the phenotype. Top

right: Density plot of the ICD-9-CM count after the normal mixture transformation using the total number of notes in the patient’s EHR, denoted by xnote. The den-

sities of the phenotype positive and negative patients are approximately normally distributed, and the 2 populations are separated to a large degree. Bottom

right: The transformed feature is denoised by self-regression of the transformed feature, denoted by y, onto the entire transformed and randomly corrupted fea-

ture set, denoted by Z~, with dropout. The transformed features are then combined into a prediction formula for disease status classification based on the esti-

mated regression coefficient. Bottom left: The receiver operating characteristic (ROC) curve of the feature or score in each step, with AUC growing steadily (gray

curves are copies of the ROC curves from the previous steps).
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argmin
0< a<1

D að Þ; with D að Þ ¼
ðþ1

�1

���Fa
n zð Þ � kU

z� l1

r

� �

� ð1� kÞU z� l0

r

� ����dz;

where Fa
n is the empirical cumulative distribution function (CDF) of

z under a, U is the CDF of the standard normal distribution, k
2 0; 1ð Þ representing PðY ¼ 1Þ is the mixing proportion, and l1,

l0, and r (shared) are parameters of the 2 components of the normal

mixture. For a given a, we can find the maximum likelihood esti-

mates of k, l1, l0, and r with the expectation-maximization (EM)

algorithm,46,47 and then the distribution divergence D að Þ is calcu-

lated by plugging in these estimated parameters. To overcome over-

fitting and increase stability, we use bootstrap resampling to

repeatedly calculate D að Þ with a increasing from 0 to 1 and record

where the divergence starts to increase, and we obtain the final esti-

mate of a as the average of those recorded points. Our numerical

studies demonstrate that the normalized z� achieves a much higher

AUC than the original x�, for *¼ ICD, NLP, and ICDNLP.

Random corruption denoising
The normalized main ICD-9-CM and NLP count features do not le-

verage information from other features, such as counts of competing

diagnoses and medication prescriptions, which provide additional

characterization of the presence of the target phenotype. In fact,

some of these remaining features have been shown to possess predic-

tive values beyond the main features in supervised algorithms

trained with gold-standard labels.7–11,13–16 We thus wish to utilize

the additional information contained in the entire candidate feature

set to further refine phenotype definition, but in the setting of not

using any gold-standard labels.

To this end, we propose to aggregate the information in the en-

tire candidate feature set with denoising self-regression via dropout

training, a popular training method in deep learning to control over-

fitting.48–50 Let Z ¼ zICD; zNLP; zICDNLP; z1; . . . ; zp

� �
be a data matrix

whose columns are the transformed features using the above normal

mixture transformation (a is calculated for each feature separately)

and whose rows represent patients randomly sampled from the EHR

database. To obtain a stable result from the dropout training, we

recommend that Z has at least 105 rows. When the EHR cohort size

n is smaller than 105, we can use bootstrap to sample 105 out of n

with replacement. We randomly corrupt Z and obtain Z~, with

Z~ij ¼ Zij

� �Wij Mean Z�j
� �� �1�Wij

where Mean Z�j
� �

is the mean of the jth column of Z, and Wij

	 

are

independent and identically distributed Bernoulli random variables,

with P Wij ¼ 0
� �

¼ r. Our empirical results suggest that a dropout

rate of 20–30% works well. We let the response y be one of the strong

predictors in the uncorrupted Z, that is, y ¼ zICD, zNLP, or zICDNLP.

Then we predict y with Z~using ordinary least squares regression and

obtain the regression coefficient vector b�, for � ¼ ICD, NLP, or

ICDNLP, depending on whether y ¼ zICD, zNLP, or zICDNLP. Since the

column in Z~ that corresponds to y has been corrupted, y cannot be

predicted by a single feature. Instead, the regression will utilize the un-

derlying associations among all the features to recover the lost infor-

mation of y. Since the recovered information must be supported by

the evidence in other features, the regression is essentially a denoising

process. We obtain the final PheNorm score for each patient as an

inner product of the patient’s normalized feature vector z

¼ zICD; zNLP; zICDNLP; z1; . . . ; zp

� �T
and the coefficient vector

PheNorm� ¼ zTb�;

where z in PheNorm� is the uncorrupted version of the normalized

features.

Majority vote for robustness
Without labels, it is unclear which of PheNormICD, PheNormNLP, or

PheNormICDNLP performs the best. Thus, we use a voting scheme to

combine the 3 scores for robustness. By approximating PheNorm�
(� ¼ ICD, NLP, or ICDNLP) as a normal mixture distribution, we

classify a patient’s phenotype status as G� 2 fþ;�g according to

whether the posterior probability of phenotype positive given

PheNorm� is>0.5. Let Gvote be the majority vote of

fGICD;GNLP;GICDNLPg. We let the final score be:

PheNormvote ¼MeanfPheNorm� : G� ¼ Gvoteg

Data and metrics for evaluation
To evaluate the performance of the PheNorm algorithm, we used Part-

ners HealthCare EHR datamarts constructed for phenotyping rheuma-

toid arthritis (RA), Crohn’s disease (CD), ulcerative colitis (UC), and

coronary artery disease (CAD).7,8,13 We aimed to develop algorithms

for classifying these 4 phenotypes: CAD, RA, CD, and UC. The RA

datamart included the records of 46 568 patients who had at least one

ICD-9-CM code of 714.x (Rheumatoid arthritis and other inflamma-

tory polyarthropathies) or had been tested for anticyclic citrullinated

peptide. The RA status was annotated by domain experts for a random

sample of 435 patients. From the RA datamart, 4446 patients were pre-

dicted to have RA by Liao et al.,7 and of those, 758 patients who had at

least one ICD-9-CM code or a free-text mention of CAD were reviewed

for the CAD phenotype. Since PheNorm relies heavily on clinical notes,

the records of 17 of 758 patients that did not have a note were removed

from the samples. The datamart for inflammatory bowel diseases in-

cluded 34033 patients who had at least one ICD-9-CM code of 555.x

(Regional enteritis) or 556.x (Ulcerative enterocolitis). For UC and CD,

respectively, 600 patients randomly sampled from those with at least

one corresponding ICD-9-CM code were reviewed for the target pheno-

type. The prevalence for CAD, RA, CD, and UC were estimated at

40.1%, 22.5%, 67.5%, and 63.0%, respectively.

For each phenotype, we used PheNorm to generate a score for

each patient using xICD, xNLP, and xICDNLP and calculated the AUC as

a metric of accuracy. The corruption rate r in the denoising step was

set to 0.3. For sensitivity analysis, we also trained PheNorm using a

corruption rate of 0.2 and using features selected from AFEP in the

denoising step. As benchmarks, we trained supervised algorithms with

randomly sampled gold-standard labels of N patients for N ¼ 100,

200, and 300 using the SAFE and AFEP features, and used the remain-

ing samples to estimate the out-of-sample AUC. The algorithms were

obtained from fitting adaptive elastic-net penalized logistic regression

models.32,33 The penalty parameters were chosen by the Bayesian in-

formation criterion.51 We repeated the supervised training process 30

times and report the average AUC. We also trained XPRESS algo-

rithms as proposed in Agarwal et al.29 with silver-standard labels de-

fined as ysilver ¼ 1 if xNLP � 1 and ysilver ¼ 0 if xNLP ¼ 0. As suggested

in the paper, we manually validated the dictionary for the target phe-

notype to ensure that there was no ambiguity. Except for CAD, we

sampled 750 patients from ysilver ¼ 1 and 0, respectively, and trained

a logistic regression model with L1 penalty. The optimal tuning pa-

rameter was selected with 5-fold cross-validation. For CAD, since the

population was defined as patients from the identified RA patients

who had at least an ICD-9-CM code or a free-text mention of CAD,
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the entire population had only 741 patients. We therefore used all

patients for training. The features for the regression included all the

SAFE-selected NLP features, the note count, and expert-curated codi-

fied features, including related diagnosis, prescription, and procedure

codes, as well as demographic information such as age and sex (listed

in Supplementary Material). In addition to XPRESS, we also experi-

mented with the Anchor method,52 which was originally developed

for annotating single visit notes and relies on expert-curated filters to

define positive labels with high positive predictive value. Here we

adapted the method for the multivisit scenario, using xICD � 20 as the

filter to identify positive labels and removing xICD from the predictors

due to the conditional independence requirement.

We used bootstrap to estimate the standard errors of the differ-

ence in the AUC estimates from comparing different algorithms and

to obtain the P-value for testing whether the difference is zero.

RESULTS

The out-of-sample AUC estimates for various algorithms are shown

in Table 1. Recall that the PheNorm algorithm involves 2 main

steps: (1) normalization and (2) denoising via dropout regression.

Comparing the AUC of the ICD-9-CM codes before and after nor-

malization, we found that the normalization step substantially im-

proved the accuracy of the codes, with average improvement in AUC

of around 0.04 across phenotypes. The denoising step further im-

proved the AUC with varying degrees of magnitude depending on the

phenotype and the feature; it substantially improved the AUC of the

normalized ICD-9-CM count, but was not as critical for the NLP or

ICDþNLP count as it was for the ICD-9-CM. Comparing the Phe-

Norm algorithm applied to the different features, it appears that using

the ICDþNLP count gave the most robust results across phenotypes,

and the score based on majority voting achieved similar accuracy.

The PheNorm algorithms using ICDþNLP count achieved an AUC

comparable to that of the corresponding supervised algorithms when

100 labels were used for CAD and 300 labels were used for RA and

CD. The AUC of the PheNorm score of UC appeared to be lower than

those of the supervised algorithms, but an AUC of 0.935 is acceptably

high when comparing across phenotypes. None of the supervised algo-

rithms attained an AUC significantly higher than the unsupervised

PheNormICDNLP. The AUCs from the XPRESS and Anchor methods

were significantly lower than that of PheNorm. In addition, as reported

in the Supplementary Material, the performance of PheNorm was not

sensitive to the choice of the corruption rate or feature set.

DISCUSSION

Maturation of high-throughput phenotyping technology is key to

enabling phenomics – the next big challenge for the study of preci-

sion medicine.53 However, scalable phenotyping relies on the ability

to generate an accurate algorithm without intense involvement of

clinical experts. Existing automated feature selection methods,

including AFEP and SAFE, serve as a step toward automated pheno-

typing, but ultimately rely on expert-annotated labels to train super-

vised phenotyping algorithms with the selected features. PheNorm

exploits the underlying distribution and association between fea-

tures to aggregate them into a score for disease status classification

without any gold-standard labels.

Though the training of the XPRESS algorithms does not require

gold-standard labels either, our analysis indicates that the resulting

algorithms have low accuracy. The suboptimal performance is due to

the construction of the silver-standard labels as dichotomized versions

of one of the model features, xNLP, and hence the AUC of the XPRESS

algorithms essentially approximates the AUC of xNLP. It is also impor-

tant to note that the original implementation of XPRESS used tens of

Table 1. AUCs of the raw feature x , the normalized feature z, the PheNorm scores using SAFE feature for denoising with a dropout rate of

0.3, PheNormvote, the supervised algorithms trained with SAFE features with N¼ 100, 200, or 300 labels, as well as the XPRESS and Anchor

algorithms.

CAD RA CD UC

xICD 0.844 0.868 0.824 0.812

Comparison is with

the previous step;

asterisk indicates

positive increment

at the significance

level of 0.05.

zICD 0:8750:031�
0:010 0:9010:033�

0:008 0:8770:053�
0:013 0:8590:047�

0:012

PheNormICD 0:8990:024�
0:004 0:9290:028�

0:009 0:9110:033�
0:005 0:9000:041�

0:005

xNLP 0.840 0.898 0.906 0.904

zNLP 0:8640:025�
0:011 0:9230:025�

0:011 0:9470:041�
0:007 0:9310:026�

0:006

PheNormNLP 0:8840:019�
0:003 0:9370:014�

0:005 0:9480:001
0:004 0:9350:004�

0:002

xICDNLP 0:865 0:903 0:902 0:901

zICDNLP 0:8950:030�
0:008 0:9350:032�

0:009 0:9440:042�
0:008 0:9330:032�

0:007

PheNormICDNLP 0:8990:004�
0:002 0:9360:001

0:002 0:9450:001
0:002 0:9350:002

0:002

PheNormvote 0.899 0.937 0.945 0.933

100 labels 0:9020:003
0:013 0:924�0:012

0:012 0:938�0:007
0:008 0:9410:006

0:010
Comparison is with

PheNormICDNLP;

asterisk indicates

difference at the

significance level

of 0.05.

200 labels 0:9100:011
0:013 0:933�0:003

0:014 0:941�0:004
0:009 0:9460:011

0:010

300 labels 0:9130:014
0:015 0:935�0:000

0:018 0:943�0:002
0:011 0:9460:012

0:012

XPRESS 0:836�0:063�
0:012 0:896�0:040�

0:012 0:905�0:039�
0:009 0:913�0:022�

0:008

Anchor 0:863�0:035�
0:040 0:890�0:045�

0:017 0:895�0:050�
0:014 0:866�0:069�

0:017

Comparisons are shown in the form AUCDAUC
seðDAUCÞ, where the superscript is the increment in AUC and the subscript is the standard error of the difference in AUC.
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thousands of features without preselection for training,29 leading to

further overfitting and decreased out-of-sample performance.

Using xICD � 20 as the anchor filter potentially automates the An-

chor method and adapts it for patient-level multivisit phenotyping.

However, this leads to algorithms with suboptimal performance. It is

unclear whether alternative anchors would yield more accurate algo-

rithms or how to choose better anchor filters that satisfy the condi-

tional independence requirement in the multivisit setting.

The results from our numerical studies indicate that PheNorm

achieves the same accuracy as supervised algorithms based on training

set sizes between 100 and 300, depending on the phenotype. Current

large-scale phenotyping efforts (eg, 10 phenotypes at a time) rarely

have the bandwidth to offer more than 200 gold-standard labels for

training for each disease, thus illustrating the potential of our method

to streamline phenotyping without compromising the accuracy of a

supervised approach. Additionally, our results demonstrate that the

normalization step (x! z) always significantly improves prediction

performance, while the subsequent denoising step contributes in vary-

ing degrees. Denoising appears to be critically important for ICD-9–

based algorithms, but contributes minimally to ICDþNLP–based

algorithms. This suggests that the effectiveness of the denoising step is

inversely related to the predictiveness of the normalized feature. In

practice, one may wonder if the denoising step is still necessary, since

zICDNLP is typically highly accurate. We would argue that such a step

is still potentially beneficial, particularly in settings where the ICD-9-

CM code provides a poor characterization of the desired phenotype

or the NLP software fails to accurately capture the description of the

phenotype. In this case, zICDNLP would benefit from the additional in-

formation in the related features offered by denoising.

Our experiments also show that PheNormICD and PheNormNLP

perform differently across the phenotypes, with the former better for

CAD and the latter better for RA, CD, and UC. It is important to note

that PheNormICDNLP is not necessarily a tradeoff between PheNormICD

and PheNormNLP, although xICDNLP ¼ xICD þ xNLP and its accuracy

may surpass both. Though PheNormICDNLP consistently performed well

for the 4 phenotypes, it is difficult to determine which score to use in

practice without gold-standard labels for validation. Our empirical stud-

ies indicate that PheNormvote is a good hedging policy, as it consistently

achieved accuracy close to the best performing one.

The PheNorm score can be converted to a predicted probability of

having the disease phenotype using the EM algorithm. If the goal of the

phenotyping is to link the phenotype to genomic data, one can directly

use the predicted probability as a continuous trait and perform associa-

tion analysis by fitting a quasi-binomial model. In fact, one could gain

power by leveraging the predicted probability, as compared to convert-

ing the probability to a binary trait.54 When a small number of labels

are available for validation, one can use these labels to estimate the re-

ceiver operating characteristic (ROC) curve and then select a threshold

value optimizing the tradeoff between positive predictive value and sen-

sitivity.14

Though our results demonstrate the ability of PheNorm to provide

accurate phenotyping for 4 different diseases in the absence of

gold-standard labels, further work is needed to understand the perfor-

mance of our method across a diverse range of phenotypes, particularly

for phenotypes that have more subtle definitions, in which case a combi-

nation of PheNorm and handcrafted rules or regular expressions might

be effective. Additionally, while PheNorm eliminates the annotation

typically required for algorithm estimation, labeled examples are still

needed to evaluate the algorithm’s accuracy. Future research is thus

warranted in unsupervised approaches to estimating the ROC parame-

ters where the statistical inference is particularly challenging.

CONCLUSION

In this paper, we introduce PheNorm for training accurate pheno-

typing algorithms without using gold-standard labels. In our road

map to high-throughput phenotyping, we have decomposed the task

into automated feature curation and algorithm training without

gold-standard labels. The former goal has been achieved by AFEP

and SAFE, and the latter goal has now been achieved by PheNorm.

PheNorm is easy to implement, and its accuracy is similar to algo-

rithms trained with gold-standard labels. The bandwidth provided

by SAFEþPheNorm can potentially reduce the algorithm develop-

ment process from months to a few days, providing the valuable

phenotypic big data necessary for the study of precision medicine.55
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