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Abstract

Introduction: To fulfill its mission, the NIH Office of Disease Prevention systematically 

monitors NIH investments in applied prevention research. Specifically, the Office focuses on 

research in humans involving primary and secondary prevention, and prevention-related methods. 

Currently, the NIH uses the Research, Condition, and Disease Categorization system to report 

agency funding in prevention research. However, this system defines prevention research broadly 

to include primary and secondary prevention, studies on prevention methods, and basic and 

preclinical studies for prevention. A new methodology was needed to quantify NIH funding in 

applied prevention research.

Methods: A novel machine learning approach was developed and evaluated for its ability to 

characterize NIH-funded applied prevention research during fiscal years 2012–2015. The 

sensitivity, specificity, positive predictive value, accuracy, and F1 score of the machine learning 

method, the Research, Condition, and Disease Categorization system, and a combined approach 

were estimated. Analyses were completed during June–August 2017.

Results: Because the machine learning method was trained to recognize applied prevention 

research, it more accurately identified applied prevention grants (F1=72.7%) than the Research, 

Condition, and Disease Categorization system (F1=54.4%), and a combined approach (F1=63.5%) 

with p<0.001.

Conclusions: This analysis demonstrated the use of machine learning as an efficient method to 

classify NIH-funded research grants in disease prevention.
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INTRODUCTION

The mission of NIH is to foster biomedical discoveries and apply that knowledge to 

“enhance health, lengthen life, and reduce illness and disability.”1 One of the ways that the 

NIH advances population health is through its investment in prevention research. The NIH 

Office of Disease Prevention (ODP) was established in 1986 and is responsible for 

assessing, facilitating, and stimulating research in disease prevention and health promotion.2 

Achieving these goals requires a detailed and precise understanding of the agency’s 

investment in prevention research to inform decisions about scientific program planning.

Since 2008, the NIH has used the Research, Condition, and Disease Categorization (RCDC) 

system to report funding across 282 categories of biomedical research.3 The RCDC system 

was designed to provide consistent and transparent information to the public about the level 

of support in each category. It uses text mining to distill the terms and concepts in each 

funded grant’s title, abstract, specific aims, and public health relevance statement. It ranks 

the terms that have a match in the RCDC thesaurus, and each grant is classified into RCDC 

categories via an expert-defined process when a threshold score is met.4 NIH scientific 

experts validate a sample of the grants in each category using a trans-NIH framework and 

have the option of nominating grants that were missed by the RCDC system for a given 

category.

The RCDC system defines prevention research to include studies of primary and secondary 

prevention, prevention-related methods, as well as basic and preclinical studies that have a 

prevention focus; by contrast, the ODP definition is more nuanced and includes only applied 

research in humans limited to primary and secondary prevention and prevention-related 

methods.5 Primary prevention includes the study of risk and protective factors for the onset 

of a new health condition, and interventions delivered to prevent a new health condition. 

Secondary prevention includes the identification of risk and protective factors for the 

recurrence of a health condition, early detection of an asymptomatic health condition, and 

interventions to prevent recurrence or slow progression of a health condition. In addition, 

RCDC Categorical Spending reports exclude grants funded using non–NIH appropriations, 

such as grants awarded under the Tobacco Regulatory Science Program, which uses funds 

from the Food and Drug Administration. Grants awarded with funds from gifts to NIH, 

Breast Cancer Stamps, the President’s Emergency Plan for AIDS Relief, the Assistant 

Secretary for Preparedness and Response, and any funds transferred to NIH from other 

federal agencies are also excluded from RCDC reports. The ODP wanted to characterize 

prevention research supported by NIH regardless of the funding source.

To address these issues, the ODP collaborated with the NIH Office of Portfolio Analysis to 

develop a new method for portfolio analysis that uses machine learning (ML). This paper 

describes the process used to evaluate three methods for identifying prevention research 

grants funded at the NIH based on the ODP definition. Results from (1) the RCDC system, 

(2) the ODP ML method, and (3) a hybrid approach utilizing both methods are presented.
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METHODS

Data

The most common type of research grant awarded by NIH is the R01, which represents 

about half of all new NIH-funded research project grants.6 Therefore, this study focused on 

new R01 grants (i.e., 1R01s) awarded by the NIH in fiscal years 2012–2015 (FY2012–

2015). Three discrete methods for classifying 1R01s as prevention research according to the 

ODP definition were tested.

To create the gold standard dataset against which to measure the performance of the three 

classification methods, a team of three research analysts read the title, abstract, and public 

health relevance statement of each 1R01 and individually coded each grant as prevention or 

non-prevention according to the ODP definition. Then, in a triad, the research analysts were 

required to reach a consensus on whether each 1R01 was prevention or non-prevention 

research. A separate team of NIH staff scientists blindly reviewed 10%–20% of all coded 

grants using the same coding process. Both the research analysts and the NIH staff scientists 

underwent 8 weeks of training and were required to demonstrate ≥70% agreement on 

identifying prevention grants before beginning to code grants. The joint probability of 

agreement was calculated comparing the research analysts’ consensus decision to the NIH 

staff scientists’ consensus decision. Disagreements between the research analysts’ team and 

the NIH staff team were resolved through discussion to reach a final consensus for each 

1R01 grant that was reviewed. The data from this manual coding process were used as the 

gold standard.

Research, Condition, and Disease Categorization Grant Classification Method

The RCDC system was assessed as a method (herein called the RCDC method) for 

classifying grants as prevention or non-prevention according to the ODP definition, though 

the grants were identified using the RCDC definition of prevention. Although the RCDC 

method provided predictions for all NIH 1R01s from FY2012 to 2015, it was not feasible to 

manually code all 14,566 grants. Therefore, the predictions were verified by manually 

coding 100% of 1R01s that were classified as prevention research by the current RCDC 

method and a 5% random sample of the 1R01s that were classified as non-prevention for 

FY2012–2015 (n=3,814; gold standard).

To reduce the classification error that was expected based on the different definitions of 

prevention between RCDC and the ODP, the results of the RCDC method were subsequently 

restricted by removing the 1R01 grants that were flagged during NIH peer review as 

involving only animal subjects. As above, classifications of the resulting dataset were 

validated by manually coding 100% of grants still classified as prevention research and a 

random 5% sample of the grants classified as non-prevention research (n=3,005; gold 

standard).

Machine Learning Grant Classification Method

An ensemble of ML algorithms (herein called the ML method) was used to classify grants as 

prevention research or non-prevention according to the ODP definition. The ML algorithms 
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were trained using the previous FY’s manually coded grants (training set, n=4,529 across 

FY2012–2015; average text length of 2,729 characters), then each grant in the FY of interest 

(test set, n=14,566 across FY2012–2015) was run through each algorithm (Figure 1). 

Because of randomization differences in initial values for the algorithms, it is possible for 

them to make different predictions for the same grant after different training runs on the 

same data set. To accommodate this variation, each algorithm was trained and tested five 

times. The results of each run through an algorithm were either prevention or nonprevention 

for each grant. Initial experiments with these algorithms showed differences in their 

predictive ability and further indicated that aggregating the predictions of the individual 

algorithms would improve overall classification of prevention grants. Therefore, an 

ensemble classifier was used to predict prevention research and non-prevention research 

grants using the majority of predictions.7,8 Predictions were made on all 14,566 1R01 grants 

from FY2012 to 2015, but it was not possible to manually code all of them. Instead, the 

results were validated by manually coding 100% of 1R01s that were classified as prevention 

research by the ML method and a 5% random sample of the remaining 1R01s (n=3,572; 

gold standard).

Multiple algorithms (e.g., support vector machines, LIBLINEAR, random forest, k-nearest 

neighbors, OpenNLP maximum entropy, neural networks, scaled relative frequency 

ratios)9,10 were tested early in the process on a set of NIH grants. The four algorithms that 

consistently performed the best were selected— LIBLINEAR (F1 score, 81.8%),11 

OpenNLP MaxEnt (F1 score, 83.0%),12 neural networks (F1 score, 84.3%),13 and scaled 

relative frequency ratios (F1 score, 80.0%; Appendix, available online, provides parameters). 

During pilot testing, the predictive ability from the neural networks algorithm was superior, 

so it was used again as a tie-breaker, bringing the total number of algorithms in the ensemble 

to five. Running the test set through each algorithm five times resulted in a total of 25 

predictions per grant. If ≥13 of 25 total runs predicted that the grant was prevention, then the 

grant was classified as prevention; otherwise it was classified as non-prevention.

Combined Research, Condition, and Disease Categorization and Machine Learning Grant 
Classification Method

The RCDC and ML approaches were combined as a method (herein called the RCDC–ML 

method) for classifying grants as prevention or non-prevention. Any grant classified as 

prevention by either method was classified as prevention for the combined method, whereas 

those that were not classified as prevention by either method were classified as non-

prevention for the combined method. Again, predictions were made for all 14,566 1R01 

grants from FY2012 to 2015. The results were verified by manually coding 100% of 1R01s 

that were classified as prevention research using the RCDC–ML method, and a 5% random 

sample of the remaining 1R01s (n=4,986; gold standard).

Statistical Analysis

The grants in each method’s random 5% sample of coded non-prevention grants were 

weighted and their prevention coding was extrapolated to reflect the entire non-prevention 

portfolio of 1R01s. The observed true positives and false positives with the extrapolated true 

negatives and false negatives were used to calculate the sensitivity, specificity, positive 
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predictive value (PPV), accuracy, and F1 score for each method. In the ML field, sensitivity 

is known as “recall” and PPV is known as “precision.” The harmonic mean of these two 

metrics is the F1 score and is often used in ML as a single measure of an algorithm’s overall 

performance.14,15 In this analysis, sensitivity represents the proportion of prevention grants 

that were identified as such by the method. Specificity is the proportion of non-prevention 

grants that were identified as such by the method. PPV is the probability that grants 

identified by a method as prevention were truly prevention awards. Accuracy is the 

proportion of grants correctly identified as either prevention or non-prevention by the 

method.

F1 results for each approach to classifying the 1R01 grants (RCDC versus ML versus 

RCDC–ML) were bootstrapped16 5,000 times to generate a normal distribution of F1 scores 

using RStudio, version 1.0.136, and the results were compared using paired t-tests to test for 

significance in a pair-wise fashion using Stata, version 15.

RESULTS

A total of 14,566 NIH 1R01 grants were awarded during FY2012–2015 at the time data 

were pulled for this analysis. Manual coding of these grants was completed over a period of 

15 months. The initial joint probability of agreement between the research analysts and the 

NIH staff scientists was >0.7, indicating good concurrence between these two teams. 

Disagreements were discussed in-person by both teams for all validated grants until a final 

agreement was reached by consensus. These discussions resulted in prevention coding 

changes for ≅3% of the validated grants.

RCDC classified 3,227 as prevention research using the RCDC definition and the remaining 

11,339 grants as non-prevention research. All of the prevention grants identified by the 

RCDC method and a 5% random sample (n=587) of the RCDC method’s non-prevention 

grants were manually coded using the ODP definition of prevention research. For FY2012–

2015, the average sensitivity was 57.2% and the average specificity was 86.6% when grants 

identified using the RCDC definition of prevention were evaluated against the ODP 

definition (Table 1). In addition, the average accuracy was 80%, the average PPV was 

51.8%, and the average F1 score was 54.4%. These results reflect both the commonalities 

and differences between the ODP and RCDC definitions of prevention research.

To better align the RCDC method with the ODP definition of prevention, all 1R01 grants 

involving only animal subjects were automatically classified as non-prevention. This 

modification improved the PPV and the F1 score to 70.0% and 62.6%, respectively. It was 

also more specific (93.9%) and more accurate (86.3%) than the RCDC method, but not as 

sensitive (56.6%).

Table 1 shows the classification results for the ensemble ML algorithm. The ML method 

classified a total of 2,994 grants as prevention research using the ODP definition and the 

remaining 11,572 grants as non-prevention research. All of the prevention grants and a 5% 

random sample (n=578) of the non-prevention grants identified by the ML method were 

manually coded. For the ML method, average sensitivity was 71.5% and average specificity 
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was 93.2%. The ML method achieved the highest average accuracy (88%), PPV (73.9%), F1 

score (72.7%) of all the methods tested.

Table 1 also shows the classification results for the combined, RCDC–ML approach. All 

1R01 awards that were identified as prevention by either the RCDC or ML methods were 

considered prevention awards (n=4,481) and awards that were not identified by either 

method were considered non-prevention awards (n=10,085). As before, all of the prevention 

grants and a 5% random sample (n=505) of the non-prevention grants identified by the 

RCDC–ML method were manually coded. This combined approach yielded the highest 

average sensitivity, at 78.4% (a result guaranteed by the method of combining), but the 

lowest average specificity, at 81.8%. The average PPV was low as well, at 53.3%, and the 

average F1 score was 63.5% with an average accuracy of 81%.

The predictions from all three methods were sampled with replacement 5,000 times and then 

the resulting F1 values were compared using post-hoc paired t-tests. Statistically significant 

differences in the F1 values of the ML method, the RCDC method, and the combined 

RCDC– ML method were observed (all p<0.001), indicating that the F1 values were higher 

for the ML method than the other two methods.

DISCUSSION

Since 2008, NIH has utilized the RCDC system to provide consistent and transparent 

information to the public about the level of support across 282 research categories. This 

system provides a wealth of information across topics, but does not cover all of the 

prevention topics of interest to the ODP and may not define individual topics in the same 

nuanced way that the ODP defines them. The observed sensitivity and specificity of using 

RCDC alone to classify prevention research in 1R01s across NIH suggests that the current 

RCDC categorization for prevention is not adequate for addressing the needs of the ODP. 

Given the differences in the definition of prevention research between the ODP and RCDC, 

it was not surprising that the sensitivity, specificity, PPV, accuracy, and F1 score of the ML 

method were higher than the RCDC method. This held true even when grants involving only 

animal studies were removed from the RCDC-identified pool of grants.

Prevention is a broad and complex topic that spans research in etiology, epidemiology, and 

intervention effectiveness to reduce morbidity and mortality. Many have struggled with how 

to define the concept of prevention.17,18 This ambiguity makes categorizing it across the 

NIH grant portfolio challenging. Therefore, the ML method and manual coding process used 

in this study were designed specifically for identifying primary and secondary prevention 

research grants involving human subjects, along with prevention-related methods grants, 

across the NIH extramural 1R01 grant portfolio. By leveraging this method, the ODP was 

able to curate a large database of research funding despite the vast amount of data, and the 

heterogeneity of the research supported. This method can serve as a blueprint for quantifying 

research support in other complex scientific areas, like health disparities and social and 

behavioral research.
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Because the ML method described here relies on recognizing patterns in large text data sets, 

it can also be adapted for other prevention applications. For example, ML algorithms can 

predict adverse birth outcomes,19 and identify soldiers at risk for sexual assault perpetration.
20 Rose21 used a similar ensemble ML approach to predict mortality risk in an elderly 

California population. ML approaches have also been used by researchers to study the 

etiology of depression,22 predict recurrence of complex diseases,23 and detect interactions 

between risk factors for complex diseases.24

Limitations

A limitation of this study for the ML method is that it relied solely on the text provided by 

the principal investigator in each grant’s title and abstract. Although it was usually possible 

to discriminate prevention research from non-prevention research based on the grants’ 

abstracts, there were some grants that did not describe the proposed research clearly enough 

in those sections of the application to enable this type of discrimination. The ML algorithms 

cannot be expected to perform better given the same text. Another potential limitation is 

human error in the consistency of the manually coded data used as gold standards for 

evaluating the classification methods. To ensure a high degree of agreement, grants were 

coded by teams of three, with each coder (i.e., research analysts and NIH staff scientists) 

completing an extensive training and passing a test before joining a team of coders. Research 

analysts, who manually coded the grants, and NIH staff scientists, who validated the 

manually coded grants, met on a weekly basis to discuss any discrepancies and reach a 

consensus on the final coding decision of prevention or non-prevention for all validated 

grants.

CONCLUSIONS

The application of ML algorithms is an efficient method to characterize prevention research 

funding at NIH. The ODP plans to extend this ML approach to additional grant mechanisms 

in order to characterize the broader NIH applied prevention research portfolio according to 

the ODP definition. Additionally, work is underway to train the ML algorithms to identify 

finer details about individual prevention research grants based on study characteristics, such 

as the health conditions measured, the populations studied, the research designs used, and 

the types of prevention research examined. The goals of these efforts are to reveal trends in 

NIH-funded prevention research, and to identify prevention research gaps that could benefit 

from additional investments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the machine learning grant classification method.
aEach training set was derived from manually coded grants from the previous fiscal year.
bEach test set was the entire NIH 1R01 portfolio for that specific fiscal year.

SRFR, Scaled Relative Frequency Ratio
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Table 1.

Performance of Three Approaches to Identify NIH-Funded Prevention Research in Grants from FY2012–

2015, Mean

Method Sensitivity, % Specificity, % PPV, % Accuracy F1, %

RCDC 57.2 86.6 51.8 80 54.4

ML 71.5 93.2 73.9 88 72.7

RCDC–ML 78.4 81.8 53.3 81 63.5

ML, machine learning; PPV, positive predictive value; RCDC, Research, Condition, and Disease Categorization system.
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