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Abstract

Objective: Macular pigment optical density (MPOD) – a non-invasive indicator of retinal 

xanthophylls and correlate of brain lutein – has been associated with superior cognitive function 
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among adult populations. Given that lutein accumulation in the brain occurs in early life, it is 

possible that the cognitive implications of greater MPOD may be evident in childhood.

Methods: Participants aged 8–9 y (N=56) completed MPOD measurements via heterochromatic 

flicker photometry (HFP). Academic performance was assessed using the Kaufman Test of 

Academic and Educational Achievement II (KTEA). Habitual dietary intake of L and Z was 

measured among a subsample of participants (N=35) using averaged 3-day food records. Stepwise 

hierarchical regression models were developed to determine the relationship between MPOD and 

academic achievement tests, following the adjustment of key covariates including sex, aerobic 

fitness, body composition, and intelligence quotient (IQ).

Results: The regression analyses revealed that MPOD improved the model, beyond the 

covariates, for overall academic achievement (ΔR2 = 0.10, P < 0.01), mathematics (ΔR2 = 0.07, P 
= 0.02), and written language composite standard scores (ΔR2 = 0.15, P < 0.01).

Discussion: This is the first study to demonstrate that retinal L and Z, measured as MPOD, is 

positively related to academic achievement in children, even after accounting for the robust effects 

of IQ and other demographic factors. These findings extend the positive associations observed 

between MPOD and cognitive abilities to a pediatric population.

Trail registration: The Fitness Improves Thinking in Kids 2 (FITKids2) trial was registered at 

www.clinicaltrials.gov as NCT01619826
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Introduction

Lutein (L), zeaxanthin (Z), and meso-zeaxanthin are thought to be important for retinal 

health, and more recently they have been investigated for their associations with cognitive 

function in the elderly (1–6). In non-human primates and older humans, macular pigment 

optical density (MPOD) has been found to serve as a good proxy for the amount of L and Z 

in the brain (7, 8), thus allowing MPOD to be used as a biomarker. L has been found to 

preferentially accumulate in the infant brain, accounting for 59% of total brain carotenoids 

while constituting only 12% of the infants’ carotenoid intake (9). The relative contribution of 

L to the total carotenoids found in infant brains is almost two-fold greater than in adults, 

accounting for 59% vs. 34%, respectively (5, 9), suggesting a selective role of L in early 

neural development. Given accumulating evidence for L’s relationship with cognitive 

function in the elderly (1–6), and since L is found at higher relative concentrations in the 

infant brain than the elderly brain, it is a natural extension to ask whether a relationship 

between MPOD and cognitive abilities exists during childhood.

Performance on standardized academic achievement tests has demonstrated reliable 

relationships with many facets of life, including academic and job performance (10). Since 

the implementation of the No Child Left Behind (NCLB) Act of 2001, schools have been 

under increasing pressure by federal law to deliver on academic milestones, prompting many 
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schools to alter nutrition during the days before standardized testing to boost short-term 

performance (11). With the external pressure on schools to provide students with a basic 

academic skill set, compounded by the known relationships between current academic 

performance and future success in life, it is crucial to provide evidence-based dietary 

guidance to support children’s’ abilities for long-term scholastic success. Although a 

growing body of literature supports the impact of overall diet quality and breakfast 

consumption on improved academic performance (12, 13), the influence of habitual intake 

of specific food components on academic success remains largely unknown.

Accordingly, the major aim of this study was to determine whether MPOD was associated 

with academic performance. A secondary aims was to determine if dietary intake of L and Z 

are related to MPOD measures. We hypothesized that higher MPOD would be associated 

with superior performance on standardized academic achievement tests among a sample of 

preadolescent children (8–9-year-olds). Further, we hypothesized that dietary measures 

would relate to MPOD.

SUBJECTS AND METHODS

Subjects

Preadolescent children between the ages of 8 and 10 years from the East-Central Illinois 

community were recruited to participate in this study. Participants were excluded due to the 

presence of neurological disorders, physical disabilities, and psychoactive medication status. 

All participants had normal or corrected-to-normal vision. All participants provided written 

assent and their legal guardians provided written informed consent in accordance with the 

ethical standards and regulations of the Institutional Review Board (IRB) of the University 

of Illinois at Urbana-Champaign (Institutional Review Board number 12321).

This study utilized children from 2 different waves of the FITKids randomized controlled 

trial (NCT01334359), an ongoing physical activity intervention trial. All children (n=49) 

from the 2015–2016 FITKids enrollment were included at their baseline measurement, prior 

to any intervention. Seven children from the 2014–2015 FITKids enrollment were included 

in the analysis at post-intervention. These 7 children had the same examiners as the 2015–

2016 FITKids cohort, thus reducing variability stemming from the use of more than two 

examiners (14), thus a total sample size of 56 was obtained.

Measures

All testing protocols were identical at baseline and post-intervention testing, thus including 

children from both time points should not be a confounding variable. Testing occurred 

across two separate days. On the first visit to the laboratory participants completed informed 

assent/ consent, the Woodcock Johnson Tests of Cognitive Abilities to estimate intelligent 

quotient (IQ) (15), the Kaufman Test of Academic and Educational Achievement II (KTEA 

II) to assess scholastic achievement (16), had their height and weight measured, and 

completed a maximal oxygen consumption test (VO2max) to assess aerobic fitness (17). All 

cognitive testing took place prior to the cardiorespiratory fitness assessment to avoid any 

confounding effects of acute physical activity on cognitive performance (18). Concurrently, 
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a legal guardian of the participant completed a preliminary screening, demographic and 

health history questionnaire, and pubertal timing scale (on behalf of their child) via the 

Tanner Staging Scales (19). From the information provided by the guardian, socioeconomic 

status (SES) was determined by creating a trichotomous index based on participation in a 

school meal-assistance program, maternal and paternal education levels, and the number of 

parents with full time employment. Before leaving the appointment participants were given 

food records to complete at home for three days (2 week days and 1 weekend day) before 

their return to the lab. On the second visit, participants completed an assessment of body 

composition by DXA as described below. At both visits, participants completed the MPOD 

assessment, and the average of the two values was used throughout this study.

MPOD

MPOD was measured using customized HFP (cHFP) and a macular densitometer (Macular 

Metrics Corporation, Rehoboth, MA USA) that was described by Wooten et al. (20) (this 

version of the device differed in that it did not allow a full spatial profile to be measured). 

This procedure has been described previously for measurement in adults (21). However, the 

present study utilized a slight variation of the procedure typically described in adult studies; 

unimpaired adults receive instruction from a trained examiner, and then they manipulate the 

radiance of the short-wave component of the test stimulus themselves (method of 

adjustment) to produce a null flicker zone. In the present study, the psychophysical 

technique was modified as described previously by Renzi et al. (22) for older adults with 

mild cognitive impairment. Briefly, instead of the participants manipulating the radiance of 

the short-wave component themselves to find thresholds, the examiner used the method of 

limits by manipulating the radiance of the short-wave component of the test stimulus while 

using simplified instructions. After the null zone was found, the method of constant stimuli 

was used to further narrow the range of the null zone. The two examiners were initially 

trained by the same instructor and were required to serve as a participant prior to being an 

examiner themselves. The examiners then proceeded to test 15 adults on two occasions to 

ensure reliability equal to that currently in the literature (23). After successful completion of 

this training protocol, the examiners proceeded to test the children in the present study. This 

training procedure for the examiners was utilized as it has been demonstrated to improve 

reliability of the measurement in preadolescent children (14). In the current study, 

participants completed one MPOD assessment at each of their two laboratory visits and the 

average of the two values was used for analyses. Reliability of this procedure over two 

sessions has been previously reported by our group (14).

Body composition assessment

Participants’ height and weight were measured in stocking feet using a stadiometer and a 

Tanita WB-300 Plus digital scale (Tanita, Tokoyo, Japan). The mean of three measurements 

of height and weight were used for analyses. BMI was calculated by dividing body mass 

(kg) by height (m) squared ((kg)/ht(m)2). Next, fat and muscle mass were measured using 

dual-energy X-ray absorptiometry (DXA) with a Hologic Discovery A bone densitometer 

(software version 12.7.3; Hologic, Bedford, MA).
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Academic achievement assessment

Participants were administered the Kaufman Test of Academic and Educational 

Achievement II (KTEA II) (16) in their native language, English, for all children. The 

comprehensive form was administered to determine a comprehensive achievement score. 

Academic outcomes included composite scores on math (math concepts and application and 

math computation subtests), reading (letter and word recognition and reading 

comprehension subtests), reading fluency (word recognition fluency and decoding fluency 

subtests), written language (written expression and spelling subtests), and the comprehensive 

achievement scores (reading composite, math composite, written expression subtest, and 

listening comprehension subtest). All scores reported herein are standard scores generated 

by using the age norms standard scores produced by KTEA II comprehensive norms (24).

The math concepts and application subtest was an 88-item subtest, which began with easier 

items including basic math concepts such as comparing numbers and rounding numbers, and 

progressed to more difficult problems requiring algebra, calculus, and trigonometry. The 

math computation subtest consisted of 72 items and prompted participants to add, subtract, 

multiply, and divide whole numbers and fractions. Problems progressed in difficulty by 

involving exponents, decimals, negatives, and unknown variables. Participants had access to 

pencil and paper but were not allowed to use a calculator for the math subtests. The letter 

and word recognition subtest had participants pronounce words of gradually increasing 

difficulty. The reading comprehension subtest began with the participant reading a word and 

pointing to its corresponding picture. It progressed in difficulty by having the student 

perform the action of the word, and then answer literal or inferential questions about 

passages they had read. For the word recognition fluency subtest the participant read isolated 

words as quickly as possible for one minute, and in the decoding fluency subtest they 

pronounced as many nonsense words as possible in one minute. For the written expression 

subtest the participant completed writing tasks in the context of an age-appropriate 

storybook format. In the spelling subtest the participant wrote words that the examiner 

dictated from a steeply-graded word list. In the listening comprehension subtest the 

participant listened to passages played from a CD and then orally responded to questions 

asked by the examiner (24).

Diet assessment

Three-day food records (including 2 week days and 1 weekend day) were used to determine 

dietary intake of L and Z. The records were completed by the child with assistance from the 

guardian. Both child and guardian received instructions on how to correctly fill out the food 

records. Additionally, the records contained written instructions for recording food intake, 

including portion size examples, how to describe food preparation methods, added fats, 

brand names, and ingredients of mixed dishes and recipes. The three days of intake were 

entered into Nutrition Data System for Research (NDSR 2014; Nutrition Coordinating 

Center, Minneapolis, MN, USA) software by trained staff. To investigate nutrient-level 

intakes the intake properties file from NDSR was utilized. The three days of intake were 

averaged together, and subsequently, these averages are used in the data analyses. The data 

for this study were collected between the months of May and September 2015, thus the 

reported lutein intake may potentially be higher relative to other times of the year due to 
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higher availability and cheaper costs of fruits and vegetables during this time of the year 

(25).

Statistical analysis

A bivariate correlation was performed between MPOD and dietary intake of L and Z. 

Participants were eliminated from the analysis if they were two or more standard deviations 

away from the food record mean. Next, bivariate correlations between MPOD, dietary intake 

of L and Z, and academic composite scores were calculated. Bivariate correlations between 

MPOD and demographic and health variables were run to determine what needed to be 

included in step 1 of the final regression model predicting academic performance.

Following correlational analyses, the relationship between MPOD and academic 

performance was examined using multiple hierarchical linear regression analyses. First, 

confounding demographic and health variables determined via the bivariate correlations 

were included in step 1 of the final regression model predicting academic performance. 

Additionally, variables of a higher accuracy in their measurement of interest were included 

in the modeling at step 1. For example, if both BMI and whole body percent fat correlated 

with the academic measures, then whole body percent fat was included because it is a direct 

measure of fat mass. Further, in instances where factors known to be related to sex, such as 

whole body percent fat or VO2max, are significantly related to MPOD but sex is not, then 

independent t-tests were performed to determine whether these measures varied between 

sexes. In cases where a difference was observed between sexes in the independent t-test, 

then sex was entered into step 1 of the model. Following adjustment of step 1 variables, 

MPOD outcomes were included in step 2 of the regression model. The change in variance in 

performance explained by MPOD on each academic achievement variable in step 2 was 

examined. The α level was set at 0.05 and SPSS 22 was used to perform all statistical 

analyses.

RESULTS

Participant Demographic Information

Table 1 presents participant characteristics, KTEA II academic performance standard scores 

of participants, MPOD, and dietary intake of L and Z. To determine the relationship between 

the dietary measure of L and Z with the psychophysical measure (i.e., MPOD measured via 

HFP) a correlation between the two was performed. Figure 1 demonstrates the positive 

correlation (r = 0.39, P=0.02) between MPOD and dietary intake of L and Z.

Bivariate correlations with Academic Achievement

Bivariate correlations between the achievement composite score and the demographic 

measures were performed. These correlations revealed that IQ (r = 0.62, P < 0.01), VO2max 

(r = 0.33, P = 0.01), and fat free mass VO2max (r = 0.26, P = 0.05) were positively 

correlated with the achievement composite score. BMI (r = −0.37, P < 0.01) and whole body 

percent fat (r = −0.30, P = 0.03) were negatively correlated with the achievement composite 

score. Age, sex, pubertal timing, and SES did not significantly correlate with the 

achievement composite score (r ≤ │0.21│, P ≥ 0.13). Bivariate correlations between 
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MPOD with the KTEA II academic composite scores as well as bivariate correlations 

between L and Z with the KTEA II academic composite scores are shown in Table 2.

Bivariate correlations between MPOD and demographics revealed that age, sex, pubertal 

timing, SES, IQ, BMI, whole body percent fat, VO2max, and fat free mass VO2max had no 

significant correlations with MPOD (r ≤ │0.22│, P ≥ 0.10). Bivariate correlations between 

L and Z intake and demographics revealed that age, pubertal timing, SES, IQ, BMI, whole 

body percent fat, VO2max, and fat free mass VO2max had no significant correlations with L 

and Z intake (r ≤ │0.28│, P ≥ 0.10).

Hierarchical Regressions

The stepwise hierarchical regression models are summarized in Table 3 for the composite 

scores and Table 4 summarizes the decomposition of their subtests. As IQ, BMI, whole 

body percent fat, VO2max, and fat free mass VO2max were significantly correlated with the 

achievement composite score, these factors were considered for entry into step 1 of the 

model. Sex was entered, despite not being significantly correlated with the academic 

composite, due to whole body percent fat and fat free mass VO2max differing between 

genders in independent t-tests [whole body percent fat was significantly different for girls 

(M=32.8 SE=1.0) and boys (M=27.7, SE=1.5), t(54)= 2.9, p = 0.01; and fat free mass 

VO2max was significantly different for girls (M=60.5, SE=1.1) and boys (M=64.9, SE=1.9), 

t(54)= −2.1, p = 0.04]. Subsequent addition of MPOD in step 2 was conducted to determine 

the contribution to the academic measures following step 1 adjustments. The addition of 

MPOD did not statistically improve the ΔR2 for the reading or reading fluency composite 

scores or any of their subtests (letter and word recognition, reading comprehension, word 

recognition fluency, and decoding fluency), nor did it improve the ΔR2 for the listening 

comprehension subtest. However, the addition of MPOD resulted in a significant 

improvement in the model ΔR2 at step 2 for the achievement composite standard scores 

(ΔR2 = 0.10, P = 0.002), math composite standard scores (ΔR2 = 0.07, P = 0.02), and written 

language composite standard scores (ΔR2 = 0.15, P = 0.001), as well as the math subtests: 

math concepts (ΔR2 = 0.05, P = 0.04), and math computation (ΔR2 = 0.09, P = 0.02), and the 

written language subtests: written expression (ΔR2 = 0.11, P = 0.008), and spelling (ΔR2 = 

0.13, P = 0.004).

DISCUSSION

The aim of the present study was to evaluate the relationships between dietary L and Z 

intake, MPOD, and academic achievement measures among preadolescent children. The 

major finding was that children with higher MPOD values have superior performance on 

academic measures, particularly in math and written language. Given that MPOD was 

positively related to academic outcomes, even after the adjustment of sex, IQ, whole body 

percent fat, and fat free mass VO2max, highlights the importance of habitual intake of L and 

Z, indirectly indicated by MPOD, for improved academic performance. This finding is 

important because macular L is modifiable and can be manipulated by dietary intake in most 

of the population (26).
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The results of this study demonstrate that the associations of the various academic composite 

measures with MPOD were fairly consistent, whereas associations between academics and 

self-reported dietary intake of L and Z were not as consistent. MPOD has been shown to be 

a stable measure of carotenoids embedded in the retina, and it has been demonstrated to be a 

better representation of long-term intake of L and Z than serum levels (2). This may explain 

why MPOD was more consistently related to academic measures than self-reported dietary 

intake of L and Z. Other factors that may have contributed to the inconsistency of self-report 

diet records to cognitive measures include potential subject recall bias, as well as possible 

digestive and absorptive idiosyncrasies among subjects (27).

A positive relationship between MPOD and dietary intake of L and Z was found in this 

sample. Such a finding is congruent with some, but not all, adult studies (27). This lack of 

consensus across studies highlights the many factors that likely influence the absorption of L 

and Z into the blood (28). For example, some tissues may compete for the uptake of L and 

Z, which may interfere with this relationship (29, 30). As this finding was observed in a 

subset among those that returned diet records (n=35), further study in larger samples of 

children is warranted to determine the robustness of this relationship.

L and Z have received considerable attention for their impact on visual health, and more 

recently on cognitive function in the elderly (1–5). However, the influence of L and Z on 

cognitive function in preadolescence has received little attention in comparison (31, 32). 

Although dietary carotenoids have not been investigated directly for their effect on academic 

performance, studies have been conducted on other dietary factors and their impact on 

academic performance. Overall diet quality has been demonstrated to impact academic 

performance in children. A study completed in 5th graders showed a positive association of 

diet quality and academic performance (12). Within overall diet quality, it was found that 

students with an increased intake of fruits and vegetables, sources high in carotenoids, was 

associated with improved academic performance (12). Additionally, dietary fibers, found 

abundantly in fruits and vegetables, have been related to childhood cognitive function (33). 

As dietary carotenoids are a hallmark of higher quality diets, our results are consistent with 

previous studies suggesting a role for diet in childhood cognitive function. The present study 

contributes to the current literature, as it provides support for the neurocognitive potential of 

the macular carotenoids specifically, even after adjusting for sex, IQ, whole body percent fat, 

and fat free mass VO2max, measures that have been previously demonstrated to relate to 

academic achievement in preadolescence (34–38).

The macular carotenoids L, Z and meso-zeaxanthin, as measured via MPOD, demonstrated a 

significant relationship with academic performance among preadolescents congruent with 

our a priori hypothesis based on the preferential accumulation of L in the brain (5, 9). 

Significant associations have been shown between L and cognition in the elderly. MPOD has 

been shown to relate to cognition in adults (2, 3, 5). Additionally, supplementation with L 

has been shown to improve cognitive function in healthy older women (4).

Carotenoids may exert their effects through several mechanisms in the brain to improve 

cognitive function. We know, for instance, that L (co-localizing with DHA; (39)) is located 

in areas of the brain that are important in processing information such as the hippocampus 
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and frontal cortex (7–9). In pre-clinical studies, L, specifically, has been shown to protect the 

hippocampus from hyperglycemic-induced oxidative stress (40),and L in the brain correlates 

with levels of lysophospholipids (e.g., in frontal cortex and hippocampus; (41) which are 

known to mediate signaling between and within neurons. Additionally in pre-clinical 

studies, L itself has been shown to enhance gap junction communications in model mitotic 

cells (42). There are numerous possible mechanisms that may have driven the associations 

identified here, but taken together, the implication is that L and Z alters the physiology of the 

brain in a manner that improves the cognitive function of pre-adolescent children. 

Fortunately, this can be verified in a future study using a placebo-controlled randomized 

design.

Of course, for such designs to be optimally interpretable, it is useful to directly measure the 

results of the intervention: to wit, how much L and Z is actually increased within the CNS 

following dietary supplementation. This can be accomplished by measuring MPOD. 

However, our current practice of MPOD measurement via heterochromatic flicker 

photometry has been shown to only be moderately reliable in children (14), thus 

improvements in measurement reliability are needed. Further, although the accumulation of 

L and Z as macular pigments is not completely genetically controlled (43), there are some 

potential contributing genetic factors that are made clear from supplementation studies 

demonstrating that some individuals are non-responders to supplementation (25). Measuring 

the variance explained by such genetic factors would certainly be a useful addition to studies 

of this type (44). Children in this study had high average MPOD values with relatively low 

variance. The effects of L and Z on those children with relatively low MPOD can therefore 

not be inferred from these data. Additional limitations of this study include its cross-

sectional design and the limited translatability to other geographical areas. Furthermore, 

future larger clinical trials are necessary to address other compounding dietary factors that 

may have a bearing on cognitive function, such as macronutrient intake, testing time after a 

meal, and composition of previous meal. Lastly, in future studies researchers should record 

the prescription of all participants’ eyeglasses, as recently it has been demonstrated that the 

highest quintile of plasma lutein concentrations has been independently associated with a 

40% reduced risk of myopia (45). The addition of this information would be helpful to 

examine the intersection between lutein, myopia, and cognition.

Conclusions

Due to the rapid rise in childhood obesity, links between the detrimental effects of excess fat 

mass, physical inactivity, and overall diet quality on childhood cognition are becoming 

clearer (12, 46–48). However, the effect of specific components of food on cognition of 

children without nutritional deficiencies has not been thoroughly investigated. This study 

serves the purpose of linking the dietary carotenoids L and Z to academic performance of 

children. Diet recommendations for increasing foods that are high in these food components 

have been shown to have other health benefits (49). Thus, improved academic performance 

among preadolescents may be yet another beneficial aspect of increased intake of foods high 

in carotenoids. Especially as academic performance influences future educational attainment 

and income, thus impacting the future health and quality of life of children (10). 

Additionally, as there is currently no Daily Reference Intake (DRI) for L or Z, studies 
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demonstrating their favorable effects on health contribute to the evidence base supporting 

consideration of L and Z as important nutrients that can be obtained from food. In the future, 

this may set the stage for incorporation into public health policy recommendations that 

might further enable L- and Z-associated benefits among the general public.
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Figure 1. 
Illustration of the correlation between MPOD and lutein and zeaxanthin intake (n=35; n=18 

did not return food records and n=3 were removed as outliers)

Barnett et al. Page 13

Nutr Neurosci. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barnett et al. Page 14

Table 1.

Participant characteristics, academic performance, MPOD, and dietary lutein and zeaxanthin intake among 

preadolescent children
1

Characteristic Value

Age (y) 8.8 ± 0.1

Sex [n (%)]

    Male 17 (30)

    Female 39 (70)

IQ 112.8 ± 1.7

VO2 max (mL*kg−1*min−1) 43.0 ± 1.1

Fat Free Mass VO2 max (mL*kgFFM−1*min−1) 61.9 ± 1.0

BMI (kg/m2) 18.7 ± 0.4

BMI-for-age percentile
2 70.9 ± 3.5

    Underweight, BMI percentile < 5 [n (%)] 0 (0)

    Normal weight, BMI percentile ≤5 and <84.9 [n (%)] 32 (57)

    Overweight, BMI percentile ≤85 and <94.9 [n (%)] 14 (25)

    Obese, BMI percentile > 95 [n (%)] 10 (18)

Whole Body % Fat (%) 31.3 ± 0.9

SES [n (%)]

    Low 22 (39)

    Middle 19 (34)

    High 15 (27)

Pubertal Timing [n (%)]

    Stage 1–2 51 (91)

    Stage 2–3 5 (9)

Math Composite 108.3 ± 2.3

Reading Composite 111.5 ± 2.1

Reading Fluency Composite 111.1 ± 2.1

Written Language Composite 106.6 ± 2.5

Achievement Composite 109.5 ± 2.2

MPOD 0.64 ± 0.03

Lutein + Zeaxanthin (μg)
3 806.6 ± 63.0

1
Values are means ± SEM n=56. IQ, intelligence quotient; VO2 max, maximal oxygen uptake; SES, socioeconomic status; MPOD, macular 

pigment optical density.

2
Determined by the 2000 Centers for Disease Control and Prevention BMI-for-age growth charts

3
n=35; n=18 did not return food records and n=3 were cut out due to being outliers (two or more standard deviations away from the food record 

mean)
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Table 2.

Bivariate correlations between KTEA II performance and lutein and zeaxanthin intake among preadolescent 

children
1

Carotenoid Achievement Reading Math
Written

Language
Reading
Fluency

MPOD 0.40** 0.28* 0.35** 0.41** 0.22

Lutein and Zeaxanthin
2 0.29 0.16 0.14 0.53** 0.23

1
All are academic achievement composite standard scores based on age norms.

*
P<0.05

**
P<0.01(two-tailed). n=56

2
n=35; n=18 did not return food records and n=3 were removed as outliers (two or more standard deviations away from the food record mean)
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