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Abstract

Hydrogen-bonds (H-bonds) within the secondary coordination sphere are often invoked as 

essential noncovalent interactions that lead to productive chemistry in metalloproteins. 

Incorporating these types of effects within synthetic systems has proven a challenge in molecular 

design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. 

We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3–) that 

contains two mono-deprotonated urea groups and one phosphinic amide: the urea groups serve as 

H-bond donors while the phosphinic amide group serves as a single H-bond acceptor. The 

[H2pout]3– ligand was utilized to stabilizes a series of Mn–hydroxido complexes in which the 

oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of MnIII–OH 

complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are 

formed. Additional evidence for the formation of intramolecular H-bonds was provided by 

vibrational spectroscopy in which the energy of the O–H vibration supports its assignment as an 

H-bond donor. The step-wise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was 

further substantiated by electrochemical measurements and results from electronic absorbance and 

electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling 

both the primary and secondary coordination spheres to achieve structurally similar Mn–OH 

complexes with varying oxidation states.
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Introduction

To determine correlations between the structure and function of a metal complex, it is 

necessary to understand the relationships between the primary and secondary coordination 

spheres of the metal ion(s).1–4 Control of the primary coordination sphere is often governed 

via relatively strong M–L covalent bonds which chemists have utilized in a variety of ways. 

Rather than using covalent bonds, the secondary coordination spheres of metal ions are 

regulated through networks of weaker non-covalent interactions that are often difficult to 

manipulate within synthetic systems.5,6 Hydrogen bonds (H-bonds) are the most versatile of 

these interactions and have been actively designed into a variety of ligand frameworks. The 

most common of these ligands incorporate either H-bond donors or acceptors to promote 

intramolecular H-bonds.3,7–17 However, there are fewer examples that utilize a mixture of 

H-bond donors/acceptors to target a specific type of M–L unit.18–21

Our group has specialized in the development of ligand platforms that promote 

intramolecular H–bonding networks to investigate their influence on the secondary 

coordination sphere. One design uses the symmetrical urea ligand [H3buea]3– (Figure 1A) 

that provides a cavity with three H-bond donors positioned to stabilize monomeric Mn, Fe, 

Co, and Ni complexes with terminal oxido/hydroxido ligands.2,22–28 We found that the 

strongly anionic ligand field provided by the mono-deprotonated urea groups also assists in 

stabilizing high valent species that includes MnV-oxido and MnIV–hydroxido complexes.
28–30 We have also examined the chemistry of tripodal ligands such as [RST]3– (Figure 1B) 

which contains deprotonated sulfonamide units that also function as H-bond acceptors.31–34 

Recently, hybrid tripods were introduced that contain both urea and sulfonamido groups to 

vary the intramolecular H-bonding network that surrounds Co–OH units (Figure 1C).18 

These studies showed that deprotonated sulfonamido ligands are useful H-bond acceptors; 

however, they do not provide a sufficient primary coordination sphere to stabilize 

monomeric M–OH complexes with oxidation states greater than 3+.

To circumvent this problem, we have turned to ligands that contain deprotonated phosphinic 

amides in place of sulfonamido groups. We reasoned that phosphinic amides would produce 

a stronger anionic ligand field while still providing H-bond acceptors through the P=O units. 

In this report, we describe the development and Mn chemistry of the hybrid ligand 

[H2pout]3– (Figure 2) that installs a combination of two H-bond donors and one H-bond 

acceptor within the secondary coordination sphere. The [H2pout]3– ligand was used to 

prepare the MnII–OH complex [MnIIH2pout(OH)]2– (Figure 2) which had sufficiently low 

redox potentials to synthetically prepare its corresponding Mnn–OH (n = III, IV) analogs.
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Experimental Section

General Procedures.

All manipulations, unless otherwise stated, were completed under an argon atmosphere in a 

VAC drybox. Solvents were sparged with argon and dried over columns containing Q-5 and 

molecular sieves. All reagents were purchased from commercial suppliers and used as 

received unless otherwise noted. Potassium hydride as a 30% suspension in mineral oil was 

filtered and washed five times each with Et2O and pentane and dried under vacuum. The 

ligand precursors 1,1′-(((2-aminoethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea) 

and ferrocenium tetrafluoroborate were synthesized using literature procedures.10,35

Physical Methods.

Electronic absorbance spectra were recorded in a 1 cm cuvette on an 8453 Agilent UV-vis 

spectrometer equipped with an Unisoku Unispeks cryostat. X-band (9.64 GHz) and S-band 

(3.50 GHz) EPR spectra were recorded on a Bruker spectrometer equipped with Oxford 

liquid helium cryostats. The quantification of all signals is relative to a CuEDTA spin 

standard. The concentration of the standard was derived from an atomic absorption standard 

(Aldrich). For all instruments, the microwave frequency was calibrated with a frequency 

counter and the magnetic field with an NMR gaussmeter. A modulation frequency of 100 

kHz was used for all EPR spectra. The EPR simulation software (SpinCount) was written by 

one of the authors.36 EPR samples were prepared under an inert atmosphere, sealed with a 

septum, and cooled to 77K unless otherwise mentioned. The sign of D for Mn(II)–OH and 

Mn(IV)–OH were determined from simulations of perpendicular-mode EPR spectra 

collected at variable temperatures. The sign of D for the Mn(III)–OH complex has not be 

determined experimental and is based on the value obtained for the similar complexes, 

[Mn(III)H3buea(OH)]2-.1H and13C nuclear magnetic resonance (NMR) spectroscopies were 

conducted using a Bruker DRX500 spectrometer. Cyclic voltammetric experiments were 

conducted using a CHI600C electrochemical analyzer. A 2.0 mm glassy carbon electrode 

was used as the working electrode at scan velocities of 100 mV s−1. A cobaltocenium/

cobaltocene couple (CoCp2
+/CoCp2) (ΔEp = – 0.136 V vs Fc+/0) was used to monitor the 

Ag wire reference electrode, and all potentials are reference to the Fc+/0 couple. The DFT 

calculations were performed with Gaussian ‘0937 using the hybrid functional B3LYP and the 

basis set 6–311G. Geometry optimizations were performed using the structures determined 

from X-ray diffraction for the MnII and MnIII complexes. The calculations for the 

manganese(IV) complex were based on the crystal structure of the MnIII complex.

Preparative Methods.

H5pout.—The preparative route for this compound followed the method previous report for 

H22Tol in which only the last step was different.18 A solution of 1,1′-(((2-

aminoethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea) (2.00 g, 4.47 mmol) and 

triethylamine (2.55 g, 25.2 mmol) in 100 mL anhydrous THF was treated dropwise with 

diphenyl phosphinic chloride dissolved in 100 mL THF (~1 drops/second) while stirring and 

a white precipitate formed immediately. Once the addition was complete, 100 mL THF was 

added to rinse the addition funnel. The addition funnel was removed, and the round bottom 

flask was covered with a glass stopper. After stirring overnight, the white precipitate, 
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Et3NHCl, was removed via filtration. The filtrate was dried under reduced pressure and the 

solid residue was further dried under vacuum. Diethyl ether (150 mL) was added to the 

residue to afford an off-white powder, which was collected on a medium porosity glass-

fritted funnel, washed once with MeCN (50 mL), twice with Et2O (50 mL), and dried for 

several hours under reduced pressure to give the desired white product (2.7 g, 85 %).1H 

NMR (500 MHz, CDCl3, ppm): 2.50 (t, 6H), 3.11 (q, 6H), 6.13 (q, 3H), 7.45 (t, 12H), 7.50 

(d, 6H), 7.61 (t, 12H);13C NMR (125 MHz, CDCl3, ppm): 29.7, 36.3, 45.7, 49.7, 128.9 (d), 

130.8, 131.9, 132.0 (d), 132.4 (d), 158.5.31P NMR (162 MHz, CDCl3, ppm): 28.6; HRMS 

(ES+, m/z): Exact mass calculated for NaC42H45N4O9P3 [M + Na]: 567.3188, Found: 

567.3186. FTIR (Nugol, cm–1): 3400, 3341, 3231, 2954, 2922, 2853, 1678, 1657, 1546, 

1451, 1378, 1287, 1264, 1221, 1120, 1047, 814, 723, 690.

K 2[MnIIH2pout(OH)].—A solution of H5pout (0.100 g, 0.183 mmol) in anhydrous DMA 

(4 mL) was treated with potassium hydride (KH) (0.030 g, 0.75 mmol) and the reaction 

allowed to proceed until gas evolution ceased and all solids were dissolved. To the colorless 

solution was added MnII(OAc)2 (0.031 g, 0.18 mmol). After stirring for 90 min, water (3 μL, 

0.2 mmol) was added via syringe and the reaction mixture was filtered after 15 min through 

a medium porosity glass-fritted funnel to afford a light-yellow filtrate and white solid on the 

glass frit (KOAc, 90%). Et2O was allowed to diffuse into DMA resulting in pale yellow 

crystals (80%) suitable for XRD studies. Anal. Calcd for K2[MnH2pout(OH)], 

C28H43K2MnN6O4P: C, 48.61; H, 6.27; N, 12.15. Found C, 48.79; H, 6.91; N, 12.48. FTIR 

(ATR, cm–1) 3656, 3261, 3124, 3071, 2955, 2797, 1645, 1585, 1510, 1435, 1390, 1350, 

1310, 1245, 1205, 1185, 1115, 1045, 1015, 975, 885, 815, 755, 710, 630. UV-vis 

(DMF:THF, λmax nm, (εmax, M−1 cm−1)) 525 (sh). EPR (X-band Perpendicular, DMF:THF, 

16 K, g = 6.0, 3.9, 2.4, 1.6, 1.4, 1.3, Aiso = 250). E1/2 (DMF, V vs [FeCp2]+/–): MnIII/II = –

1.47.

K[MnIIIH2pout(OH)] was prepared by a similar method to K2[MnIIH2pout(OH)] with the 

following modifications: after the addition of water, half an equivalent of elemental I2 (0.028 

g, 0.11 mmol) was added to the yellow filtrate that caused an immediately color change to 

dark green. The solution was left to stir for 30 min and then concentrated to dryness under 

reduced pressure. The residue was titrated with Et2O (20 mL) and again dried under 

vacuum. The free-flowing green solid was redissolved in MeCN and filtered through a fine 

porous-glass frit to remove a white solid (KI, 27 mg, 90%). Single crystals suitable for XRD 

studies were obtained by vapor diffusion of Et2O into the solution of DMA of the salt 

(60%). Anal. Calcd for K2[MnH2pout(OH)], C 28H43KMnN6O4P • 0.5KI • DMA: C, 46.71; 

H, 6.37; N, 11.92. Found C, 46.74; H, 6.38; N, 11.28. FTIR (ATR, cm–1) 3300, 3274, 3211, 

2956, 2875, 2810, 1610, 1567, 1500, 1490, 1462, 1450, 1433, 1420, 1399, 1378, 1369, 

1238, 1112, 1006, 1020, 978, 790, 743, 724, 696, 661, 616, 594. UV-vis (DMF:THF, λmax 

nm, (εmax, M−1 cm−1)) 440 (210), 740 (236). EPR (X-band Perpendicular, DMF:THF, 19 K, 

g = 8, Az = 270) E0 (DMF, V vs [FeCp2]+/–): MnIV/III = – 0.25.

Oxidation of [MnIIIH2pout(OH)]–.—A 20 mM stock solution of K[MnH2pout(OH)] was 

prepared in a 1:1 DMF:THF mixture at room temperature and kept in a −35 °C freezer for 

the duration of the experiment. Addition, via air tight syringe, of a 40 μL aliquot of stock 
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metal complex to the solvent mixture (2 mL) in a 1 cm quartz cuvette, which was sealed 

with a rubber septum and precooled to the desired temperature in the 8453 Agilent UV−vis 

spectrophotometer equipped with an Unisoku Unispeks cryostat, to give the desired 

concentration for oxidation experiments (400 μM). The solution of metal complex was 

allowed to equilibrate to the desired temperature for at least 15 min. Additionally, a stock 

solution of [FeCp2]BF4 (40 mM) was prepared in 1:1 DMF:THF mixture and kept in a 

−35 °C freezer for the duration of the experiment. One equiv (20 μL) of [FeCp2]BF4 was 

added to the MnIII−OH solution via gastight syringe. The disappearance of the two low-

energy d-d transitions corresponding to the MnIII–OH species were monitored 

spectrophotometrically, with the appearance of new transitions attributed to the MnIV–OH 

species. EPR samples were prepared in a similar manner and frozen via submersion into 

liquid N2. The value of D for [MnIIH2pout(OH)]2- and [MnIVH2pout(OH)] were determined 

from simulations of EPR spectra collected at variable temperatures. For 

[MnIIIH2pout(OH)]–, the value of D was determined from the temperature dependence of the 

signal as displayed in Figure 7.

X-ray Crystallographic Methods.

A Bruker SMART APEX II diffractometer was used to collect all data. The APEX238 

program package was used to determine the unit-cell parameters and for data collections. 

The raw frame data was processed using SAINT39 and SADABS40 to yield the reflection 

data files. Subsequent calculations were carried out using the SHELXTL40 program. The 

structures were solved by direct methods and refined on F2 by full-matrix least-squares 

techniques.

Results and Discussion

Synthesis.

The preparation of H5pout was accomplished in a five-step convergent synthesis adapted 

from the methods developed for previously reported H52tol ligand (Figure 1C).18 Central to 

the syntheses is the diurea compound, 1,1′-((2aminoethyl)azanediyl)bis(ethane-2,1-

diyl))bis(3-(tert-butyl)urea which is combined in the final step with diphenylphosphinic 

chloride in THF and excess Et3N. Precipitation of the ammonium chloride salt was observed 

immediately, and H5pout was isolated as a white solid in 85% yield after purification.

The MnII–OH complex, [MnIIH2pout(OH)]2-, was synthesized following the procedure 

outline in Scheme 1, in which the ligand was initially formed via deprotonation with KH. 

Metal ion coordination was achieved using MnII(OAc)2 and the hydroxido ligand was 

derived from water; note that an extra equivalent of base was added to the reaction mixture 

which is needed to produce the hydroxido ligand in [MnIIH2pout(OH)]2-. One-electron 

oxidation of the MnII–OH complex with elemental iodine gave the corresponding MnIII–OH 

species, [MnIIIH2pout(OH)]– (Scheme 1).26

Structural Properties.

The molecular structures of K2[MnIIH2pout(OH)] and K[MnIIIH2pout(OH)] salts were 

characterized with X-ray diffraction methods (Figure 3, Tables 1 and 2). DFT calculations 

Oswald et al. Page 5

Inorg Chem. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gave optimized structures for both that agreed with the molecular structures determined by 

XRD measurements (Table 1). The structures for both salts revealed that each Mn–OH anion 

is mononuclear with a distorted trigonal bipyramidal (tbp) coordination geometries. The 

primary coordination spheres around the Mn center in each complex is composed of a N4O 

donor set with three anionic N-atom donors forming the trigonal plane. The axial positions 

contain the apical amine N1-atom from the [H2pout]3- ligand and O1-atom from the 

hydroxido ligand. Statistically significant differences are found between the Mn–N and Mn–

O1 bond lengths between the two structures. For instance, the Mn–O1 bond distance is 

contracted from 2.051(1) Å to 1.834(1) Å upon conversion to [MnIIIH2pout(OH)]–, a change 

which is consistent with oxidation at the metal center. A similar shortening in bond lengths 

after oxidation is observed for the bonds within the equatorial plane, in which the average 

Mn–N bond distance changed from 2.188(1) Å to 2.052(2) Å.

The molecular structures also show that [H2pout]3- interacts with the Mn–OH unit through 

H-bonds to influence the secondary coordination sphere. In each structure, the urea NH 

groups serve as H-bond donors to the hydroxido ligand as judged by the average N…O 

distances of 2.910(2) Å in [MnIIH2pout(OH)]2- and 2.774(2) Å in [MnIIIH2pout(OH)]–. 

There is a third intramolecular H-bond in the MnIII–OH structure that is formed between the 

hydroxido ligand and the O2-atom of the phosphinic group (2.685(2) Å). The presence of 

this additional H-bond could account for the shorter Mn–O bond distance in 

[MnIIIH2pout(OH)]– when compared to that found in [MnIIIH3buea(OH)]– (Figure 1A, Mn–

O bond length of 1.877(2) Å).41 Because the hydroxido acts as an H-bond donor, it should 

have more negative character, which would result in a shorter Mn1–O1 bond distance in 

[MnIIIH2pout(OH)]–. Similar structural results were found in Co–OH complexes and 

emphasized the structural effects of the H-bonds within the secondary coordination sphere.18 

Notice also potassium ion does not interact with the Mn–OH unit in the lattice of 

K[MnIIIH2pout(OH)]; it only interact with the carbonyl groups of the ureas which are 

pointed away from the hydroxido ligand (Figure 3D).

Similar comparison for [MnIIH2pout(OH)]2- are hindered because the positioning of the 

potassium ions complicates interpretation of the secondary coordination sphere. One 

potassium ion (K2) interacts with the O2-atom of [H2pout]3- that distorts the cavity and 

prevents formation of an intramolecular H-bond (Figure 3B). However, the O–H bond is 

positioned toward the phosphinic unit in a similar manner as in [MnIIIH2pout(OH)]–, but it is 

now closer to one of the phenyl substitutients. This lack of a third intramolecular H-bonds 

results in a Mn1–O1 bond length that is the statistically the same as that found in the related 

MnII–OH complex, [MnIIH3buea(OH)]2-(Mn–O bond distance of 2.059(2) Å).26

Electronic Absorbance and Vibrational Properties.

The conversion of [MnIIH2pout(OH)]2- to [MnIIIH2pout(OH)]– was monitored by optical 

spectroscopy in 1:1 DMF:THF at −80˚C. The MnII–OH species had no observable features 

in the visible region but upon oxidation new bands appeared at λmax(εM) = 440 (210) and 

740 (236) nm (Figure 4A). The energies of these features are similar to those found in the 

related MnIII–O(H) complexes [MnIIIH3buea(O)]2- and [MnIIIH3buea(OH)]–; however, there 

are noticeable differences in the values of the extension coefficients. For 
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[MnIIIH3buea(OH)]–, bands were observed at λmax(ε#M) = 427 (ε1 = 390) and 720 (ε2 = 

500) nm (ε1/ε2 = 0.78) that change in [MnIIIH3buea(O)]2- to λmax(eM) = 498 (ε1 = 490) and 

725 (ε2 = 240) nm (ε1/ε2 = 2.0).42 In addition, an analogous MnIII–OH in tbp coordination 

geometry with no intramolecular H-bonds has a similar visible absorbance spectrum in 

which the lower energy band has the greater intensity (ε1/ε2 = 0.62).43 The comparable 

extinction coefficients of the absorbance bands in the spectrum of [MnIIIH2pout(OH)]– 

(ε1/ε2= 0.89) may be attributed to the Mn–OH unit being an H-bond donor to form a 

relatively strong H-bond with the phosphinic amide O-atom; this additional interaction 

would make the hydroxido ligand slightly more oxido-like, which would affect a change in 

the absorbance spectrum as observed.

Analysis of vibrational properties using FTIR spectroscopy showed bands attributed to the 

n(MnO–H) at 3656 and 3300 cm−1 for the MnII–OH and MnIII–OH complexes. Because of 

the interactions of the potassium ions with [MnIIH2pout(OH)]2- (Figure 3A) it is not 

possible to directly compare this complex with other Mn–OH species. A more 

straightforward comparison can be made for [MnIIIH2pout(OH)]– and its n(MnO–H) band is 

boarder (fwhm = 90 cm–1) and at lower energy that the comparable peak for 

[MnIIIH3buea(OH)]– which was found at 3613 cm−1 (fwhm = 15 cm–1).41 These vibrational 

data are also consistent with presence of an intramolecular H-bond between the phosphinic 

arm and the hydroxido ligand that causes a weaken the O–H bond.

Electrochemical Properties.

Cyclic voltammetry (CV) was employed to analyze the redox properties of the Mn–OH 

complexes. Electrochemical data showed a reversible one-electron redox couple at −1.47 V 

vs [FeCp2]+/0 that is assigned to the MnIII/II–OH process (Figure 5B). This potential is 

similar to one found in [MnIIIH3buea(OH)]– that occurs at −1.50 V vs [FeCp2]+/0 that is the 

MnIII/II OH couple.44 A second redox event was observed at a more positive potential that is 

center around – 0.25 V vs [FeCp2]+/0 and assigned to the MnIV/III–OH couple (Figure 5B).

The process is not reversible under our experimental conditions which we suggest is caused 

by the oxidized MnIV–OH species not being stable at room temperature. Again, a similar 

result was observed for the MnIV/III–OH couple (– 0.18 V vs [FeCp2]+/0) for 

[MnIVH3buea(OH)] at room temperature and subsequent studies found it was only stable at 

temperatures lower than −50˚C.30

Accessing a MnIV–OH Species: Spectroscopic Studies.

The electrochemical data of the MnII–OH complex suggested that accesses a higher valent 

MnIV–OH species should be possible with mild oxidants. We tested this premise by 

monitored the formation of this complex at –80˚C in 1:1 DMF:THF mixture using 

ferrocenium cation as the oxidant. Clean conversion was observed that initiated from 

[MnIIIH3buea(OH)]– to produce a new spectrum with a prominent band at λmax(εM) = 460 

nm (1390) and a shoulder at 560 nm; a single isosbestic point was found at 675 nm (Figure 

4B). The final spectrum closely resembled that of [MnIVH3buea(OH)] which has an 

absorbance band λmax (εM) = 466 nm (5600). This new oxidized species was stable for 

hours at −80˚C.
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EPR Studies.

We have previously shown that EPR spectroscopy is an effective method for probing 

changes in the electronic structure of monomeric Mn–O(H) complexes.30 Our approach 

utilized both perpendicular- and parallel-modes at X-band to follow spin state changes upon 

oxidation (Table 2). The EPR spectrum of [MnIIH2pout(OH)]2- (Figure 6) in perpendicular-

mode showed signals over a wide magnetic field range. The spectra are complicated by 

resonances from multiple overlapping transitions as has been described previously for 

[MnIIH3buea(OH)]2-.45 The simulation overlaid on the experimental spectrum in Figure 6 is 

for a S = 5/2 spin center using the parameters of described in Table 2. The simulation 

intensity is in quantitative agreement with the sample concentration determined from the 

weight of the complex dissolved in the solvent. The zero-field parameters are similar to the 

previously characterized [MnIIH3buea(OH)]2- and, as expected, [MnIIH2pout(OH)]2- 

showed an increased in rhombic parameter E/D owing to the unsymmetrical nature of the 

tripodal ligand.45

The addition of 1 equiv [FeIIICp2]+ resulted in the disappearance of the signals from the 

MnII–OH complex and the appearance of a 6-line hyperfine signal centered at g = 8 with Az 

= 270 MHz (a = 9.6 mT) in parallel-mode (Figure 7). The simulation overlaid on the 

experimental spectrum are for an S = 2 spin center (Figure 7, Table 2) and its intensity is in 

quantitative agreement with the sample concentration. The zero-field parameters determined 

from the spectra are statistically the same as those of [MnIIIH3buea(OH)]–.45 Taken 

together, these data are consistent with the formation of the high-spin MnIII–OH complex, 

[MnIIIH2pout(OH)]–.

The fully oxidized [MnIVH2pout(OH)] complex showed no features in parallel-mode, but 

perpendicular-mode signals were observed when measured at both S- and X-bands. Figure 8 

displaces the spectra collected at both bands with the magnetic field ranges chosen to equate 

the g-value ranges for both frequencies. The positions of the resonances and the simulations 

are indicative of an S = 3/2 spin-state that is consistent with a high-spin MnIV–OH complex 

in local C3 symmetry (Table 2). Our analysis of the EPR data showed that two distinct 

MnIV–OH species are formed, a result that is similar to what we reported for 

[MnIVH3buea(OH)].30,45 The largest difference between the two species for 

[MnIVH2pout(OH)] is in their E/D values: species 1 (E/D = 0.33) is significantly more 

rhombic than species 2 (E/D = 0.17). The effective g-tensors for the |±1/2> and excited |

±3/2> doublets for the two species are reported in Table 3 and indicated on Figure 8. For 

species 1, the effective g-tensors for each doublet are the same because of the large value of 

E/D. We have been successful in determining the hyperfine tensor for both species, even 

though the hyperfine splitting is not resolved in all directions. This determination was 

accomplished because we used two different frequencies in our analysis as previously 

described.28

The rhombic character of the two species is consistent with a MnIV ion in a C3 symmetry in 

which an appreciable Jahn-Teller distortion is expected. However, the reason(s) for the 

presence of two species and their exact structural differences are not known. The simulations 

showed that species 2 (the less rhombic species) was more abundant by a ratio of 2:1. We 

used density functional theory (DFT) to probe the possible structures of [MnIVH2pout(OH]]. 
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The DFT calculations converged to two optimized structures shown in Figures 9 and S1 with 

selected bond lengths given in Table 3. Structure A had a lower energy and is similar to the 

structure of [MnIIIH2pout(OH)]– with three intramolecular H-bonds involving the hydroxido 

ligand. Structure B has one urea arm rotated such that the carbonyl O-atom was proximal to 

the Mn–O(H) unit. A similar reorientation of a urea arm has been proposed for the 

protonated form of [FeIVH3buea(O)]– .46 The computed equatorial Mn-N bond lengths were 

more similar for species A relative to those found for species B which suggests A 
corresponds to the species with E/D values of 0.17 and 0.33, respectively. DFT calculations 

of the spin-dipolar A-tensors for the two species gave (29, −2, −27) MHz (A) and (30, 6, 

−36) MHz (B), which were in approximate agreement with the experimental values of (17, 

3, −20) MHz for A and (26, −5, −21) MHz for B. Finally, we note that the EPR spectrum of 

the related complex [MnIVH3buea(OH)]– also consisted of two species with similar values 

for E/D to that of [MnIVH2pout(OH)]–. However, one important difference between the two 

MnIV–OH complexes is that the more abundant species in [MnIVH3buea(OH)]– is the one 

that is most rhombic (E/D = 0.33). The reason(s) for this difference is under investigation.

Preparation and Properties of [MnIIIH2pout(O)]2- and [MnIVH2pout(O)]–.

We have also prepared the related MnIII/IV–oxido complexes of [H2pout]2- to compare their 

spectroscopic properties to the related Mn–OH complexes. The synthesis of 

[MnIIIH2pout(O)]2- was achieved via deprotonation of the MnIII–OH complex with KOBut 

(Scheme 2A). Conversion to its MnIV–oxido analog was accomplished using ferrocenium 

(Scheme 2B); [MnIVH2pout(O)]– was also be prepared via deprotonation of 

[MnIVH2pout(OH)] with KOBut (Scheme 2C). The electronic absorbance spectrum of 

[MnIIIH2pout(O)]2- contains two major features in the visible region at λmax(εM) = 500 

(400) and 760 (190) nm with an ε1/ε2= 2.1 (Figure S2A). These values are reminiscent of 

those observed for [MnIIIH3buea(O)]2- (see above). In addition, the parallel-mode EPR 

spectrum for [MnIIIH2pout(O)]2- showed a six-lined signal at g = 7.91 with a hyperfine 

constant Az = 290 MHz that consistent with a monomeric MnIII complex having an S = 2 

spin ground state (Figure S3A). Moreover, these values are distinct from those observed for 

[MnIIIH2pout(OH)]–. Similar differences were observed for [MnIVH2pout(O)]– when 

compared to [MnIVH2pout(OH)]: the MnIV– oxido complex had absorbance bands at 

λmax(εM) = 440 (1060) and 745 (200) nm (Figure S2B) that are similar to those found for 

[MnIVH3buea(O)]–. The perpendicular-mode EPR spectrum of [MnIVH2pout(O)]– was 

broad and only the resonance at g = 5.09 could be identified (Figure S3B). The hyperfine 

pattern at g = 5.09 and the other broad features were different from that of 

[MnIVH2pout(OH)] (Figure S3B). Taken together, these findings demonstrate that the 

spectroscopic differences between Mn–hydroxido and Mn–oxido complexes with tripodal 

ligands can be used to differentiate these types of complexes in solution.

Summary and Conclusions

Manganese complexes with terminal hydroxido ligands are relatively rare because of the 

strong propensity of the Mn–OH units to aggregate to form multinuclear species. However, 

they have been implicated as key intermediates in a variety of chemical processes,
26,30,41,43,44,47–54 most notably as intermediates formed during biological water oxidation.
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17,55–59 Results from structural biology on the oxygen evolving complex (OEC) suggest that 

H-bonding networks to coordinate water molecules assist in forming Mn–OH complexes 

that can be in either the MnIII or MnIV oxidation states.60–64 One approach toward studying 

the structural outcomes of the secondary coordination sphere is to develop chelating ligands 

that can provide H-bond donors/accepts around the Mn–OH unit. Toward this goal, tripodal 

ligand [H2pout]3- was designed to accommodate three intramolecular H-bond to the 

hydroxido ligand. Spectroscopic and structural results on [MnIIH2pout(OH)]2- and 

[MnIIIH2pout(OH)]– indicate that this type of H-bonding network was achieved and the O-

atom of the phosphinic amide arm can serve as a H-bond acceptor. In addition, our 

electrochemical studies demonstrate that [MnIIIH2pout(OH)]– can be converted to its MnIV– 

OH analog which was achieved using the mild oxidant ferrocenium. The formation of 

[MnIVH2pout(OH)] was monitored spectrophotometrically and further characterized using 

variable frequency EPR spectroscopy that showed a high-spin MnIV species is readily 

formed. These results illustrate the utility of this ligand design in forming mononuclear 

metal-hydroxido complexes that span a variety of different oxidation states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

A new hybrid tripodal ligand led to a series of mononuclear Mn–OH complexes. The 

ligand framework was tailor to promote three intramolecular hydrogen bonds to the 

hydroxido ligand: two utilize urea groups as hydrogen bond donors and the third is a 

phosphinic amide that is a hydrogen bond acceptor. The step-wise oxidation from MnII–

OH to MnIV–OH was achieved through control of the primary and secondary 

coordination spheres.

Oswald et al. Page 14

Inorg Chem. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Metal complexes surround by ligand frameworks with various H-bond networks: [H3buea]3–

(A), [RST]3– (B), and [H22tol]3– (C). H-bonds donating groups are shown in blue, while 

accepting moieties are highlighted in red. The H-bond interactions are illustrated with black 

dotted lines.
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Figure 2. 
Metal complex within the [H2pout]3– framework where n = 2+, m = 2-; n = 3+, m = 1-; n = 

4+, m = 0
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Figure 3. 
Thermal ellipsoid plots of [MnIIH2pout(OH)]2– (A), K2[MnIIH2pout(OH)] (B), 

[MnIIIH2pout(OH)]– (C), K[MnIIIH2pout(OH)] (D). Thermal ellipsods are drawn at the 50% 

probability level, only urea and hyrdoxido hydrogen atoms are shown for clarity.
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Figure 4. 
UV-visible spectra monitoring the conversion of [MnIIH2pout(OH)]2- (---) to 

[MnIIIH2pout(OH)]– (—) (A) and [MnIIIH2pout(OH)]– to [MnIVH2pout(OH)] (—) (B). 

Spectra were recorded in a 1:1 DMF:THF mixture at – 80 °C.
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Figure 5. 
Cyclic voltammograms of [MnIIH2pout(OH)] recorded in DMF: MnIII/II couple (A), 

MnIV/IIIcouple (B). Measurement were done at room temperature under Ar with a scan rate 

of 100 mV s−1.
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Figure 6. 
Perpendicular-mode EPR spectrum of a frozen solution of [MnIIH2pout(OH)]2- in 1:1 

DMF:THF. Sample temperature 16 K, microwaves, 9.645 GHz, 0.2 mW. The black trace is a 

simulation for a S = 5/2 species.
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Figure 7. 
Parallel-mode EPR spectrum of a frozen solution of [MnIIIH2pout(OH)]– in solvent 1:1 

DMF:THF. Sample temperature 19 K, microwaves 9.318 GHz, 2 mW. The black trace is a 

simulation for a S = 2 species. Inset: experimental signal intensity times temperature versus 

temperature (points) and the calculated % population of the EPR active doublet of S = 2 and 

D = +2.7 cm−1.
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Figure 8. 
Perpendicular-mode EPR spectra of a 1:1 DMF:THF frozen solution [MnIVH2pout(OH)] at 

S-band (A) and X-band (B). Sample temperature was 5 K, microwave power was 0.03 mW 

for S-band and 0.2 mW for X-band. The black traces overlaid on the experimental spectra 

are the sum of the S = 3/2 simulations for the E/D = 0.17 and 0.33 species in a ratio of 

70:30, respectively.
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Figure 9. 
Possible structures for the two MnIV–OH complexes of [MnIVH2pout(OH)] determined 

from DFT.
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Scheme 1. 
Preparation of Mn–OH complexes.
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Scheme 2. 
Preparation of Mn–oxido complexes of [H2pout]3-.
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Table 1.

Selected Bond Distances and Angles for K2[MnIIH2poutOH)] and K[MnIIIH2pout(OH)] Determined by XRD 

and DFT Methods.

Bond Distances (Å) or Angles (°) XRD DFT XRD DFT

K2[MnIIH2pout(OH)] K[MnIIIH2pout(OH)]

Mn(1)-O(1) 2.051(1) 2.07 1.834(1) 1.85

Mn(1)-N(1) 2.315(1) 2.46 2.054(2) 2.11

Mn(1)-N(2) 2.214(1) 2.17 2.056(2) 2.03

Mn(1)-N(3) 2.220(1) 2.15 2.035(2) 2.06

Mn(1)-N(4) 2.121(1) 2.20 2.068(2) 2.10

O(1)⋯O(2) 3.958(2) 2.685(2) 2.71

O(1)⋯N(5) 2.768(2) 2.79 2.776(2) 2.78

O(1)⋯N(6) 3.053(2) 2.83 2.773(2) 2.77

O(1)-Mn(1)-N(1) 170.13(5) 172 179.18(7) 178

O(1)-Mn(1)-N(2) 103.60(5) 100 97.36(6) 99

O(1)-Mn(1)-N(3) 93.48(5) 98 97.49(6) 98

O(1)-Mn(1)-N(4) 108.76(5) 111 98.82(6) 97

N(1)-Mn(1)-N(4) 78.68(5) 77 81.91(7) 82

N(1)-Mn(1)-N(2) 78.62(5) 77 81.96(6) 83

N(2)-Mn(1)-N(4) 112.73(5) 107 116.27(7) 118

N(3)-Mn(1)-N(1) 77.22(5) 77 82.53(6) 81

N(3)-Mn(1)-N(2) 119.46(5) 116 124.58(7) 125

N(3)-Mn(1)-N(4) 115.48(5) 122 113.59(7) 111
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Table 2.

EPR parameters of the [MnnH2pout(OH)]m complexes

[MnnH2pout(OH)]m S Da E/D g |A|b

MnII 5/2 −0.24 0.065 2.00, 2.00, 2.00 Aiso = 250

MnIII 2 +2.7 0.04 -, -, 2.01 Az = 270

MnIV(1) 3/2 +0.8 0.33 2.00, 2.01, 1.98 152, 198, 183

MnIV(2) 3/2 +0.7 0.17 2.06, 1.96, 2.02 224, 188, 201

acm−1;bMHz
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Table 3.

DFT Computed Metrical Parameters for Proposed Structures of [MnIVH2pout(OH)].

Bond Distances (Å) or Angles (°) A
a

B
a

Mn(1)-O(1) 1.80 1.78

Mn(1)-N(1) 2.15 2.11

Mn(1)-N(2) 1.91 1.92

Mn(1)-N(3) 1.93 2.01

Mn(1)-N(4) 1.96 1.91

O(1)⋯O(2) 2.58 2.59

O(1)⋯N(5) 2.73 4.36

O(1)⋯N(6) 2.76 2.70

O(1)-Mn(1)-N(1) 177 177

O(1)-Mn(1)-N(2) 97 97

O(1)-Mn(1)-N(3) 98 95

O(1)-Mn(1)-N(4) 96 98

N(1)-Mn(1)-N(4) 82 84

N(1)-Mn(1)-N(2) 83 84

N(2)-Mn(1)-N(4) 132 114

N(3)-Mn(1)-N(1) 84 82

N(3)-Mn(1)-N(2) 110 130

N(3)-Mn(1)-N(4) 114 112

a
see Figure 9
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