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Cobalt-catalyzed difluoroalkylation of tertiary aryl
ketones for facile synthesis of quaternary alkyl
difluorides

Chao Li 1, Yi-Xuan Cao1, Rui Wang1, Yi-Ning Wang1, Quan Lan' & Xi-Sheng Wang 1

The selective incorporation of gem-difluoroalkyl groups into biologically active molecules has
long been used as an efficient strategy for drug design and discovery. However, the catalytic
C(sp3)-CF, bond-forming cross-coupling reaction for selective incorporation of difluor-
omethylene group into diverse alkyl chains, especially more sterically demanding secondary
and tertiary functionalized alkanes, still remains as a major challenge. Herein, we describe a
cobalt-catalyzed difluoroalkylation of tertiary aryl ketones for facile synthesis of quaternary
alkyl difluorides, which exhibited high efficiency, broad scope and mild conditions. The
synthetic utility of this method is demonstrated by late-stage difluoroalkylation of donepezil,
a well-known acetylcholinesterase inhibitor used to treat the Alzheimer's disease. Preliminary
mechanistic investigations indicate that a difluoroalkyl radical is involved in a Co(l)/Co(lll)
catalytic cycle. This cobalt-catalyzed fluoroalkylation thus offers insights into an efficient way
for the synthesis of fluoroalkylated bioactive molecules for drug discovery.
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ARTICLE

he wide use of fluorinated compounds in pharmaceuticals,

agrochemicals, and advanced materials vigorously pro-

pelled the development of efficient methods for the
incorporation of fluorine or fluorinated moieties into organic
molecules! 3. In the past decades, transition-metal-catalyzed
fluoroalkylation has emerged as an efficient and convenient
alternative approach to direct fluorination for facile synthesis of
fluorine-containing organic compounds*~!l. Among all well-
developed active catalysts, palladium-12"'° and copper-
catalyzed?0-29 or -mediated3?-33 fluoroalkylation reactions have
long proved to be the most useful and reliable tools for effective
synthesis of fluoroalkylated molecules. Recently, the earth-abun-
dant, inexpensive, and environmentally friendly first-row transi-
tion metals, including Ni, Fe, and Co, have attracted increasing
attention on C-C bond-forming reactions due to their different
and complementary catalytic reactivities to late and noble tran-
sition metals**3¢. Whereas nickel’’** and iron**~*% have
already been demonstrated as efficient catalysts for such fluor-
oalkylation reactions, cobalt-catalyzed fluoroalkylation has been
less studied and remained as a major challenge. To the best of our
knowledge, the only two examples on cobalt-catalyzed*->°
fluoroalkylation were limited to aryl zinc and magnesium
nucleophiles, whereas the cross-coupling of alkyl species for
construction of fluorinated alkanes still remained as an issue left
to be solved so far.

The selective incorporation of gem-difluoroalkyl groups into
drug-like molecules has long been known as a powerful strategy for
drug design and discovery, as their structural diversity and the
ability to modulate the electronic properties of parent molecules®!~
4 To date, a number of difluoroalkylation reactions have been
well-developed into the construction of C(sp? or sp)-CF,R bonds, in
which fluorine atoms were normally oriented at relatively unique
benzyl, allyl, and propargyl positions!2-20:23-28:46-48,55-57 T con-
trast, the catalytic C(sp?)-CF, bond-forming reaction for selective
incorporation of difluoromethylene group into the alkyl chain at
any special position, is still scarce and remains as an unsolved
problem®8. The only example on transition-metal catalyzed cross-
coupling between alkyl substrates and difluoroalkylating reagents
was just reported by Zhang and coworkers>?; however, the alkylzinc
reagents in this transformation were still limited to primary alkyl
compounds, probably due to the lack of reactivity with more
sterically demanding secondary and tertiary alkylating reagents
(Fig. 1a)%0,

Different from palladium or nickel catalyzed alkylations, the
decomposition of alkyl-cobalt intermediates via B-hydrogen
elimination is really not a limitation®*. Whereas cobalt catalysis
has demonstrated especially efficient for coupling of alkyl halides,
we conceived the unique catalytic characteristics of cobalt could
enable the facile constuction of C(sp?)-CF, bonds. Herein, we
report a cobalt-catalyzed difluoroalkylation of tertiary aryl
ketones with fluoroalkyl bromides (Fig. 1b). This approach has
demonstrated high-catalytic reactivity and broad substrate scope,
thus enabling the late-stage fluoroalkylation of biologically active
molecules. This strategy offers a solution for facile synthesis of
quaternary alkyl difluorides, and provides an efficient way for the
synthesis of fluoroalkylated bioactive molecules for drug
discovery.

Results

Optimization of the co-catalyzed cross-coupling. Our study
commenced with 2-phenyl-3,4-dihydronaphthalen-1(2H)-one 1a
as the pilot substrate and bromodifluoroacetate 2a as the coupling
partner in the presence of catalytic amount of CoBr, (10 mol%)
and dppBz (10 mol%) in THF at —10 °C. Not surprisingly, only
trace amount of the desired product 3a was observed when

Previous work: Ni-catalyzed difluoropropargylation of 1° alkylzinc reagents.

R F R F
akyl ZnBr + Br Cat N oy \\
N R Zhang N R
1° alkyl only

This work: Co-catalyzed difluoroalkylation of tertiary aryl ketones.

(o}

O
X H X R
Rt J pege * B R Cat.Co  pgill J ReRe

Fig. 1 Transition-metal-catalyzed cross-coupling for facile synthesis of
difluoroalkylated alkanes. a Ni-catalyzed difluoropropargylation of 1°
alkylzinc reagents. b Co-catalyzed difluoroalkylation of tertiary aryl ketones

'BuOK was used as the base (Table 1, entry 1). To our delight,
30% yield of 3a was isolated when zinc metal (0.5 equiv) was
added as the key reductant to generate the active cobalt catalyst
(Table 1, entry 2)%3. Further investigation indicated that man-
ganese was not the suitable reductant (Table 1, entry 3), and
reducing the amount of zinc resulted in a decline in yield (17%,
Table 1, entry 4). To further improve the yield, a careful exam-
ination of base was carried out when 0.5 equiv of zinc was added.
Whereas inorganic bases gave almost none of the product 3a,
organic bases, including KHMDS and LiHMDS showed good
reactivity, and LDA proved as the optimal choice with 90% yield
(Table 1, entries 5-7). Different kinds of nitrogen, phosphine, and
carbene ligands were next studied, but all gave obviously lower
yields or even none of 3a (Supplementary Table 3). Additionally,
careful screening of solvents and cobalt sources indicated THF
and CoBr, were still the best choices (Table 1, entries 8-12 and
Supplementary Tables 2 and 6). The reaction temperature was
also investigated, which demonstrated that lower temperature
even to —30 °C still gave the same excellent yield, but increasing
higher temperature (0°C) resulted in a significant reduction in
yield (Table 1, entries 13-14). Finally, control experiments con-
firmed that almost none of the desired product 3a was detected in
the absence of cobalt catalyst (Table 1, entry 15).

Scope of the co-catalyzed cross-coupling. With these optimized
condition in hand, various aryl ketone 1 were next tested in this
catalytic fluoroalkylation system. As shown in Fig. 2, a variety of
cyclic and acyclic aryl ketones were difluoroalkylated successfully,
furnishing the desired products 3 with difluoroalkylated qua-
ternary carbon centers in good to excellent yields. To our satis-
faction, the examination of a-substituents (R!) of cyclic aryl
ketones showed that not only a great number of substituted aryl
groups, but also various alkyl groups like Me (3b), n-Bu (3c), Bn
(3d), and i-Pr (3e), were smoothly difluoroalkylated with good
yields. It should be noted that five- or six-membered carbon rings
and even O-containing chromanone were well tolerated in this
reaction (3a-3r). Indeed, cyclic and acyclic aryl ketones installed
with both electron-donating groups, including Me (3f, 3q, 3t, 3u),
MeO (3k-3m, 3v-3x, 3af, 3ah), Me,N (3ag), and electron-
withdrawing groups, such as F (3i, 3ad, 3af), Cl (3g, 3j, 3r, 3ae),
and Br (3h, 3n), on the phenyl rings were fluoroalkylated effec-
tively to give the desired products with acceptable yields in our
catalytic system. Remarkably, both cyclic and acyclic aryl ketones
containing F (3i, 3ad, 3af), Cl (3g, 3j, 3r, 3ae), Br (3h, 3n) were
also suitable coupling partners, which clearly demonstrated good
functional group tolerance of our method and offered the syn-
thetic potential for further elaboration by transition-metal-
catalyzed coupling reactions. Gratifyingly, acyclic aryl ketones
bearing two alkyl groups at the a-position (3aj) were well toler-
ated in our reaction. In addition, aryl ketones containing primary
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Table 1 Cobalt-catalyzed difluoroalkylation: optimization of conditions?®
o Co (10 mol%) . o
LY N, B Lo
H ™ Br “COEt  additive (x eq.) CF,CO,Et
1a 2a Solvent, T °C, 12 h, N, 3a
Entry Co source Base Addi./equiv | Yield (%)b
1 CoBr;, ‘BuOK - trace
2 CoBr, ‘BuOK Zn (0.5) 30
3 CoBr, ‘BuOK Mn (0.5) trace
4 CoBr, ‘BuOK Zn (0.3) 17
5 CoBr; KHMDS Zn (0.5) 73
6 CoBr; LiHMDS Zn (0.5) 77
7 CoBr, LDA Zn (0.5) 90
8 Col, LDA Zn (0.5) 83
9 CoClyedppe LDA Zn (0.5) 56
10 Co(OAc),e4H,0 LDA Zn (0.5) 30
11 Co(acac), LDA Zn (0.5) 42
12° CoBr, LDA Zn (0.5) 50
13¢ CoBr, LDA Zn (0.5) 90
14° CoBr; LDA Zn (0.5) 53
15 - LDA Zn (0.5) trace
dppBz = 1,2-bis(diphenylphosphino)benzene
@Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (3.0 equiv), [Col (10 mol%), dppBz (10 mol%), base (105 mol%), Zn (0.5 equiv), solvent (2.0 mL), =10 °C, 12 h, N,
bYields of the isolated products given
“Dioxane was used as solvent
dr—_30°C
eT=0°C

and secondary a-C-H bonds had also been investigated in this
catalytic system. While no reaction was observed with Ph\COCHj,
PhCOCH,R (R=Me, Ph) afforded tetrasubstituted mono-
fluoroalkenes 8 and 9 in 31% and 41% yield, respectively. In
contrast, cyclic aryl ketone furnished a 3,3-difluorofuran-2-one
derivative 10 accordingly (Supplementary Figure 186).

To further demonstrate the scope of fluoroalkylating
reagents, various kinds of difluoroalkyl bromides were exam-
ined in this catalytic system. Not surprisingly, as the analogues
with similar reactivity to difluoroacetate 2a, bromodifluoroa-
cetamides were also compatible with this reaction. Different
acetamides, including acyclic diethyl amine, cyclic piperidine,
morpholine, and piperazine, could be well tolerated in this
transformation with acceptable yields. Additionally, the
difluoromethylated arene (3al) and heteroarene (3ak) could
be smoothly coupled to the aryl ketones using this method.
Furthermore, the scope of difluoroalkylating reagents had been
demonstrated via a diversity of cross-coupling reactions
between different kinds of cyclic or acyclic aryl ketones and
difluoroalkyl bromides. It is known that the gem-difluoromethyl
group (CF,) serves widely as a key motif to improve the
biological activity of target drug molecules®®>*, and this

method thus demonstrates its application prospect to access
diverse difluoroalkylated aryl ketones for drug screen.

Owing to the mild conditions and good functional group
tolerance demonstrated in this catalytic system, the synthetic
potential of this method was next elucidated via late-stage
modification of biologically active molecules with structural
diversity. Indeed, donepezil, a well-known acetylcholinesterase
inhibitor used to treat the Alzheimer’s disease®!, could be
difluoroalkylated smoothly with good yields. As shown in Fig. 3,
different functional groups, such as ester (5a), benzo[d]oxazole
(5b), and arene (5c¢), in the fluoroalkylating reagents were all well
compatible with this catalytic transformation. As an efficient and
expedient tactic for the construction of fluorine-containing
analogues, these late-stage fluoroalkylations of complex molecules
could offer a useful strategy to modify the lead compounds in
drug development.

Mechanistic studies. To gain some insights into this cobalt-
catalyzed difluoroalkylation, a series of control experiments were
next performed. Firstly, the subjection of -piene into the reaction
could afford the cycle-opening product 7 in 12% yield along with
35% vyield of the desired difluoroalkylated product 3s (Fig. 4a).
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o CoBr; (10 mol%), dppBz (10 mol%)

R!
XN LDA (105 mol%), Zn (50 mol%)
R24 H + Br R¢
A THF, Np, 10 °C, 12 h

1 2

a Scope of cyclic ketones:
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Fig. 2 Cobalt-catalyzed difluoroalkylation of aryl ketones. a Scope of cyclic ketones. b Scope of acyclic ketones. € Scope of difluoroalkylating reagents.
Conditions: 1 (0.2 mmol, 1.0 equiv), 2 (3.0 equiv), CoBr, (10 mol%), dppBz (10 mol%), LDA (105 mol%), Zn (0.5 equiv), THF (2.0 mL), —10 °C, 12 h, under
N, atmosphere. 2Conditions: 20 mol% of CoBr, and 20 mol% of dppBz were used. dppBz = 1,2-bis(diphenylphosphino)benzene

This result indicated that a difluoroalkyl radical was in situ
generated in the catalytic cycle. Considering the key role of zinc
metal as a reductant for generation of active cobalt species, to
understand the catalytically active species in this transformation,
Co(I)Cl(PPh;); had been synthesized and subjected into the
reaction®3. It was found that the addition of zinc metal or not into
the standard catalytic conditions had no effect to this transfor-
mation (Fig. 4b), giving the desired product 3s in almost the same

yield (70% and 71%). Whereas zinc metal showed indeed not a
strong enough reductant to access Co(0) species®?, these results
clearly revealed that Co(I) was the productive catalyst. To further
investigate the evidence of generation of the difluoroalkyl radical,
B-piene 6 was tested as a radical clock with different cobalt cat-
alysts. As shown in Fig. 4c, the subjection of 1 equiv of Co(II)Br,/
dppBz and zinc were added together into the reaction affording
the radical-scavenging product 7, whereas the omission of zinc
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CoBr, (10 mol%)
dppBz (10 mol%) MeO
LDA (105 mol%)
—_—
Zn (0.5 equiv), THF MeO
-10°C, 12 h, N,
35T
\I_</
O
MeO
NBn Bn

MeO

\A co2
MeO NBn

5a, 73% 5b, 50% 5¢c, 61%

Fig. 3 Late-stage difluoroalkylation of biologically active molecules.
Conditions: 4 (0.2 mmol, 1.0 equiv), 2 (3.0 equiv), CoBr, (10 mol%), dppBz
(10 mol%), LDA (105 mol%), Zn (0.5 equiv), THF (2.0 mL), —10°C, 12 h,
under N, atmosphere. dppBz = 1,2-bis(diphenylphosphino)benzene

a CF,CO,Et
Q standard conditions
Ph —_————> 3s +
Ph * 2a (3 equiv) N
Me H
1s 6 (1 equiv) 35% 7,12%, 53
b o Co(PPh3)sCl (10 mol%) o
F F dppBz (10 mol%)
Ph)}/ Phos N Ph Ph
Br CO,EtLDA (105 mol%), Zn (x mol%)
Me H . THF, —10 °C, 12 h Mé CF,COEt
1s 2a (3 equiv) 3s,x =0, 70%; x
=50, 71%.
(o] CF,CO,Et
R F [Co]/L (1 equiv)
+ N\ o
Br “CO.Et Zn (x mol%) Y
6 (1 oaui 23 (3 oqui THF,-10°C, 12 h 7
(1 equiv) a (3 equiv) CoBry/dppBz, x = 200, 65 %, 5:3
CoBry/dppBz, x =0, 0 %
Co(PPhg)sCl, x =0, 53 %, 5:3
d 1a (1 equiv) BrCF,CO2Et (3 equiv)
9, I equiv,
LDA (105 mol%) 200! : q 3a, 72%
5 min 10 min
Co(PPhg)sCl
+ —
dppBz (1 equiv) . 1a (1 equiv)
BrCF,COEt (3 equiv) | DA (105 mol%)

3a, 10%

Fig. 4 Mechanistic studies. a Radical trapping experiment with p-piene. b
Control experiments using Cobalt(l) complex. € Studies on generation of
the difluoroalkyl radical. d Determination of the sequence of
transmetallation and activation of fluoroalkyl bromide

furnished none of 7. Moreover, 1 equiv of premade Co(I)Cl
(PPh;); could give almost the same result as the combination of
Co(II) and zinc used in the reaction system (Fig. 4c). All these
results implied that the difluoroalkyl radical was generated by
single-electron oxidation of Co(I) with difluoroalkyl bromide 2a,
and zinc served as an efficient reductant to reduce Co(II) to active
Co(I) species®?. The in-situ reductive process mentioned not only
existed in our system, but also has been reported before®3. Fur-
thermore, sequential addition of a mixture of 1a (1 equiv)/LDA (1
equiv), and then fluoroalkylating reagent 2a (3 equiv) gave a
comparable yield in 72%, but the reverse order of addition with
the same reagents gave only 10% yield of the desired product 3s
(Fig. 4d). These results indicated the transmetallation step should
occur before the activation of fluoroalkyl bromide.

Based on all of these results and the previous reports , a
proposed mechanism of Co(I) initiated cross-coupling was
described in Fig. 5. First of all, reduction of Co(II) by zinc metal
afforded the catalytically active Co(I) species A to start the
cycle®. Transmetallation between Co(I) A and enol anion B,

64-66

LCo"X,
1/2 Zn o

o 0
Ph)J}/Ph\ 1 /2 Z0% \ Me LDA Ph)l\/lvle
Ve R LCoX Ph B Ph H
3 f 1s

o] 0 OCo'L
Ph)S/Ph Ph)S/Ph X Me
g Mé Co'l_ ~L c Me ColL Ph p

\ (0] +
Ph)S/Ph Br Rf

Fig. 5 Proposed mechanism. The possible reaction pathway based on our
studies and the previous literatures

which was in situ generated with the assistance of LDA, afforded
the corresponding Co(I) complex C and D. A single electron
oxidation of Co(I) C by fluoroalkylating reagent 2 generated the
corresponding radical and Co(II) species, which was further
transformed to Co(IIl) intermediate F after the following radical
oxidation. At last, the reductive elimination of F furnished the
final product 3 and regenerated Co(I) species to enter the next
catalytic circle.

Discussion

In summary, we have developed a difluoroalkylation of tertiary
C-H bonds through cobalt-catalyzed cross-coupling between aryl
ketones and fluoroalkyl bromides. Mechanistic investigations
indicated this C-H fluoroalkylation proceeds via a Co(I)/Co(III)
catalytic cycle involving an in situ generated difluoroalkyl radical.
This method has demonstrated mild conditions, broad substrate
scope, and thus enabled the late-stage difluoroalkylation of
complex molecules. This strategy will offer a solution for facile
synthesis of quaternary alkyl difluorides. Further application of
this method to fluorine-containing modification of complex
biologically active molecules is still underway in our laboratory.

Methods

General procedure for the cobalt-catalyzed cross-coupling. To a 50 mL of
Schlenk tube was added aryl ketone 1 (1.0 equiv, 0.2 mmol), CoBr, (10 mol %, 0.02
mmol) and dppBz (10 mol %, 0.02 mmol) under air, followed by Zn (0.5 equiv, 0.1
mmol). The mixture was evacuated and backfilled with N, (three times). THF (2
mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The
Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath
(—10°C). After stirring for 5 min, bormdifluoroacetate 2a (3.0 equiv, 0.6 mmol)
was added to the reaction mixture, and the Schlenk tube was then resealed with a
Teflon lined cap and put back into the cooled bath (—10 °C). After stirring for
another 12 h, the reaction mixture was diluted with ethyl acetate (5 mL). The
solvent was removed under reduced pressure, and the residue was purified by flash
column chromatography on silica gel to give the desired product.

Data availability
The authors declare that all the data supporting the findings of this research are
available within the article and its supplementary information.
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