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Abstract

It is generally assumed that the latent trait is normally distributed in the population when 

estimating logistic item response theory model parameters. This assumption requires that the latent 

trait be fully continuous and the population homogenous (i.e., not a mixture). When this normality 

assumption is violated, models are misspecified, and item and person parameter estimates are 

inaccurate. When normality cannot be assumed, it may be appropriate to consider alternative 

modeling approaches: (a) a zero-inflated mixture, (b) a log-logistic, (c) a Ramsay curve, or (d) a 

heteroskedastic-skew model. The first two models were developed to address modeling problems 

associated with so-called “quasi-continuous” or “unipolar” constructs, which apply only to a 

subset of the population, or are meaningful at one end of the continuum only. The second two 

models were developed to address non-normal latent trait distributions and violations of 

homogeneity of error variance, respectively. To introduce these alternative IRT models and 

illustrate their strengths and weaknesses, we performed real data application comparing results to 

those from a graded response model. We review both statistical and theoretical challenges in 

applying these models and choosing among them. Future applications of these and other 

alternative models (e.g., unfolding, diffusion) are needed to advance understanding about model 

choice in particular situations.

Well known assumptions of unidimensional IRT models are unidimensionality, local 

independence, and monotonicity. When estimating item parameters using full-information 

maximum likelihood, it is commonly assumed that the underlying latent trait is normally 

distributed in the population. In specifying a normal distribution, it is implicitly assumed 

that the latent variable scale and the estimated item parameters apply to everyone in the 

calibration population (i.e., there is no mixture). Further, it is assumed that the latent variable 

is a continuous “bipolar trait” that has substantively meaningful variation across the range of 

the latent variable (Lucke. 2015, p. 273).

When the normality assumption, or its subsidiary assumptions, are violated, parameter 

estimates can be highly inaccurate (Azevedo, Bolfarine, & Andrade, 2011; DeMars, 2012; 

Kirischi, Hsu, & Yu, 2001; Sass, Scmitt, & Walker, 2008; Seong, 1990; Wall, Park, and 
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Moustaki, 2015). While reviewing the extensive psychometric literature on the effects of 

normality violations on IRT item parameter and person estimates is beyond the scope of this 

paper, Woods and Thissen (2006, p. 283) nicely summarize the consequences of non-

normality:

“There is fairly consistent evidence that, when normality of g(θ) is assumed, MML 

estimates of more extreme item parameters (e.g., thresholds around ±2) are 

nontrivially biased when the true population distribution is platykurtic or skewed, 

and if g(θ) is skewed, the bias increases as the skewness increases.” Monroe and 

Cai (2014, p. 365) provide a compelling example of the negative consequences of a 

misspecified normal distribution in the context of a Drug Abuse Treatment 

Outcome Studies measure of mental health and emotional distress.

Non-normal latent trait distributions present particular challenges in the application of 

standard logistic IRT models to personality and psychopathology measures (Reise & 

Rodriguez, 2016) because it is arguable that for many traits in these domains (e.g., self-

esteem (Gray-Little et al., 1997)); borderline personality disorder (Michonski et al., 2013), 

or dark triad traits ( Webster & Jonason, 2013), an assumed normal distribution in a general 

population may be untenable. In such cases, researchers need to consider alternative IRT 

models designed to estimate non-normal distributions.

Herein, we describe the strengths and limitations of two such approaches, one non-

parametric and the other parametric (i.e., assumes a particular distributional form). 

Specifically, we review a Ramsay curve model (Woods & Thissen, 2006) that estimates the 

shape of the latent trait distribution simultaneously with the estimation of the item 

parameters. We also review a heteroskedastic-skew model (Molenaar, Dolan, and De Boeck, 

2012) that estimates both the skewness of the latent trait and allows for error variances that 

increase or decrease as a function of the latent trait. Using a real data set, the results of these 

models will be compared with the results under a normality assumption.

A skewed latent trait distribution is one way that personality and psychopathology data 

deviate from the normality assumption. An additional complexity is that some personality 

and psychopathology constructs are not fully continuous with meaningful individual 

difference variation across the full-range of the latent trait continuum. Although some 

constructs such as extraversion (vs. introversion), conscientiousness (vs. irresponsible), and 

subjective wellbeing (vs. subjective distress) are, arguably, continuous and bipolar, other 

important constructs such as substance use/abuse, agoraphobia, and somatic complaints, are 

not bipolar or fully continuous. We argue that for such constructs, one would not expect a 

normal distribution; more likely would be a highly skewed or a half-normal distribution.

The challenges that certain personality and psychopathology constructs present for IRT 

modeling have been long noted. Almost 30 years ago Reise and Waller (1990, p. 57) stated 

that some “personality traits may have an inherently quasi-categorical rather than a full 

range continuum structure.” Observing that clinical assessment instruments have highly 

peaked information functions in the high (pathological) trait range and a notable lack of 

items that provide discriminations among individuals in low trait ranges, Reise and Waller 

(2007, p. 31) stated, “we believe that the peaked information function for many clinical 
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scales reflects the quasi-trait status of many psychopathology constructs. By the term ‘quasi-

trait,’ we mean that the trait is unipolar (relevant only in one direction) and that variation at 

the low end of the scale is less informative in both a substantive as well as a psychometric 

sense.”

Reise and Waller (1990; 2007) merged the concepts of unipolar trait and quasi-continuous 

trait (as opposed to fully continuous) to reference certain types of constructs that are 

potentially problematic when fitting IRT models using a normality assumption. Here we use 

the term “quasi-trait” to refer to constructs such as positive psychotic symptoms, where low 

scores on symptoms ratings reflect the absence or irrelevance of the disorder for the 

individual. We use the term “unipolar” trait to refer to constructs that are most substantively 

meaningful at one end of the continuum (e.g., alienation, aggression).

Admittedly, the distinction between “quasi” (apply only to a subset of the population) and 

“unipolar” (only meaningful at one end of the continuum) construct is murky in practice, but 

needs to be drawn here because recently introduced IRT models were designed explicitly to 

handle these two types of measurement situations.

Specifically, we review two alternative IRT modeling approaches potentially applicable for 

quasi- and unipolar traits. The first is a zero-inflated mixture model (Wall, Park, & 

Moustaki, 2015) designed to handle the IRT modeling of quasi-traits – when the population 

is heterogeneous and the continuous trait is only applicable for a subset of the population. 

This model treats zero and near zero scores as a distinct latent class and then estimates IRT 

item parameters with a normality assumption only for a “traited class.” We also review a 

log-logistic model (Lucke, 2015) explicitly designed to handle unipolar traits – traits that are 

not fully continuous and are only substantively meaningful at one end of the trait continuum.

In what follows, we review emerging IRT models that may be viable alternatives when the 

normality assumption for the latent trait in IRT is implausible, either because the latent trait 

distribution is suspected to be skewed, and/or the construct is not fully continuous or a 

unipolar trait. For comparison purposes, we fit a logistic graded response model (GRM; 

Samejima, 1969) to 29 items from the Patient Reported Outcomes Measurement Information 

Systems (PROMIS®) Anger scale (Pilkonis et al., 2011). We then compare this “business-

as-usual” analysis with the four alternative models cited above.

Each of the four alternative models makes different assumptions about the origin of the 

normality violation. Our specific goal in each comparison is not only to highlight the 

strengths and limitations of alternative modeling approaches, but also to demonstrate how 

the models may yield different substantive results, or not, in this particular dataset. Our 

overarching goals are to raise awareness of alternative IRT models, as well as to motivate 

researchers to think more critically about latent distributions.

Example Data and Psychometric Characteristics

The calibration sample consisted of 1498 non-clinical adults who responded to 29 items 

administered in the development of the PROMIS Anger measure (content available in 

Supplementary Table 1). Anger is an historically important construct in normal range 
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personality, health-outcomes, and in psychopathology research and is one of three constructs 

relevant to Negative Affect available through PROMIS (Pilkonis et al., 2011) initiative. As 

such it has been extensively evaluated 1 (e.g., Shalet et al., 2016). This measure was selected 

because it is well suited for illustrating the strengths and limitations of the alternative models 

presented here. We also believe the data are representative of typical IRT applications to 

clinical measures as reviewed in Reise and Waller (2007) – unipolar, high skew for summed 

scores, and few if any items providing discrimination in the low trait range (see analyses 

below).

The first set of columns in Table 1 displays the percentage of responses in each category 

(0=Never, 1=Rarely, 2=Sometimes, 3=Often, and 4=Always)2. Relatively few individuals 

respond in the two extreme categories, and for many items, approximately 50% are 

responding 0=Never. The last set of columns displays the item-scale (minus the item) 

correlations, item means, and standard deviations. When summed scores are calculated, 

coefficient alpha =.97, M =25.55, S = 21.22, skewness = 0.96, and kurtosis =.50.

As seen in Figure 1, the distribution of summed scores appears to be more of a truncated-

normal or half-normal distribution with zero-inflation; best fitting skewed normal (solid-

line) and normal distributions (long-dashed line) are superimposed for illustrative purposes. 

While the distribution of summed scores is not necessarily a good indicator of the 

distribution of the latent trait,3 it is still critically important to inspect it for observed non-

normality in the data. Is the latent distribution really normal but observed skew is due to 

“faulty” item construction or is the latent distribution skewed, possibly with zero-inflation? 

Are excess zeros caused by poor sampling, or is this attributable to a unipolar or quasi-trait? 

How a researcher answers these questions impacts model choice.

The Graded Response Model

The graded response model (GRM; Samejima, 1969) is commonly employed in the IRT 

modeling of personality, psychopathology, and health outcomes data. This model has well 

known relations with the parameters resulting from item-level ordinal factor analysis (i.e., 

factor loadings and intercepts); In fact, some IRT software packages report both the factor 

analytic and IRT parameterization alongside each other in standard output. Herein, we 

consider the GRM as the “default” or “business-as-usual” model. In estimating the GRM 

model, it is commonly assumed that there exists an underlying normally distribution latent 

variable (“trait”) with meaningful variation across the full range of the trait continuum.

In the GRM for each item (i), one slope parameters (αi) is estimated; Items with larger slope 

parameters are considered more discriminating or informative. For each item, K - 1 intercept 

parameters γi(j = 1...K−1) are also estimated where K is the number of response options. 

These intercepts are then transformed into K - 1 location parameters βi(j = 1...K−1), where 

1see healthmeasures.net
2Item #29 used a different response format: not at all, a little bit, somewhat, quite a bit, and very much.
3The observed summed score distribution is a function of both the true latent trait distribution and the properties of the items (Lord, 
1953). Thus, even if the true distribution is normal, if a test was either too “easy” or “difficult,” or if the location parameters are not 
symmetric around zero, the observed scores will be skewed.
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βi j = −
γi j
αi j

. Thus, the location parameter is not independent of the slope parameter, and, 

consequently, highly discriminating items tend to have locations that are clustered around 

zero, and less discriminating items have locations more spread out.

Item parameter estimates for the Anger Scale under the GRM are shown in Table 2. These 

parameters were estimated using marginal maximum likelihood as implemented in MIRT 

(Chalmers, 2012) assuming a normally distributed latent trait with a mean of 0 and variance 

of 1 in the population (for identification). The default number of quadrature nodes used in 

MIRT is 61 (range specified to be −4 to 4). For informational purposes, the log-likelihood of 

the model is −38135.64, Akaike Information Criterion (AIC) = 76561.28, Bayesian 

Information Criterion (BIC) = 77331.5, Root Mean Square Error of Approximation 

(RMSEA) =0.04 (95% CI =0.038 to 0.049), Standardized Root Mean Square Residual 

(SRMSR) =.040, and Comparative Fit Index (CFI) =.989. The M2 fit index (Maydeu-

Olivares & Joe, 2006) is 1027.31 on 290 df, p <.01. Thus, judging by the practical fit 

indices, the estimated parameters recover the data well, but the M2 statistical index suggests 

that a closer examination of fit at the item level is needed.

To understand the parameters of the GRM, in Figure 2 we display three plots based on the 

results for Item #1. In the top panel, is the log-odds of responding in and above categories 1, 

2, 3, and 4, respectively, as a function of the latent variable. This plot makes clear the 

interpretation of the K-1 = 4 intercepts – they are the log-odds of responding in or above a 

category j = 1, 2, 3, and 4, for individuals with trait levels of 0 (the mean). Moreover, the 

item slope parameter reflects the steepness of these functions; for Item #1 with a slope = 1.7, 

the log-odds of responding in the next highest category or above increases by a factor of 1.7 

for a 1 standard deviation unit change on the latent variable.

In the middle panel of Figure 2 is shown the more familiar threshold response curves (TRCs) 

for Item #1. These represent the probability of responding in and above categories j = 1, 2, 3, 

and 4, respectively, as a function of the latent variable. The vertical dashed lines show that 

the location parameters represent the point on the latent variable continuum where the 

individual has a 50% chance of responding in and above a given category j=1…4. Finally, 

for the bottom panel, if we label the K-1 TRCs as TRC1, TRC2, TRC3, and TRC4, 

respectively, then the probability of responding in a particular category is 1 – TRC1, TRC1 – 

TRC2, TRC2 – TRC3, TRC3 – TRC4, and TRC4 – 0. These are called category response 

curves (CRCs). For any point on the latent variable, the sum of the CRCs equals 1.

Returning to Table 2, all PROMIS Anger items are highly discriminating, but there is a large 

range. Item #4 (“I disagreed with people”) has a slope of 1.57, and Item #26 (“I felt like I 
needed help for my anger”) has a slope of 3.33. Item #26 is about 4.5 times more 

informative or discriminating than Item #4 (3.332/1.572), or, it would take about 4.5 items 

like Item #4 to achieve the same precision as one Item #26.

Despite there being five response options designed to spread measurement precision across 

the trait range, there are no items with location parameters below −1.21 (Item #4 – the least 

discriminating item). With few exceptions, even the first location parameter tends to be 
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around zero, or only slightly negative, suggesting that an individual has to be around the 

mean on the latent variable to have a fifty percent chance of responding in the second 

category or above. On the positive side of the theta continuum, the 4th location parameters 

are extreme, suggesting that to respond in the highest category, individuals must be around 

2.5 to 3.6 standard deviations above the mean on the latent variable. Clearly, the Anger Scale 

is a “peaked test,” with location parameters clustered in the positive end of the continuum, 

and few, if any, items that discriminate best in the low trait range. This is the type of 

psychometric situation that Reise and Waller (1990; 2007) referred to in their discussion of 

quasi-continuous traits.

Models for Quasi- and Unipolar Traits

The above described GRM assumed a continuous, normally distributed latent variable. 

Nevertheless, the observed item and summed scores are highly skewed, and when a model 

was fit, threshold parameters were highly concentrated at the high end of the trait 

continuum. To justify this incongruity, one might attribute this to problems with the measure 

or the data, that is, faulty item construction (e.g., not enough response options, or, the 

anchors somehow are too extreme and thus cannot distinguish between low trait 

individuals), or oversampling individuals from low trait ranges. Alternatively, we can 

reconceptualize the construct with a corresponding change in model and assumptions. In the 

following two sections, we consider two alternative modeling strategies.

A Zero-Inflated Mixture Model

Wall, Park, and Moustaki (2015) developed a “zero-inflated” mixture (ZIM) IRT model in 

the context of psychiatric symptom measurement where it is common to find many 

individuals responding with zero or few symptoms. In other words, the model was developed 

explicitly to handle measurement situations where the construct is a so-called “quasi-trait” (a 

trait applicable to only a subset of the population) and the population is heterogeneous – for 

one “pathological” class of individuals, the trait is meaningful and symptoms can be used to 

scale individuals along a continuum, whereas for another “no traited” or “non-pathological” 

class, the construct is inapplicable. Wall, Park, and Moustaki (2015) cite studies that 

documented the severe bias in IRT item parameter estimates, especially the discrimination 

parameter, when a normal distribution is assumed, but the data are zero-inflated. In turn, the 

authors demonstrated that their ZIM model yields more accurate calibration.

The basic idea underlying the zero-inflated mixture model is to estimate the percentages in 

the population that belong to the traited and no traited classes and then estimate the item 

parameters for the GRM in the traited class only. The latent trait is assumed to be normal in 

both classes, but one class is degenerate – item parameters are not estimated for the 

degenerate class. This is similar to, but not exactly the same, as discarding cases scoring 

zero or near zero, and estimating item parameters based on the remaining cases. The authors 

argue that the mixture approach has a superior statistical justification because due to 

measurement error, some people with zero raw scores are likely in the “traited” class, while 

some people with non-zero raw scores likely belong to the “untraited” class.
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We estimated a zero-inflated mixture model using Mplus (Muthén & Muthén, 2016) code 

supplied by the authors, with modification for the present data. Results showed that the 

percentage of individuals estimated to be in the untraited class was 5.5% (a subset of the 

6.0% of individuals with 0 raw total scores) and, thus, 94.5% was in the traited class. In 

comparison to GRM parameter estimates shown in Table 2, the slope parameters in the ZIM 

model for the traited class are much lower (mean = 1.94 vs 2.63); controlling for the zero-

inflation leads to smaller slope parameters (see Supplementary Table 2).

When test information curves are drawn that reflect the precision of measurement across the 

trait range, the test information functions for the GRM and mixture model are peaked at 

relatively high trait levels, but the mixture model, which is presumably more accurate, 

provides about half the information of the GRM (see Figure 3), and thus larger standard 

errors (which equal approximately 1 divided by the square root of test information). Finally, 

the Pearson correlation between latent trait estimates for the 1,406 individuals in the traited 

class from the mixture and GRM was.994. Thus, the models provide essentially the same 

relative ordering of individuals albeit with much larger standard errors in the ZIM model.

There are three important limitations of the mixture model applied in the present context. 

First, the model assumes that the non-normality arises from a degenerate class, and once this 

degenerate class is removed from the calibration sample (down weighted during estimation), 

the distribution is normal. The model, as presently implemented, does not allow for a 

skewed distribution to be applied after removing the untraited class. Thus, the parameters 

may still be biased due an incorrect latent distribution.

Second, and resulting from the first, one loses sample size because no meaningful latent trait 

estimates can be derived for the degenerate class. If this approach were to be applied in 

multivariate research where many constructs are measured, it is not at all clear how 

researchers are to proceed with such missing data when the data are missing as a 

consequence of construct irrelevance. Our third concern is purely substantive. As noted, the 

model was derived in the context of psychiatric constructs (alcohol use/abuse in particular) 

where the mixture formulation of non-pathological and pathological groups may make 

relatively more substantive sense. It is not clear to us what the interpretation of a class of “no 

anger” group would mean substantively, unless we view anger as measured in the PROMIS 

items as a pathological condition.

A Unipolar Log-Logistic Model

In the model presented in this section, a skewed distribution is treated as an inherent result of 

the measurement of unipolar constructs, especially for disorders such as alcohol, nicotine, 

and substance abuse where it makes little sense to create a norm-referenced score. Lucke 

(2015, p. 272) states, “it makes little or no sense to assert that a person has a below-average 

level of addiction to alcohol or an above-average level of addiction to gambling.” He then 

further argues that “The anchor for the scale should therefore be “no disorder.”

To put these views in practice, Lucke (2015) proposed a log-logistic (LL) model for 

dichotomous item response data. This model was proposed in the context of unipolar traits 
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and applied to a measure of gambling addiction. In the LL model, the latent trait begins at 

zero and continues to positive infinity. Response patterns of all zeros are assigned θ = 0. A 

polytomous log-logistic threshold response curve (TRC) for responding in or above category 

j (j = 1…4) is then defined:

TRCi j = P x ≥ j |θ =
λi jθ

ηi

1 + λi jθ
ηi

Category response curves are defined in the same way as the GRM: CRC0 = 1−TRC1, CRC1 

= TRC1−TRC2; CRC2=TRC2−TRC3; CRC3=TRC3−TRC4; CRC4=TRC4−0. Model 

parameters are defined as follows. The λij parameters, K – 1 per item, are analogous to the 

intercept parameters in the GRM and have been referred to as “easiness” parameters. The λ 
parameters are always positive, and higher values signify that a large proportion of people 

respond in or below a given category. The ηi parameter, one per item, is a discrimination 

parameter and analogous to the slope in the GRM; in fact its exactly the same so items are 

no more or less relatively discriminating in either model. Finally, for each item, K-1 location 

parameters – the point on the latent trait where the probability of responding in or above 

category j=1...K-1 is.50 is δi j = 1
λi j

1
ηi j

.

The parameters of the dichotomous or polytomous log-logistic model can be estimated using 

Bayesian methods. However, for present purposes, we take advantage of the fact that logistic 

models and log-logistic models are transformations of each other (e.g., if the latent variable 

in the GRM is normal with a mean of zero and standard deviation of 1, then in the LL 

model, the distribution is log-normal with the same mean and standard deviation). 4Thus, 

using the parameters for the GRM shown in Table 2, we can transform to a log-logistic 

model as follows: λ = exp(γ); η = α; and δ = exp(β). Latent trait scores estimated in the 

GRM can also be transformed to the log-logistic metric as θLL = exp θGRM .

Item parameter estimates for the log-logistic model are available in Supplementary Table 3. 

Understanding the difference between the GRM and LL rests on understanding the effects of 

the transformation of the latent scale. To clarify, what the LL model does is massively 

compress negative theta estimates and estimates that are around 0 in the GRM metric. For 

example consider that exp(−3.0) = 0.049; exp(−2.0)= 0.135; exp(−1.0) = 0.367; exp(0) = 

1.0; exp(1.0) = 2.71; exp(2.0)= 7.38; and exp(3.0)=20.08. For this reason, theta estimates are 

very highly skewed in the log-logistic model. In turn, this new metric has profound 

implications for the item and test information functions. Due to the metric “squeezing” at the 

low end and expansion at the high end, test information is very peaked and extremely high at 

the low end, as shown in Figure 4. The corresponding standard errors, also shown, indicate 

that the standard errors for a trait level estimate changes remarkably as a function of theta. 

4With the caveat that if the parameters in the GRM are biased, their translation must be in error as well. This is why future work 
should consider the Bayesian estimation of the log-logistic GRM where a researcher can have better control over prior distributions.
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The correlation between trait level estimates in the GRM and LL is r =.72. Despite the fact 

that the two estimates are simple non-linear tranforms of each other where the rank ordering 

remains the same, the correlation is far from perfect due to scale compression and expansion 

noted above.

In our view, the log-logistic model has many virtues to recommend it in terms of the present 

Anger measure. Most importantly, it does not assume normality, it allows for the scoring of 

all individuals, and appears consistent with theory if the researcher believes the construct to 

be a unipolar trait. On the other hand, this is a relatively recently proposed model, and much 

remains unknown (e.g., how to evaluate fit, test for differential item functioning, its 

robustness to zero-inflation, and so on). Some of our concerns are practical (e.g., accuracy of 

parameter estimation under varying distribution conditions) and some are technical (e.g., the 

information function in this model has some implausible properties – it gets very high at low 

trait levels due to the “squeezing” effect of the transformation).

Models for Non-Normal Latent Traits

The above models treat the non-normality in the data as arising from very different 

mechanisms, zero-inflation and the unipolar nature of the construct, respectively. In this 

section, we review two models that assume a continuous underlying latent distribution, but 

allow that distribution to be non-normal.5

Ramsay-Curve IRT

When a normal latent trait distribution is (incorrectly) assumed during parameter estimation, 

this misspecification can lead to distorted item parameter estimates. One possible remedy to 

this problem is to estimate the shape of the latent trait distribution and then estimate 

parameters based on a correctly specified latent trait distribution. In Ramsay-Curve (RC) 

IRT (Woods, 2006; Woods, 2015; Woods & Thissen, 2006), the latent trait distribution is 

estimated at the same time as the item parameters.

At its most basic level, the latent trait distribution in RC-IRT is estimated using a smooth 

function to describe the density for the latent trait; this is a non-parametric technique, but 

there are limits on the type of distribution that can be reasonably approximated. To date, all 

research on parameter recovery under RC-IRT relies on creating non-normal distributions 

through the mixture of normal distributions. We know of no studies of parameter recovery in 

the presence of zero-inflation. In this analysis, we used RCLOG V2 (Woods, 2006) to 

estimate a latent density underlying the Anger items. There are several important user 

options in running RCLOG. For the sake of brevity, for technical details and suggested user 

defaults, we refer readers to the original research and user manual.

In this analysis, we allowed RC-IRT to evaluate solutions running from 2 degrees and 2 

knots (a normal distribution) to 6 degrees and 6 knots. Knots and degrees are technical 

5In the original presentation of the Anger item bank (Pilkonis et al., 2011), the authors assumed a continous latent variable but 
acknowledged that the normality assumption for the calibration may be questionable. Nevertheless, they concluded that the effects of 
violations, if any, were mininal, and proceeded with a standard calibration with normality assumption.
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jargon. Degrees refers to the degrees of the polynomial for the Ramsay curves used to 

approximate the latent distribution. Knots refers to the number of joinings of the Ramsay 

curves. Together, degrees and knots refer to the flexibility of the possible distribution; fewer 

are more restricted with the limiting case of a normal distribution, while more allow for 

greater departures from non-normality (i.e., skew and kurtosis). Examination of fit indices 

output from RCLOG suggested that the solution with 6 knots and 2 degrees was “best,” 

although alternative solutions were very close. In this solution, the log-likelihood was 

−38102.47, which differed significantly from a normal distribution (χ2 = 67.11 on 4 df). 

Most importantly, skewness of the latent distribution was estimated to be −1.96 and kurtosis 

was estimated to be 8.78. The specific distribution estimated is shown in Figure 5, which 

displays one small hump at low trait levels, and then an essentially normal distribution.

Item parameter estimates based on the best fitting model are available in Supplementary 

Table 4. Comparing these values to the GRM, the glaring difference is that the slopes are all 

much higher in the RC model than GRM (M = 3.75 in RC and M = 2.63 in GRM), implying 

that the RC model yields more precise trait level estimates. However, we caution that these 

parameter estimates may be misleading. The basis of our concern is the negative skew 

estimate and unusually high kurtosis. In particular, the negative skew estimate for data that 

are clearly positively skewed indicates that the estimation may be problematic due to the 

excess zero distribution or preponderance of people clustered around raw total scores of 

zero.6 The correlation between trait level estimates in the GRM and RC models is.99.

The Heteroskedastic-Skew Graded Response Model

The above model attempts to estimate a non-parametric but smooth density function to 

represent the latent trait distribution. The model in this section, called the heteroskedastic-

skew (HS) model (Molenaar, Dolan, & De Boeck, 2012), also attempts to estimate a non-

normal density, but with a specific parametric form, namely, a skewed normal distribution 

(Azzalini & Capatanio, 1999). In addition, the HS model also attempts to account for 

violations of homogeneity of variance, which is one possible, but seldom discussed source 

of observed non-normality in item response.

Three features of the HS are critical to understand. First, the model is based on the normal-

ogive version of the GRM. This makes the model akin to an item-level ordinal factor 

analytic model – a “factor loading and intercept” parameterization easily transformable into 

an IRT “slope and threshold” parameterization. For example, we can describe item 

functioning as:

yi* = νi + λiθ + ϵi

yi* is a continuous normal response propensity which is “polytomized” through the K ordinal 

item response categories, νi is the item intercept (the expected score on yi* when θ = 0), λi is 

6We note that Woods (2015) successfully implemented Davidian curves to Anger items drawn from the PROMIS project. However, 
there is currently no available software to implement this method so we could not explore that alterative to Ramsay curves here.
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the (unstandardized) factor loading (regression slope), and εi is a residual with variance, σϵ
2. 

For each item, a linear regression is estimated with the latent variable as the predictor and a 

normally distributed latent response propensity as the outcome. In the above, error variances 

for each item are assumed to be homoscedastic, with an expected value of zero.

Second, the logistic GRM described previously imposes symmetric category response 

curves, which can lead to problems in scoring individuals on the latent variable (Samejima, 

2000). By virtue of allowing for heteroskedastic errors, the HS model does not necessarily 

produce symmetric category response curves (see Molenaar, Dolan, & De Boeck, 2012, p. 

473). Third, the developers of the HS model note that observed skewness in the data can be 

caused by at least two factors: (a) the latent trait distribution could be skewed, and, (b) 

heteroskedasticity of residuals. In theory, the HS model allows for skewness to be estimated 

after separating out the effects of heteroskedastic error and, thus, can provide a “cleaner” 

estimate.

With this foundation in mind, the basic idea of the HS-GRM is to simultaneously estimate: 

(a) the parameters of the normal-ogive GRM, (b) a heterogeneity parameter for each item 

that allows items to violate homoscedasticity, and (c) the skewness of the latent trait 

distribution. This latter estimate is based on assuming a parametric skewed-normal 

distribution. For specific details of the model, and converson of factor analytic to item 

response theory model parameters, we refer readers to Molenaar, Dolan, and De Boeck 

(2012).

We estimated two nested models using an OpenMx (Boker, et al., 2011) program provided 

by the model developers: (a) baseline model with no skew or heteroscedasticity, and a full 

model with both skew and heteroscedasticity estimated. To identify the model, we fixed the 

first two threshold parameters to their values estimated in the GRM. Item parameter 

estimates (i.e., factor loadings, thresholds, intercepts, residual variance, heteroscedastic 

residuals, and IRT slope) for the baseline and full models are available in Supplementary 

Tables 5 and 6.

Most important is the comparison of the baseline model with the full model. For the baseline 

model (skewness = 0, heteroskedasticity = 0), model fit indices were −2 the log-likelihood = 

76733.50, df = 43297, AIC = −9860.50, and BIC = −119924.62. For the full model, fit 

indices were −2 the log-likelihood = 76610.57, df = 43267, AIC = −9923.43, and BIC = 

−119876.40. The chi-square difference between the baseline and full model was 122.93 on 

30 df, which is significant at p <=.01. The estimated skewness of the latent trait was 0.28, 

which is essentially indistinguishable from a normal distribution. The factor loadings 

(M=0.96 vs. M=0.92) and IRT slopes (M=2.22 vs. M=2.05) are slightly lower in the full 

than the baseline model. All other item parameter estimates in the full model are essentially 

the same as the baseline, with the exception of the heteroskedasticity parameters (δ1), which 

are now estimated.

The critical issue with these parameters is whether they are of sufficient magnitude to impact 

the CRCs relative to the baseline model. To explore this issue, in the top two panels of 

Figure 6 are displayed the category response curves for Item 19 under the baseline and full 
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models. This item had a large positive heteroskedasticity parameter (0.48). It appears that 

the CRCs under the two models are nearly identical. In the bottom panel, we compare the 

item response curves for Item #19 under the two models; they are nearly overlapping except 

in the high trait ranges where the expected item scores are lower for the full model. In Figure 

7, we provide the comparison of test response curves (expected summed score as a function 

of the latent trait) under the two models. As one would predict from the slightly lower factor 

loadings in the full model, expected scores are slightly lower in the full model. This is likely 

a difference that makes no practical difference. Note that trail level estimates from the HS 

models were not actually estimated due to software limitations, but given the similarity in 

item parameters with the GRM it is reasonable to expect that their correlation with the GRM 

would be near 1.0.

In review, although the HS full model with estimated skewed distribution is statistically 

superior than the baseline GRM with normal distribution, just as in the RC-IRT analysis, we 

question whether the present data are consistent with the estimated latent distribution. In 

RC-IRT the distribution is smooth but non-parametric, and thus avoids misspecifications 

caused by assuming a specific form. In the HS model, what is estimated is the skew of a 

parametric skewed normal distribution. In this regard, it is critically important to recognize 

that the limit of this distribution is a skewness of 1.0. As a consequence, no matter how 

skewed the true latent distribution is, the model can only accommodate that skew up to a 

certain point. Clearly, more research is needed to clarify parameter estimates under the HS 

model with unipolar traits, extreme skew, and/or excess zeros present in the data. In addition, 

the substantive interpretation and practical implications of heterogeneous residuals needs 

further research. In the present research, the role of estimating heterogeneous residuals was 

merely to decontaminate the estimate of skewness from one source of possible bias.

Discussion

IRT models are valuable psychometric tools when the model-derived latent variable scale (θ) 

accurately reflects individual differences on the trait the researcher is trying to measure and 

the estimated item parameters faithfully reflect the relation between trait levels and the 

probability of category response. To be used effectively, however, models such as the logistic 

GRM (Samejima, 1969) make many assumptions about the latent trait (causative, not 

emergent7), the item response data (local independence), the calibration sample 

(homogeneous, representative), the nature and shape of the latent variable (continuous, 

normal), the distribution of errors, and the parametric form of the model (linear relation 

between theta and log-odds of responding). The validity of the conclusions drawn from any 

IRT model application is threatened to the degree that any of these assumptions are violated.

Similar to Pilkonis et al. (2011), we applied the logistic GRM, with normality assumption, to 

responses to a 29-item measure of Anger. We then considered four alternative models that 

relaxed one or more of the assumptions listed above. The RC-IRT (non-parametric) and HS 

7It is also worth noting that not all constructs are best conceived as latent variables, some constructs are best represented as emergent 
variables (Bollen & Lennon, 1990; Fayers, Hand, Bjordal & Groenvold,1997). IRT or factor analytic model are inappropriate for this 
latter type of construct. Full discussion of this issue is beyond the scope of the present article. We have assumed for simplicity that the 
latent variable measure framework is sensible.
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(parametric) models, allow the researcher to estimate a fully continuous latent distribution 

simultaneously with the item parameters, and thus relax the normality assumption. Both 

approaches also allow a likelihood ratio test to compare the non-normal versus normal 

distribution model.

The ZIM and LL models relax normality in different ways, and neither model allows for a 

simple likelihood ratio statistical test of the whether it is a significant improvement over the 

GRM. The ZIM assumes that the population is heterogeneous and the observed normality 

violations are caused by a “no traited” or “not pathological” latent class. When this 

subsample is estimated and removed, the GRM with normality assumption is then applied to 

the “traited” or “pathological” group. The LL model replaces the logistic function in the 

GRM with the log-logistic, and replaces the normality assumption with an assumption of 

log-normality. It can be used in the same situations as the ZIM model.

Review of Practical Differences

An important practical concern is determining whether the alternative models yield either 

different scalings of individual differences, or provide a different view on the psychometric 

properties of the items and the scale (category response curves, scale response curves, scale 

information). In this section, we review model differences for the Anger Scale in terms of 

scoring and psychometric evaluation.

Correlations of latent trait estimates generated from the GRM with estimates from the ZIM 

(for those in the traited class), RC, and HS models are all nearly perfect. These results 

suggest that these models make little difference in terms of relative standing on the estimated 

latent trait. The only real difference for the Anger data is in the standard error, which would 

be larger in the ZIM model (because of lower slopes) and smaller in the RC model (because 

of the higher slopes).

The one distinctive model in terms of scoring was the LL model where latent trait estimates 

correlated r =.72 with those from the GRM. Although some may view this as a high linear 

correlation, implying similar patterns of external relations, it is important to note two 

differences. First, the anchor for the scale and the interpretation is very different. In the 

GRM, the anchor is the mean of θ = 0 and scores are interpreted relative to that mean. In the 

log-logistic, the anchor is θ = zero – no disorder – and scores reflect severity of the disorder. 

Second, relative to the GRM, differences between people near the low end of the scale are 

compressed while differences between people toward the high end of the scale are expanded. 

Thus, the substantive (heritability coefficients, correlates with neurobiolgical parameters or 

life outcomes) and psychometric results (indices of clinically important differences) based 

on the Anger data under these two models could differ dramatically.8

In terms of psychometric properties, as noted above, one major difference was the reduced 

slope parameters in the ZIM model compared to the GRM, suggesting that they are inflated 

in the GRM due to “excess zeros” – roughly, more zero scores than expected under a normal 

8We note that IRT models have been criticized (Goldstein, 1980) exactly because if you change the basic model from a logistic, very 
different scaling of individual differences may occur. Historically, the choice of a logistic function was not based on any substantive 
consideration or proven validity, but rather simply on mathematical convenience. This remains true today.
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distribution. The implication is that if a sample contains fewer or greater non-cases, the 

slope parameters of the GRM will change accordingly. On the other hand, the RC model 

suggested higher slopes once a non-normal latent trait distribution was estimated. 

Nevertheless, we believe that the RC results are untrustworthy in this particular application 

due the extreme skew caused by the excess zeros identified in the ZIM model.

This same concern with the possibility of excess zeros applies to the interpretability of the 

HS model as well. The HS model that contained item heterogeneity parameters (allowing 

error variances to increase or decrease as a function of trait level) and estimated a skewed 

normal distribution fit better than the GRM. Moreover, because the estimated skewness was 

very small, the better fit could be mostly attributable to the estimated item heterogeneities. 

Nevertheless, allowing for heterogenous variances did not result in item or test response 

curves that differed appreciably from the GRM. Because of a lack of research on this model, 

we do not know the degree to which possible “excess zeros” lead to biases in heterogeneity 

or skewness estimates.

Finally, as in the case of scoring, the LL model provided the largest contrast with the normal 

theory GRM. In relative terms, items are just as discriminating in the GRM and LL model, 

but where that discrimination is located is vastly different. In the LL model, information is 

very high in the near zero trait range, indicating that the item set yield’s a precise 

discrimination between people who are low on the anger (i.e., the majority of subjects) and 

those who are not. In terms of differentiating among individuals at the positive end of scale, 

standard errors are relatively larger. These psychometrics differences have implications for 

all types of applications of IRT models including linking, computerized adaptive testing, and 

the study of differential item functioning. We note in closing that just as GRM slope 

parameters can be inflated by excess zeros, so can the analogous parameters in the LL 

model. In short, the LL results presented here may be misleading if one considers some zero 

scores as “excess” zeros.

Deciding Between Approaches in Practice

Throughout, we have not considered whether the alternative models provide a statistically 

“better fit” than the GRM that assumes normality; with a large enough sample, we assume 

that any model without a restrictive normality assumption will display a superior statistical 

fit. In practice, there are no ready fit index or rule-of-thumb for deciding between the models 

considered here. Rather, what is required is the thoughtful consideration of mostly 

theoretical questions. For example, if a researcher considers the latent variable to be fully 

continuous with meaningful variation on both ends of the scale (bipolar), but the latent trait 

distribution may be skewed, then RC and HS models are viable candidates.

However, we warn that not only do these methods have limitations in the type of distribution 

that can be estimated, the item response data must allow for the accurate estimation of a 

non-normal latent trait. For short scales (e.g., 5 items), and for scales that do not include 

items that discriminate well across the trait range9, the ability of any algorithm to correctly 

estimate a latent distribution is severely compromised. Moreover, if the skew is caused by 

“excess zeros,” possibly due to poor sampling, estimating a true latent distribution would be 

nearly impossible.
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If the construct is considered unipolar or a quasi-trait, then the ZIM and LL models can be 

considered. In deciding between these two models a researcher must ask questions such as: 

what do low scores reflect – low trait standing or absence of the trait? A critical difference 

between these models is that the ZIM assumes a normal distribution for the population, but 

the sample is contaminated by excess zeros. To obtain correct population parameters, one 

needs to identify and eliminate these cases from the calibration. The LL assumes a highly 

skewed distribution in the population. If that assumption is justifiable, and it make sense to 

reference scores and clinical change relative to a zero anchor, the LL model may be the more 

appropriate choice. It is clear to us that more research is needed on the robustness of LL 

model parameters to excess zeros. It is also possible, in theory, to develop a LL model with 

excess zeros analogous to the ZIM model.

Conclusion

Lucke (2015) argued that a chief virtue of IRT modeling is that it allows researchers to 

develop measurement models that are consistent with the theory of the construct (see also 

Asparouhov & Muthén, 2015). Indeed, his LL model was selected not merely because it can 

account for highly skewed response data – dozens of monotonically increasing functions can 

do that – but rather because the log-logistic model and log-normal trait scale are potentially 

more consistent with the cognitive neuroscience of addictive behavior. Lucke is by no means 

alone in proposing that measurement models need to be consistent with the hypothesized 

underlying response processes and what is known about the nature of specific constructs.

Stark et al. (2006) and Weekers, Anke, and Meijer (2008) have considered the IRT modeling 

of personality data in terms of an unfolding response process.10 Van der Mass et al. (2011) 

consider a diffusion model for the response process that may be appropriate for bipolar 

traits, but not for unipolar traits that are anchored at no ability or no trait at the low end. 

Although neither of these models were detailed here, they are examples of new 

psychometric developments of potential value as we move toward the next generation of IRT 

applications in the personality, psychopathology, and health outcomes domains. We hope 

that the present article provides motivation for researchers to more carefully consider the 

nature of the latent trait, and to explore the application of alternative models. Only then can 

we obtain additional substantive insights and findings from these models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

9We note that the sole psychometric justification for having multiple, ostensibly, ordered response options, rather than yes/no, true/
false, is to allow for better differentiation among individuals across the assumed latent trait continuum. When location parameters in 
the GRM are bunched at one end of the continuum (e.g., all in the positive trait range), the items are not differentiating among 
individuals across the continuum. One possible reason is that the low end of the trait doesn’t exist – it is a unipolar or quasi-trait.
10By response process, we mean the theory of how trait levels are linked to item responses. Traditional test theory models are 
dominance models – the probability of item endorsement depends on the degree to which a individual’s trait level is higher than an 
item’s location (e.g., easy vs. hard). In an “unfolding” response process, the probability of endorsement is determined by the absolute 
distance between trait level and item location. The closer the trait level is to item location, the more likely an endorsement.
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Figure 1. 
Histogram of Composite Scores for Anger Scale with Best Fitting Skewed Normal (solid 

line) and Normal Distribution (dashed line).
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Figure 2. 
Log-Odds, Threshold Response Curves, and Category Response Curves for PROMIS Anger 

Item 1 Under the Graded Response Model.
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Figure 3. 
A Comparison of Test Information for the Graded Response Model (solid line) and the Zero-

Inflated Mixture Model (dashed line).
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Figure 4. 
Test Information (solid line) and Standard Errors (dashed line) in the Log-Logistic Model.
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Figure 5. 
The Latent Density Estimated by RC-LOG.
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Figure 6. 
Category Response Curves and Item Response Curves for Item 19 under Baseline Model 

and Heteroskedastic-Skew Model.
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Figure 7. 
Test Response Curves for Baseline (solid line) and Heteroscedastic-Skew (dashed line) 

Models.
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Table 1.

Category Response Percentages and Descriptive Statistics for the PROMIS

Response Percentages Descriptives

Scale Item
a 0 1 2 3 4 rit M S

Item 1 Ang01 0.28 0.32 0.29 0.09 0.02 0.62 1.25 1.03

Item 2 Ang03 0.36 0.27 0.26 0.09 0.03 0.74 1.14 1.08

Item 3 Ang04 0.57 0.24 0.14 0.04 0.01 0.64 0.68 0.94

Item 4 Ang05 0.20 0.30 0.41 0.08 0.01 0.61 1.40 0.93

Item 5 Ang06 0.45 0.27 0.20 0.06 0.02 0.78 0.93 1.02

Item 6 Ang07 0.66 0.19 0.10 0.04 0.01 0.75 0.55 0.91

Item 7 Ang09 0.28 0.36 0.28 0.07 0.01 0.79 1.17 0.95

Item 8 Ang10 0.44 0.25 0.20 0.08 0.02 0.68 0.98 1.07

Item 9 Ang11 0.72 0.13 0.10 0.04 0.01 0.75 0.50 0.91

Item 10 Ang15 0.56 0.23 0.14 0.06 0.01 0.82 0.74 0.99

Item 11 Ang16 0.45 0.27 0.20 0.06 0.02 0.78 0.92 1.01

Item 12 Ang17 0.52 0.27 0.15 0.05 0.01 0.76 0.76 0.95

Item 13 Ang18 0.49 0.23 0.20 0.06 0.02 0.71 0.89 1.06

Item 14 Ang21 0.47 0.27 0.18 0.07 0.01 0.79 0.88 1.00

Item 15 Ang22 0.60 0.19 0.16 0.04 0.01 0.75 0.66 0.93

Item 16 Ang25 0.57 0.24 0.13 0.05 0.01 0.81 0.68 0.93

Item 17 Ang26 0.53 0.24 0.16 0.05 0.02 0.76 0.77 0.99

Item 18 Ang28 0.49 0.26 0.18 0.06 0.02 0.81 0.84 1.01

Item 19 Ang30 0.26 0.37 0.29 0.07 0.01 0.75 1.21 0.95

Item 20 Ang31 0.40 0.33 0.21 0.06 0.01 0.72 0.94 0.95

Item 21 Ang35 0.20 0.36 0.34 0.09 0.01 0.72 1.35 0.93

Item 22 Ang37 0.46 0.29 0.18 0.06 0.01 0.82 0.86 0.97

Item 23 Ang42 0.57 0.25 0.13 0.04 0.01 0.80 0.68 0.93

Item 24 Ang45 0.41 0.28 0.22 0.07 0.02 0.75 0.99 1.02

Item 25 Ang47 0.47 0.27 0.19 0.06 0.02 0.80 0.90 1.02

Item 26 Ang48 0.70 0.14 0.11 0.04 0.01 0.77 0.51 0.91

Item 27 Ang54 0.44 0.30 0.20 0.06 0.01 0.78 0.92 1.00

Item 28 Ang55 0.43 0.28 0.21 0.06 0.02 0.79 0.95 1.02

Item 29 Ang56 0.72 0.15 0.09 0.03 0.01 0.70 0.48 0.88

a
Note.Response options include 0=Never, 1=Rarely, 2=Sometimes, 3=Often, 4=Always. Item-test correlation denoted (rit). For raw scores, M = 

25.55, S = 21.22, skewness = 0.96, and kurtosis = 0.5.
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Table 2

Item Slope, Location, and Intercept Parameter Estimates Under the Graded Response Model, Assuming a 

Normally Distributed Latent Trait.

Slope Location Intercept

α β1 β2 β3 β4 γ1 γ2 γ3 γ4

Item 1 1.71 −0.77 0.40 1.72 2.98 1.31 −0.69 −2.94 −5.09

Item 2 2.25 −0.40 0.46 1.52 2.48 0.90 −1.03 −3.42 −5.58

Item 3 1.80 0.26 1.18 2.21 3.26 −0.47 −2.12 −3.98 −5.86

Item 4 1.57 −1.21 0.04 1.96 3.60 1.90 −0.06 −3.08 −5.65

Item 5 2.65 −0.13 0.70 1.69 2.55 0.34 −1.86 −4.48 −6.75

Item 6 2.92 0.47 1.16 1.81 2.70 −1.38 −3.39 −5.28 −7.87

Item 7 2.85 −0.66 0.42 1.59 2.75 1.87 −1.20 −4.53 −7.86

Item 8 1.97 −0.17 0.69 1.68 2.77 0.34 −1.36 −3.32 −5.46

Item 9 3.14 0.65 1.13 1.77 2.65 −2.03 −3.55 −5.56 −8.32

Item 10 3.35 0.18 0.89 1.62 2.52 −0.61 −2.97 −5.42 −8.46

Item 11 2.76 −0.12 0.71 1.67 2.53 0.33 −1.95 −4.61 −6.98

Item 12 2.60 0.08 0.94 1.85 2.79 −0.20 −2.45 −4.81 −7.25

Item 13 2.25 0.01 0.76 1.76 2.52 −0.02 −1.72 −3.96 −5.67

Item 14 2.75 −0.05 0.75 1.63 2.84 0.14 −2.06 −4.48 −7.80

Item 15 2.62 0.32 0.97 1.97 2.94 −0.83 −2.54 −5.16 −7.69

Item 16 3.30 0.21 0.98 1.75 2.69 −0.70 −3.23 −5.78 −8.88

Item 17 2.62 0.13 0.90 1.82 2.55 −0.33 −2.34 −4.76 −6.67

Item 18 3.23 0.01 0.76 1.64 2.42 −0.03 −2.47 −5.30 −7.83

Item 19 2.49 −0.76 0.39 1.62 2.75 1.88 −0.98 −4.04 −6.86

Item 20 2.20 −0.28 0.76 1.90 3.11 0.62 −1.67 −4.17 −6.82

Item 21 2.19 −1.05 0.20 1.60 2.96 2.30 −0.45 −3.51 −6.47

Item 22 3.21 −0.08 0.78 1.68 2.62 0.25 −2.51 −5.38 −8.42

Item 23 3.27 0.21 1.01 1.84 2.54 −0.68 −3.31 −6.03 −8.31

Item 24 2.38 −0.24 0.64 1.69 2.72 0.57 −1.52 −4.01 −6.45

Item 25 3.00 −0.07 0.72 1.62 2.47 0.21 −2.17 −4.87 −7.41

Item 26 3.33 0.59 1.11 1.84 2.54 −1.98 −3.69 −6.12 −8.46

Item 27 2.68 −0.16 0.73 1.71 2.61 0.43 −1.96 −4.57 −7.00

Item 28 2.79 −0.17 0.65 1.65 2.53 0.47 −1.82 −4.60 −7.05

Item 29 2.42 0.69 1.34 2.06 2.79 −1.66 −3.23 −4.97 −6.75

Mean 2.63 −0.09 0.76 1.75 2.73 0.10 −2.08 −4.59 −7.09

SD 0.50 0.47 0.30 0.15 0.26 1.12 0.95 0.86 1.04

Mean
p 2.17 −0.19 0.81 2.04 3.15

SD
p 0.43 0.65 0.55 0.43 0.47

Note. α = slope, β = location, γ = intercept,
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p
indicates Pilkonis et al. (2011) results.
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