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Abstract

Metabolite identification is a crucial step in mass spectrometry (MS)-based metabolomics. 

However, it is still challenging to assess the confidence of assigned metabolites. In this study, we 

report a novel method for estimating false discovery rate (FDR) of metabolite assignment with a 

target-decoy strategy, in which the decoys are generated through violating the octet rule of 

chemistry by adding small odd numbers of hydrogen atoms. The target-decoy strategy was 

integrated into JUMPm, an automated metabolite identification pipeline for large-scale MS 

analysis, and was also evaluated with two other metabolomics tools, mzMatch and MZmine 2. The 

reliability of FDR calculation was examined by false datasets, which were simulated by altering 

MS1 or MS2 spectra. Finally, we used the JUMPm pipeline coupled with the target-decoy strategy 

to process unlabeled and stable-isotope labeled metabolomic datasets. The results demonstrate that 

the target-decoy strategy is a simple and effective method for evaluating the confidence of high-

throughput metabolite identification.
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INTRODUCTION

Mass spectrometry (MS)-based metabolomics has been widely used to gain insights into the 

mechanisms of human diseases1, and drug and biomarker discovery2. In a high-throughput 

metabolomic experiment, thousands of MS features can be detected from biological 

samples. To identify these features, numerous computational tools have been developed over 

the past decade, most of which are implemented in R packages and windows graphical user 

interface (GUI), such as XCMS3,4, MS-DIAL5, mzMatch6, and MZmine7 for liquid 

chromatography–mass spectrometry (LC-MS), as well as AMDIS8, MET-IDEA9, and 

SpectConnect10 for gas chromatography–mass spectrometry (GC-MS). Four levels of 

identification confidence are proposed by the Metabolomics Standards Initiative (MSI)11 in 

2007. At level 1, metabolites are assigned by the comparison with authentic chemical 

standards analyzed under identical conditions within the same laboratory. Common 

metabolite identification tools with public library information can, at best, provide putative 

metabolite annotation (level 2), including CFM-ID12, FingerID13, MetFrag14, MAGMa15, 

and MyCompoundID16. Level 3 is defined as the determination of tentative candidates of 

compound classes, and the related tools contain MI-PACK17, MetAssign18, ProbMetab19, 

and xMSannotator20. Level 4 may have metabolite assignments of molecular formulas 

without sufficient evidence of structures, for which several programs have been developed, 

such as CAMERA21, SIRIUS22, and MZedDB23. In these tools, especially for level 2, the 

identification of metabolites is inferred from assigning MS2 spectra with library spectra with 

a matching score. However, the score itself may not provide sufficient power to discriminate 

true from false matches. Validation of metabolite assignments mainly relies on manual 

inspection of the corresponding product ions, followed by comparative analyses with 

individual compound standards. This “manual” validation is apparently subjective and error-

prone, and the introduction of compound standards is expensive and labor intensive. 

Therefore, it is important to develop a robust method to estimate false discovery rate (FDR) 

during the metabolite identification.

Target-decoy strategy has been successfully applied in MS-based large-scale proteomics 

studies24,25. In proteomics, there are several methods for generating decoy sequences, 

including protein sequence reversal25,26, shuffling27, and completely randomization28. All of 
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these methods rely on a basic assumption that decoys do not exist, but are similar to targets 

in the database with respect to amino acid composition, peptide length, and mass range. The 

advantage of the target-decoy strategy is that it can be applied to any database search tools29. 

However, this concept cannot be readily applied to metabolomics, because metabolites are 

small molecules with diverse structural isomers. In theory, decoys can be created by 

simulation and removal of all known target components, but it is challenging because the 

target database is incomplete30. For example, a simulation model was proposed to make 

decoys for formula search31. In a recent paper32, decoys were introduced by randomly 

choosing implausible adducts for high-resolution imaging mass spectrometry. The 

implausible adducts are large, producing much heavier decoys than the targets. Thus the 

decoys could not fully mimic the actual targets in the database, resulting in biased FDR 

estimation. In addition, four FDR methods were proposed for spectral library-based 

searches33: (1) an empirical Bayes approach; (2) randomizing MS1 spectra; (3) randomizing 

MS2 spectra; (4) fragmentation tree-based method. But these methods cannot be directly 

applied to spectral library independent database search.

Here we introduce a novel target-decoy strategy to estimate the FDR for metabolite 

identification. The strategy is based on the violation of the octet rule, yielding invalid 

formulas and structures. The validity of the strategy is assessed by two simulated MS1 and 

MS2 datasets. The strategy is currently implemented in the JUMPm, a metabolite 

identification pipeline that we recently developed (http://www.stjuderesearch.org/site/lab/

peng/jumpm), and is also evaluated with two other metabolomics tools, mzMatch and 

MZmine 2. By applying the strategy to both labeled and unlabeled LC-MS/MS datasets, we 

show that this strategy is a general method for estimating FDR during metabolite 

identification.

MATERIALS AND METHODS

LC-MS/MS Data Acquisition

Both labeled and unlabeled yeast LC-MS/MS datasets were generated with a previously 

described protocol34. Briefly, for a labeled yeast dataset, cells were grown in four different 

minimal media conditions. For 13C labeling, the media remained the same except 13C-6 

glucose (Cambridge Isotope Laboratories) to replace standard glucose. Similarly, for 15N 

labeling, 15N-2 ammonium sulfate was substituted into the media. Each culture was 

maintained for ~30 generations in the labeled media before analysis. Both labeled and 

unlabeled yeast cells were collected and extracted. The lysate was transferred to a fresh vial 

to exclude the glass beads, and the supernatant was then dried under centrifugal vacuum and 

dissolved for LC-MS/MS analysis by an Orbitrap Elite (Thermo Scientific) coupled to an 

Easy nLC™ system.

Structure Databases and Generation of Decoy Formulas

Three open metabolome databases, including PubChem35, the Human Metabolome 

Database (HMDB)36, and the Yeast Metabolome Database (YMDB)37, were used for 

formula and structure databases. All three databases (PubChem, HMDB, and YMDB) in 

XML format were downloaded, and processed by an in-house script to extract metadata 
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associated with each metabolite, including ID, formula, InChI key, InChI string, SMILES, 

IUPAC, and monoisotopic mass. Radicals and other unstable structures were discarded. The 

remaining list of metabolites was used to create the target formula and structure databases. 

The decoy formulas were generated by adding one or other small odd hydrogen atom(s) to 

each target formula.

Generation of Theoretical Product Ions of a Decoy Structure

Theoretical product ion pattern of a decoy structure was generated in two steps: (1) the 

decoy-corresponding target structure was used to generate an MS2 pattern by MetFrag38, 

and (2) the MS pattern was edited by adding the mass of hydrogen (+1.007825) to a 

randomly selected carbon atom in the structure and passing the additional mass to each 

product ion containing the selected carbon. The method is termed as “H2C”. In addition, 

“Randomized Peaks” method is also evaluated33, which randomly select peaks from a pre-

built theoretical product ion library that is generated from all compounds in the HMDB.

For labeled data, if the MS2 spectrum derives from 15N or 13C instead of a 12C precursor, 

then the predicted MS2 ions were adjusted to include the heavy isotopes. JUMPm uses the 

same scoring algorithm (i.e. hypergeometric test) for both target and decoy structure 

matchings. A p-value from the hypergeometric test is generated for each metabolite-

spectrum match. A Mscore is generated based on the p-value: Mscore =   − log(p_value).

Spectral Library and Processing

We downloaded a processed spectral library of the Global Natural Product Social Molecular 

Networking (GNPS)39 (https://bio.informatik.uni-jena.de/passatutto) for FDR estimation. 

This spectral library was filtered by the following steps as in the previous study33: (1) 

containing a SMILES or InChI key; (2) removing low-resolution reference data; (3) 

considering only positive ion mode; (4) accepting compounds below 1,000 Da; (5) requiring 

at least 5 ion peaks with relative intensity above 2% of the base peak. A total of 4,096 MS2 

spectra (2,196 formulas and 2,889 InChI keys) were accepted. We further removed spectra 

with the InChI key not present in the HMDB database, resulting in a spectral library 

containing 1,742 MS2 spectra, 799 formulas, and 870 InChI keys for HMDB database. We 

also downloaded a false MS2 spectral library (https://bio.informatik.uni-jena.de/passatutto), 

which was generated by randomizing MS2 spectra but keeping the same MS1 mass. From 

the library, we used 1,742 false MS2 spectra that correspond to true MS2 spectra in the 

HMDB.

Data and Parameters for mzMatch and MZmine 2

In addition to the JUMPm, two other metabolite identification tools, mzMatch (version 

2.0.6) and MZmine 2 (version 2.31), were also used for validating the target-decoy strategy. 

We used the same set of simulated LC-MS/MS data, and the same HMDB database (7,967 

metabolites provided by the mzMatch tool). The mass tolerance used for database search 

was 100 ppm. The mzMatch was tested in the RStudio environment (v1.0.143, 2016 

RStudio, Inc.).
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RESULTS AND DISCUSSION

Theoretical Background of the FDR and Target-decoy Strategy

In a large-scale “omics” study (e.g. metabolomics and proteomics), a number of statistic 

tests are performed for evaluating significance with a probability value (i.e. p-value or a 

derived score). The p-value represents the probability for a given test when the null 

hypothesis is true. For example, the null hypothesis in metabolite identification is that a 

spectrum matches to metabolites in the database on a random basis.

The target-decoy strategy is commonly used to estimate the level of random matches under 

null hypothesis. A target-decoy composite database has a basic theoretical assumption that 

both decoys and targets have the same possibility to be randomly identified in the database. 

To ensure this assumption, the strategy usually follows two rules in practice: (1) the number 

of decoys is the same as the number of targets in the database; (2) decoys are false but 

adequately mimic targets in terms of physical properties. Thus, the FDR of the target 

assignments can be estimated by FDR = nd / nt, where nt is target matches and nd is decoy 

matches40. The search results are then filtered to reduce the FDR to a user-defined level.

Here we design a target-decoy strategy for metabolite identification, which is based on the 

octet rule in Chemistry. The octet rule states that atoms combine in such a manner that each 

atom has eight electrons in its valence shell (Figure 1a, b). The rule is especially applicable 

to carbon, nitrogen, and oxygen. There are rare exceptions to the rule41,42 (e.g., radicals or 

expanded octets), but we found that all of the HMDB entries (n = 40,778) follow the octet 

rule after removing 18 radical exceptions. The strategy uses all formulas in the database 

(PubChem, HMDB, or YMDB) as targets, and creates decoy formulas by adding one 

hydrogen atom to each target formula without changing the charge state (Figure 1c). These 

decoys mimic mass distribution of the targets, but can only be assigned due to by-chance 

matches. For example, CH4 is a compound in the HMDB, and we create the decoy formula 

CH5 without charge in the decoy database. Similarly, we used target structures to generate 

decoy structures, which display product ions in MS2 spectra during database search (see 

Methods). In addition, the strategy can be expanded and generalized by adding any of small 

odd numbers (e.g., 3, 5, 7, and 9) of hydrogen atoms to formulas. Adding even numbers of 

hydrogen atoms, however, may convert unsaturated to saturated compounds, which cannot 

be applied to produce decoys.

Implementation of the Target-decoy Strategy in JUMPm

We have used the proposed target-decoy strategy in the JUMPm software, a tool that we 

have developed for metabolite identification from both unlabeled and stable-isotope labeled 

datasets. For an unlabeled dataset, JUMPm detects metabolite features from spectra, and 

searches for formulas and structures in the database. For a stable-isotope labeled dataset that 

contains unlabeled and fully labeled metabolite pairs, JUMPm can precisely determine the 

numbers of labeled atoms for unambiguously identifying formulas. The target-decoy 

strategy is implemented to estimate FDR in both formula and structure identification (Figure 

2, see details in Supporting Information). The structure FDR is estimated at different levels 

of matching scores (i.e. Mscore). The Mscore is calculated by the hypergeometric test that 
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compares theoretical (in silico) product ions with the observed MS2 peaks. At any given 

Mscore, the structure FDR can be estimated. With a defined FDR threshold (e.g. 0.05), 

JUMPm can filter the results with the related Mscore to produce a list of formulas and 

structures. The FDR threshold can be applied to different experimental LC-MS/MS runs 

since it is independent of experimental settings, and parameters of database search.

For stable-isotope labeled datasets, a formula FDR is computed and linked with Pscore in 

JUMPm (see details in Supporting Information). The Pscore is used for assessing the 

reliability of identified formula, which is calculated by taking into consideration isotopic 

mass differences, relative ion intensity, and co-elution of the isotopic peaks. Analogous to 

the structure FDR, The formula FDR can be estimated at any given Pscore.

Validation of the Target-decoy Strategy by Null Datasets

We next examined the target-decoy strategy by simulated null MS1 and MS2 datasets, as a 

null spectrum has an equal probability of matching targets and decoys in the concatenated 

target-decoy database. We generated a falsified null dataset by shifting all precursor ion (i.e. 

MS1) mass by 4.5 Da in an unlabeled LC-MS/MS run (Figure 3a). When searched against 

the concatenated database, the target and decoy matches displayed an almost equal number 

(Figure 3b, left side), indicating that all of the target hits from the null dataset are due to 

random matching. Moreover, we tested the target-decoy strategy with a simulated stable-

isotope labeled LC-MS/MS dataset. Similarly, after shifting precursor ion mass, it also 

showed identical numbers of targets and decoys (Figure 3b, right side), although the number 

of detected structures was low due to the stringent requirement in formula assignment of 

paired metabolites. We further assessed numerous target-decoy databases generated by 

alternative decoy methods (e.g. +3H, +5H, +7H, and +9H), all of which produced ~100% 

FDR with the simulated dataset (Figure 3c; Figure S1a in the Supporting Information). In 

addition, to approve that different mass shifts in the null dataset do not affect FDR 

estimation, we repeated the analysis with other mass shifts (i.e. 3.5, 5.5, 7.5, and 9.5 Da) and 

obtained the same result of an FDR of ~100% (Figure S1b in the Supporting Information).

In addition, we validated the target-decoy strategy with mzMatch and MZmine 2, two 

widely used metabolite identification tools (see details in Supporting Information). The same 

set of the simulated null dataset by adding 4.5 Da to precursor ion mass was used. Similar to 

JUMPm, mzMatch and MZmine 2 showed 97% and 103% false discovery rates (Figure S2 

in the Supporting Information), respectively, supporting that the target-decoy strategy is a 

general approach applicable to metabolite search programs.

We further evaluated the validity of the target-decoy strategy using completely simulated 

MS2 spectra. A total of 1,742 simulated MS2 spectra were generated by randomizing MS2 

spectra approach33 based on the target spectra from the GNPS library (see Methods). By 

searching these simulated spectra with JUMPm, we found a similar Mscore distribution of 

targets and decoys (Figure 3d), indicative of random matching of the simulated MS2 spectra. 

In summary, the analyses of both simulated MS1 and MS2 spectra suggest that they are 

indistinguishable between target and decoy hits, demonstrating that our decoy database 

provides a representative model of the null hypothesis for FDR estimation in metabolite 

identification.
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FDR Estimation for Experimental Metabolomic Analyses

To use the target-decoy strategy to estimate FDR for metabolomic analyses, we analyzed 

both unlabeled and stable-isotope labeled yeast datasets by the JUMPm algorithm. For the 

stable-isotope labeled dataset, the FDR can be estimated at formula and structure levels on 

the basis of Pscore and Mscore, respectively (Figure 2).

For any decoy structure, we first generated an MS2 product ion pattern from its 

corresponding target structure (Figure 4a), and then tested two structure decoy methods: 

“H2C” and “Randomized Peaks”. The “H2C” adds the small odd hydrogen(s) to a subset of 

product ions containing a selected carbon in the structure. Since the carbon is randomly 

selected, we evaluated the distribution of decoys in three replicates and obtained similar 

results (Figure 4b), indicating no obvious influence of carbon selection on decoy scoring. As 

the “H2C” only shifts a fraction of product ions, we further examined a method by adding 

the small odd hydrogen(s) to all product ions (“100% shift”, Figure 4c), yielding a decoy 

Mscore distribution indistinguishable from the “H2C” method. The result emphasizes that 

Mscore is contributed by matching both MS1 precursor ion and MS2 product ions, and the 

precursor ion mass has been already altered in the decoy database, reminiscent of the null 

strategy of changing the MS1 precusor ion mass (Figure 3a–c). The “Randomized Peaks” 

method randomly selects peaks from a pre-built theoretical product ion library derived from 

all HMDB compounds, leading to similar but slighly lower Mscores of the decoys than the 

“H2C” method (Figure 4c), implying that “Randomized Peaks” might result in more 

dramatic product ion pattern change than the “H2C” method. We then used the “H2C” 

method for the subsequent analysis of labeled and unlabeled datasets.

From a yeast labeled dataset, we detected 85 unique formulas at 5% FDR, and 91 unique 

structures at 5% FDR. Both Pscore and Mscore showed skewed distributions for target and 

decoy hits, with heavy right tails (Figure 4c,d). From an unlabeled dataset, we identified 265 

metabolite-spectrum matches, corresponding to 151 unique formulas and unique 176 

structures at the structure FDR of 5% filtered by the matching score (Mscore). Mscore also 

exhibited skewed distributions for targets and decoys towards high Mscores at the right side, 

but much more pronounced for targets (Figure 4e). In the low Mscore region, the numbers of 

targets and decoys were comparable, indicating that the FDR was exceedingly high for these 

poorly matched metabolites.

Finally, we further evaluated the target-decoy strategy by examining the distribution of 

assigned targets and decoys within different mass error ranges. In theory, when searching 

against a target-decoy database with a large mass error (e.g. 100 ppm), the true targets 

should be found in the range of defined mass error that matches the MS instrument setting 

(e.g. 2 ppm), whereas the decoys and false targets would be evenly distributed in the entire 

mass range due to by-chance matching. This concept was tested and confirmed in a previous 

proteomics target-decoy study43. To examine this concept in our metabolomics database 

search, we searched the labeled dataset with a mass error of 100 ppm. In the central window 

(± 2 ppm, see Figure 4f insert), we found the assignment of most targets and a few decoys, 

suggesting a low FDR in this range. In sharp contrast, outside of the central window (Figure 

4f), the frequency of targets and decoys was almost equal, indicating ~100% FDR. The 

similar phenomenon should be observed when analyzing the target and decoy distributions 
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with respect to the accuracy of mass defect of the labels (i.e., 1.00335 for 13C-12C mass 

difference, 0.99703 for 15N-14N mass difference). Indeed, only targets were identified within 

± 0.001 Da of the theoretical isotope mass difference (see the square in Figure 4g), whereas 

decoys only appeared outside of the range of the square. These results further demonstrate 

that the proposed target-decoy strategy is a powerful tool for estimating FDR in 

metabolomics analysis.

CONCLUSIONS

In summary, we have introduced a novel target-decoy strategy by violating the octet rule to 

estimate the confidence of metabolite identifications at the levels of formula and structure 

assignments. The strategy can be expanded and generalized by adding one small odd number 

of hydrogen atoms to targets. It has been currently implemented in our recent developed 

metabolite identification tool (i.e. JUMPm), and can be applied to other metabolite 

identification tools. The validity of the strategy is strongly supported by the search results of 

simulated MS1 and MS2 datasets, as well as two unlabeled and stable isotope-labeled 

metabolomic datasets. Thus, the strategy is a simple and effective method for false discovery 

estimation of metabolite identification in high-throughput metabolomic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Target-Decoy strategy.
(a) Common biological elements with characteristic number of electrons. (b) The valid 

Lewis structure for methane (CH4) shows shared electrons between hydrogen and carbon 

according to the octet rule. (c) Generation of decoy chemical formulas by computational 

addition of a hydrogen atom to each database formula, yielding an invalid structure without 

a change in the charge state. JUMPm treats all decoy formulas as neutral, ensuring that they 

are invalid. The impossible decoy structure for methane’s formula is shown.
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Figure 2. Workflow of the target-decoy implemented in JUMPm.
The FDR can be estimated at formula and structure levels.
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Figure 3. Evaluation of the target-decoy strategy by null datasets.
(a) Diagram showing a simulation analysis by simulating MS1 precursor mass to assess the 

validity of the target-decoy strategy. The result shows that FDR of authentic labeled yeast 

data (4%) and null data (~100%). (b,c) The distribution of targets and decoys detected from 

both simulated unlabeled and labeled datasets by two decoy generating strategies (i.e. +H 

and +3H). (d) Evaluation of the target-decoy strategy by simulated MS2 spectra and 

PubChem database.
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Figure 4. FDR estimation for metabolomic analyses.
(a) Step-wise search of a composite target-decoy database. (b) Distributions of target and 

decoy Mscores from a labeled dataset with the “H2C” method. (c) Comparison of “H2C”, 

100% shift, and “Randomized Peaks” methods to generate decoy MS2 patterns using the 

same labeled dataset. (d) Distributions of target and decoy Pscores from the labeled dataset. 

(e) Distributions of target and decoy Mscores from an unlabeled dataset. (f) Histogram of 

targets and decoys with respect to mass error during JUMPm search. Target and decoy 

formulas are bins of 2 ppm across the mass error range (0.5 ppm within the grey rectangle); 
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a zoomed-in range is also shown. (g) Two-dimensional distribution of target and decoy 

formulas by isotope mass defect (581 out of 613 within the green circle). Decoy formulas 

are randomly scattered in the plot while targets are tightly clustered around the expected 

mass defect values of 1.00335 for 13C and 0.99703 for 15N.
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