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Abstract

Background.—Gastrostomy placement after intracerebral hemorrhage (ICH) indicates the need 

for continued medical care and predicts patient dependence. Our objective was to determine the 

optimal machine learning technique to predict gastrostomy.

Methods.—We included 531 patients in a derivation cohort and 189 patients from another 

institution for testing. We derived and tested predictions of the likelihood of gastrostomy 

placement with logistic regression using the GRAVo score (composed of Glasgow Coma Scale 

<=12, age>50 years, black race, and hematoma volume >30 mL), compared to other machine 

learning techniques (kth nearest neighbor, support vector machines, random forests, extreme 

gradient boosting, gradient boosting machine, stacking). Receiver Operating Curves (Area Under 

the Curve, AUC) between logistic regression (the technique used in GRAVo score development) 

and other machine learning techniques were compared. Another institution provided an external 

test data set.

Results.—In the external test data set, logistic regression using the GRAVo score components 

predicted gastrostomy (P<0.001), however, with a lower AUC (0.66) than kth nearest neighbors 

(AUC 0.73), random forests (AUC 0.74), Gradient boosting machine (AUC 0.77), extreme 

gradient boosting (AUC 0.77), (P<0.01 for all compared to logistic regression). Results from the 

internal test set were similar.
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Conclusions.—Machine learning techniques other than logistic regression (e.g., random forests, 

extreme gradient boost, and kth nearest neighbors) were significantly more accurate for predicting 

gastrostomy using the same independent variables. Machine learning techniques may assist 

clinicians in identifying patients likely to need interventions.

Keywords

Intracerebral hemorrhage; gastrostomy; outcomes; machine learning

Introduction

Survivors of intracerebral hemorrhage (ICH), the most morbid form of stroke, often require 

gastrostomy, a percutaneous feeding tube in the abdomen to provide nutrition 1. Reliably 

predicting grastrostomy after ICH is important because gastrostomy placement predicts the 

need for future healthcare services and patient dependence at follow-up, and unexplained 

racial disparities in gastrostomy have been noted.2

Like outcomes for ICH generally, 3,4 ordinal predictive scores for gastrostomy have been 

validated,5,6 including variables that measure the severity of neurologic injury and other 

established risk factors. The GRAVo score is composed of categorical variables (age over 50 

years, black race, Glasgow Coma Scale 12 or less, and hematoma volume more than 30 mL), 

with higher GRAVo scores predicting increased odds of the patient undergoing gastrostomy 

in a logistic regression model.6 Other prediction models of gastrostomy after ICH have 

identified similar predictors.7 Predicting outcomes, including gastrostomy, with ordinal 

scores, however, has suboptimal accuracy. The GRAVo score may not distinguish between 

components that sum to the same score, but are different (e.g., a black patient over 50 years 

may have the same score as a patient with reduced Glasgow Coma Scale and a large 

hematoma, but their outcomes may be different). Therefore, prediction methods other than 

regression are needed that may more accurately predict the likelihood of a patient 

undergoing gastrostomy after ICH. Techniques that improve prediction of gastrostomy may 

be broadly applicable to other procedures, and other diseases.

Machine learning 8 refers to a collection of techniques intended to predict a result from data; 

regression is the most commonly utilized technique in clinical medicine, typically using 

ordinal scales.9,10 Several machine learning techniques inherently account for non-linear 

predictions, such as proximity-based methods (e.g., kth nearest neighbors, which predicts a 

classification based on similar patients) and decision-tree based methods (e.g., random 

forests, which “grows” decision trees and identifies the most significant class). Machine 

learning techniques have been utilized to predict cardiovascular events in asymptomatic 

patients 11 and arteriovenous malformations,12,13 but have not been utilized after ICH. We 

sought to derive and validate machine learning techniques other than logistic regression to 

predict gastrostomy (the technique used for GRAVo score development and validation).6 In 

this study, we tested the hypothesis that machine learning techniques improve the accuracy 

of gastrostomy prediction derived from traditional logistic regression in patients with ICH 

using the components of the GRAVo score as independent variables.
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Methods

Patient Identification.

We used prospectively collected data from Johns Hopkins Medicine and Northwestern 

Medicine. The methods of patient identification have been previously described.6,14 A 

board-certified neurologist confirmed the diagnosis of spontaneous ICH, using each 

patient’s head computed tomography results and the appropriate clinical history. Patients 

with trauma, hemorrhagic conversion of ischemic stroke, or structural lesions (e.g., tumor) 

were excluded. Gastrostomy was specifically coded.

Standard Protocol Approvals, Registrations, and Patient Consents.

The Northwestern University Institutional Review Board (IRB), and the Johns Hopkins IRB, 

separately, as previously reported.6,15

Statistical Analysis.

We predicted gastrostomy placement with standard machine learning techniques, using 

previously identified predictors from the GRAVo score 6, a logistic regression model that 

accounts for age over 50 years, Glasgow Coma Scale (GCS) of 12 or less, black race, and 

hematoma volume > 30 mL. In addition to logistic regression, the following machine 

learning techniques were employed: K nearest neighbors algorithm 16 predicts a data point 

will belong to the same class as its nearest neighbors (k, the number of nearest neighbors, 

which is typically set between 3 and 7). Support Vector Machines builds a predictive model 

by mapping example data points in a space where points are divided into separate categories 

with as wide a gap as possible. Random forest 17 algorithms construct multiple decision 

trees and identify the mode of the classes predicted across the trees. Gradient boosting 18 

adds trees to maximally reduce variability at every step to improve on previously imperfect 

models. Extreme Gradient Boosting (Xgboost) 19 is built upon gradient boosting and 

mitigates over-fitting by adding regularization in order to specify the complexity of the 

model (accurately predicting the derivation data set while performing poorly in test and 

other data sets). We also performed stacking 20 wherein predictions from these models are 

used by a meta-classifier (Logistic Regression and Xgboost) to perform further 

classification. We used the same variables, classifying rules, and weights as specified by the 

GRAVo model. The Northwestern data set was divided into training (80%) and testing (20%) 

subsets. We performed 10-fold crossvalidation to find best hyper-parameters for machine 

learning algorithms and optimize base classifiers. We then tested the trained classifier on the 

test data set. To generate point estimates and test the significance of the results, we 

performed bootstrapping with 100 sets of random samples (with replacement) of training 

and test dataset. Further, the trained machine learning classifiers were applied to the Hopkins 

data as an additional external test data set. Area Under the Curve (AUC) values from 

Receiver Operating Characteristic curves for each of the respective techniques were 

compared. Analyses and graphics were produced using Scikitlearn package (v0.19) available 

in Python language (v2.7). For illustration purposes, heat maps of the likelihood of 

undergoing gastrostomy were produced in Stata (v.14, College Station, TX).
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Results

Of 544 patients in the Northwestern data, 13 had incomplete data for calculating the GRAVo 

score, leaving 531 patients, of whom 424 patients (351 without and 73 with gastrostomy) 

were randomly selected for training, while the remaining 107 patients (89 without and 18 

with gastrostomy) were selected for testing. Demographics of the Northwestern data are 

shown in Table 1. The demographics of the Hopkins data set have been previously 

published.6 Thus, the data sets were large enough to apply machine learning techniques.

Logistic regression with the GRAVo score was associated with gastrostomy in the 

Northwestern data set with moderate accuracy (Figure 1). For example, while both lower 

Glasgow Coma Scale and older age increase the likelihood of gastrostomy, some black and 

non-black patients who were the oldest and had the lowest Glasgow Coma Scale did not 

undergo gastrostomy, even though the logistic regression model predicted the highest 

likelihood of gastrostomy for such patients.

While testing on Northwestern data without any random sampling, modern machine learning 

algorithms achieved a higher area under the curve with k nearest neighbors (0.73), Random 

Forests (0.74), Gradient Boosting Machine (0.74), Xgboost (0.76) and stacking with logistic 

regression (0.74) and stacking with Xgboost (0.74), compared to the GRAVo logistic 

regression model (0.70) (P<0.01 for all comparisons to logistic regression.

To test the generalizability of the results, we performed bootstrapping with 100 iterations of 

random sampling of training and test data sets with replacements. We found that decision-

tree based methods Random Forests 0.73 (0.718 – 0.742, 95% CI), Gradient Boosting 

Machine 0.72 (0.706 – 0.733), Xgboost 0.74 (0.729 – 0.752), Stacking using logistic 

regression 0.73 (0.718 – 0.742) and Stacking using Xgboost 0.72 (0.704 – 0.734) 

outperformed linear classifiers logistic regression 0.71 (0.700–0.727) and Support Vector 

Machines 0.54 (0.522–0.565) (P<0.01 for each modern machine learning technique 

compared to logistic regression).

We observed similar results in the Hopkins (external test) data set, in which all machine 

learning techniques (other than support vector machines) predicted gastrostomy more 

accurately than the logistic regression model, using the GRAVo score components as 

independent variables (P<0.01) (Figure 2).

Discussion

We found that machine learning techniques predicted gastrostomy after ICH with higher 

accuracy than logistic regression, particularly proximity-based (k nearest neighbors) and 

decision-tree based techniques (e.g., random forests). Machine learning techniques may be 

an important tool, not only for predicting gastrostomy, but also for other categories of 

treatments and outcomes, expanding the usefulness of existing data sets to provide new 

insights on patient management and outcomes.

Logistic regression may not accurately differentiate patients with similar ordinal scores. For 

example, the GRAVo score implies that patients with the lowest GCS and highest age would 
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be most likely to undergo gastrostomy placement; however, we found that these patients 

were unlikely to do so. While one potential explanation is possible (e.g., a patient over 80 

years with a GCS of 3 is likely to have limitations placed on medical care),21,22 this 

underscores the value of machine learning techniques to account for unanticipated 

confounders compared to ordinal scales, where specific independent variables are defined 

and complex prediction rules are not possible. One difference between the Northwestern and 

Hopkins data sets is that patients with early limitations in medical care were excluded from 

the derivation and validation of the GRAVo score (Hopkins data set), however, advanced 

machine learning techniques outperformed logistic regression in both test data sets, so this 

difference in patient inclusion is unlikely to be significant. There are other occasions where 

other machine learning techniques are likely to be insightful.

We chose to study gastrostomy placement after ICH because it is reasonably common, 

predictable, well defined, and has well-described risk factors, as do many other severity of 

injury scores.23 An ideal outcome for the derivation and validation of a prediction score 

would be one that is universally assessed with complete accuracy, not subject to potential 

bias on the part of clinicians or unintended consequences (e.g. limitations in medical care), 

and can be easily retrieved from the electronic health record; we are unaware of such an 

outcome measure. Machine learning techniques may also be particularly helpful for large 

multi-center or anonymous data sets (e.g., the Nationwide Inpatient Sample) where it is not 

possible to review the medical record of individual patients for context.

Logistic regression using the GRAVo score was associated with gastrostomy placement 

overall in the Northwestern data set, like the Hopkins data set.6 Like many ordinal scores, 

the major advantage of the GRAVo is that it is practicable for humans to calculate and 

interpret. No ordinal predictive score can account for all the predictive characteristics and 

still be practicable. For example, dysphagia is not accounted for in the GRAVo score, but 

would also be expected to be predictive of gastrostomy placement. As machine learning 

becomes practicable in electronic health record generally, the advantages of ordinal scores 

are likely to wane in favor of machine learning techniques. Machine learning is able to 

accommodate a higher number of independent predictors and may achieve greater accuracy, 

i.e. by including embedded algorithms for predicting complications. Future research might 

leverage machine learning techniques that perform well with large data sets, such as random 

forests. These techniques may allow for new insights to be gleaned from existing data where 

regression models have been previously utilized and no association was found. Alternatively, 

Xgboost, random forests, and gradient boosting machine techniques are relatively resistant 

to “over-fitting” when many potential independent variables are present,24,25 and run 

relatively quickly on large data sets.

Improved prediction of gastrostomy is likely to improve the clinical care of patients with 

ICH. Physicians could be alerted to a high likelihood of a patient requiring gastrostomy by 

the electronic health record, a widely supported functionality, which could lead to earlier 

consideration. More timely gastrostomy placement in patients highly likely to require one 

could lead to shorter length of stay and a reduced risk of complications.26 Conversely, a low 

predicted probability of gastrostomy could encourage physicians to delay and reconsider a 

potentially unneeded procedure. Our algorithms were highly accurate not only derivation 
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and validation sets at one institution, but also at an independent institution, and were robust 

to differences in limitations of medical care, underscoring their generalizability.

Machine learning algorithms are likely to have wide applicability. Several machine learning 

algorithms are already in use, and user-generated algorithms can be uploaded to some 

electronic health records for use in real time. A potential downside of machine learning 

algorithms is that they are likely to be less intuitive to humans, e.g., a GRAVo score of 4 is 

likely to be more intuitive than a prediction from a random forest model seen by clinicians 

as a “black box.”

There are limitations to this investigation. We used the components of the GRAVo score, 

derived and validated from another institution,6 for advanced machine learning techniques, 

but not another published ordinal score for gastrostomy placement5 because we did not have 

information on all of the components of the score, such as midline shift on computed 

tomography scans. The machine learning techniques we employed here are standard and 

well-described, and might be applicable to other complications and outcomes. Machine 

learning as a field is rapidly evolving, however, and while we utilized well-described 

techniques, new techniques may emerge quickly that may require additional software and 

knowledge of how to apply them.

Summary

We found that machine learning techniques had higher accuracy in predicting gastrostomy 

after ICH compared to a validated ordinal prediction score using regression, even when 

using the same score components as independent variables. Machine learning techniques are 

likely to be useful to predict outcomes that have heretofore been predicted by logistic 

regression using ordinal scores. Machine learning may be broadly applicable for predicting 

complications and outcomes, given the ubiquitous need for accurate predictions and risk 

assessments in clinical medicine.
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Figure 1. 
Heat map of likelihood of undergoing gastrostomy shown in black. Both black and nonblack 

patients at the extremes of Glasgow Coma Scale and age were unlikely to undergo 

gastrostomy, although patients at lowest Glasgow Coma Scale and highest age would be 

predicted to be most likely to undergo gastrostomy.
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Figure 2. 
Comparison of receiver operating characteristic curves for gastrostomy in the Hopkins 

(external) test data set. Logistic regression had worse performance than other machine 

learning techniques (P<0.01 for all).
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Table 1.

Demographics of 531 patients from the derivation data set.

Variable N(%), Median [Q1-Q3], or Mean ± SD

Age, years 65.5 ± 14.6

Hematoma volume, mL 12 [5–32]

ICH Score 1 [1 – 3]

Black race 221 (41.6)

Glasgow Coma Scale on admission 13 [8–15]
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