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Abstract

PD-L1, frequently expressed in human cancers, engages with PD-1 on immune cells and
contributes to cancer immune evasion. As such, antibodies blocking the PD-1/PD-L1 interaction
reactivate cytotoxic T cells to eradicate cancer cells. However, a majority of cancer patients fail to
respond to PD-1/PD-L1 blockade with unclear underlying mechanism(s). Recent studies revealed
that PD-L1 expression levels on tumor cells might affect the clinical response to anti-PD-1/PD-L1
therapies. Hence, understanding molecular mechanisms for controlling PD-L1 expression will be
important to improve the clinical response rate and efficacy of PD-1/PD-L1 blockade. In this
review, we primarily focus on summarizing PD-L1 regulation and its potential roles in regulating
anti-tumor immune response, with purpose to optimize anti-PD-1/PD-L1 therapies, benefiting a
wider cancer patient population.
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1 Research advances in cancer immunotherapy

Although conventional therapies including chemotherapy and radiotherapy are used as first-
line treatments for most human cancer patients, recent emerging advances in cancer
immunotherapies have transformed the landscape of cancer treatment from complementary
elements for conventional therapies to central and standard cancer treatment regimens [1, 2].
Over the past several decades, immunotherapies or biotherapeutics such as passive
immunization with donor T cells, utilizing immune adjuvants or cytokines with immune-
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modulating properties, cancer vaccines, chimeric antigen receptors (CARs)-modified T cells,
and immune checkpoint blocking antibodies are effective treatments for various forms of
human cancer [2, 3]. However, among these cancer immunotherapies, immune checkpoints
blockade such as antibodies blocking cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) and programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) have stood
out and are revolutionizing the field of cancer therapy. Thus, it is believed that the immune
checkpoint blockade strategy will profoundly change the direction of basic and clinical
cancer research [4, 5]. Distinct from conventional therapies for directly targeting cancer
cells, anti-CTLAA4 or anti-PD-1/PD-L1 antibodies reactivate the immune system of patients
to eradicate tumors, which induce durable and long-lasting anti-tumor immunity in patients
with a variety of cancers [6, 7].

CTLA-4 is a coinhibitory receptor expressed on activated T cells, which inhibits T cell
proliferation and activation in part through competing with its homolog of T cell
costimulatory receptor CD28 binding with CD80 (also named B7-1) and CD86 (also named
B7-2) [8]. The group led by Dr. James P. Allison pioneered the research field of CTLA-4
and was the first to theorize that developing CTLA-4 blocking antibodies might activate T
cell proliferation and enhance its physiological functions [8]. Subsequently, seminal
preclinical studies from the Allison group revealed that checkpoint blockade using a
CTLA-4 blocking antibody could lead to durable regression and long-lasting immune
response in mouse tumor models, which resulted in the clinical development and evaluation
of anti-CTLA-4 blocking antibodies for human cancer therapy [9]. The success of clinical
trials with anti-CTLA-4 blocking antibody ipilimumab, which was approved by the US Food
and Drug Administration (FDA) in 2011, opened a new era for the field of cancer
immunotherapies [10]. Clinical studies demonstrated that CTLA-4 immune checkpoint
blockade by ipilimumab led to a durable tumor regression and significantly enhancement of
the overall survival of some patients with advanced metastatic melanoma [10]. However, to
resolve a relatively low response rate and frequent toxicities including dermatitis, hepatitis,
and enterocolitis related to anti-CTLA-4 therapy [11], further studies will be warranted to
identify biomarkers for distinguishing which patient population is best suited to receive anti-
CTLA-4 immunotherapy.

PD-1 is another coinhibitory receptor expressed on immune cells including T cells, B cells,
dendritic cells, natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs) [12, 13].
It has been reported that there are two ligands for PD-1, PD-L1 (also known as CD274 or
B7-H1) and PD-L2 (CD273 or B7-DC) [14, 15]. Given that PD-L1 is more widely expressed
than PD-L2 in normal and tumor cells, more studies focused on exploring physiological and
pathological functions for PD-1/PD-L1 engagement as well as how to disrupt their
interaction for cancer therapy [12]. High expression of PD-L1 is frequently observed on
tumor cells, where elevated PD-L1 engagement with PD-1 on T cells subsequently leads to
T cell dysfunction and exhaustion, which prevents cytotoxic T cell from effectively targeting
tumor cells (Figure 1). Hence, designing and developing PD-1/PD-L1 blocking antibodies to
disrupt the PD-1/PD-L1 interaction reactivate T cell function to eradicate cancer cells
(Figure 1) [5]. Moreover, clinical studies demonstrated that PD-L1 expression on tumor cells
or in the tumor microenvironment has a positive correlation with the response rate for anti-
PD-1/PD-L1 therapy, which might serve as a potential, but not perfect, selective marker for
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patient stratification [16, 17]. Thus, it is necessary to fully understand the upstream
pathways that regulate PD-L1 expression on tumor cells, which might help to design new
strategies to manipulate the PD-L1 expression to enhance the clinical response rate and
efficacy to immunotherapies.

In this review, we summarize recent biochemical research progression on PD-L1 regulation
from various aspects, and their potential therapeutic roles in regulating cancer treatment. We
also discuss how to further improve the clinical response rate and efficacy of cancer
immunotherapy by manipulating PD-L1 expression.

2. Regulation of PD-L1 by genetic alterations and epigenetic modifiers to

control cancer immunotherapy

Alterations of genetics and epigenetics play a key role in regulating cancer progression,
immune surveillance, and tumor cell evasion [18, 19]. Inhibitors targeting epigenetic
modulators such as DNA methyl transferase inhibitors (DNMTi), histone deacetylase
inhibitors (HDACI), bromodomain inhibitors, and enhancer of zeste homolog 2 inhibitors
(EZH2i) or lysine-specific histone demethylase 1 (LSD1) inhibition enhance
immunotherapies through enhancing tumor immunogenicity, restoring cytotoxic T cell
functions and reversing the immune suppressive effects of the tumor microenvironment,
which synergize with PD-1/PD-L1 or CTLA4 blockade for cancer treatment (Figure 2)
[19-24]. Mechanistically, these inhibitors can activate endogenous retroviral elements
(ERVs), interferon signaling pathway, or induce neoantigen presentation to stimulate anti-
tumor immunity (Figure 2) [19-24]. Moreover, recent studies identified that the PBRMI and
ARIDZgenes, encoding components of the PBAF switch-sucrose nonfermentable (SWI/
SNF) chromatin remodeling complex play critical roles in response to immune checkpoint
therapies through altering global tumor-cell expression profiles [25, 26]. However, recent
studies also showed that genomic alterations and epigenetic pathways could directly control
PD-L1 expression to regulate the efficacy of cancer immunotherapies (Figure 3, upper
panel).

2.1 Genomic alterations regulate PD-L1 and affect the efficacy of PD-1/PD-L1 blockade

Several studies reported that genomic rearrangements including gene amplification and
translocation in chromosome 9p24.1 lead to upregulation of PD-L1 and PD-L2 in classic
Hodgkin lymphoma (cHL) [27, 28] and primary mediastinal large B-cell lymphoma
(PMBCL) [29, 30]. Importantly, these genomic alterations, leading to activate the JAK2-
STAT signaling pathway to elevate the PD-L1 transcription and protein abundance, correlate
with the relatively high clinical response rate of Hodgkin lymphoma patients to PD-1
blockade [27, 28, 31]. Moreover, amplification of PD-L1, PD-L2and JAK2 were also
identified in gastric cancer [32]. Additionally, Kataoka ef a/. found a unique genomic
structural alteration that can upregulate PD-L1 expression to evade cancer immune
surveillance through disrupting the 3’-untranslated region (UTR) of PD-L1 in multiple
human cancer types [33]. More importantly, they could recapitulate their findings in mouse
tumor models by demonstrating that PD-L1 upregulation by 3’-UTR loss promotes tumor
growth and evade immune surveillance mediated by cytotoxic T lymphocytes, which can be
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effectively suppressed by PD-L1 antibody treatment to restore CD8 cytotoxic T
lymphocytes [33]. These findings together suggest that genomic alterations that upregulate
PD-L1 could potentially serve as a genetic marker to distinguish which cancer patients may
have greater response to PD-1/PD-L1 immune checkpoint blockade therapy.

2.2 Epigenetic regulation of PD-L1 in anti-tumor immunity

Inhibitors targeting bromodomains and extra-terminal (BET) proteins, such as JQ1 and I-
BET762, have an effect on elimination of hematological malignancies such as acute myeloid
leukemia (AML), multiple myeloma (MM) and lymphoma [34, 35]. Through their
bromodomains, the BET family of proteins bind to acetylated-Lysine motifs present in
histones resulting in the recruitment of transcription factors and other chromatin regulators
to facilitate gene transcription [35]. Moreover, an implication of BET proteins in solid
tumors was also reported [36]. Recently, two independent groups identified that PD-L1is a
direct transcription target of BRD4. Zhu et a/. found that BET inhibitors (BETi) significantly
suppress PD-L1 expression through screening a panel of inhibitors targeting epigenetic
regulators [37]. They further showed that the BET inhibitor JQ1 suppresses PD-L1
expression on tumor cells, dendritic cells and macrophages, leading to retarded tumor
progression through enhancing anti-tumor cytotoxic T cell activity [37]. Another group led
by Johnstone independently found that the anti-tumor response of BET proteins inhibitors
require host immune system [38]. By using genome-wide analysis of the BETi-induced
transcriptional response, PD-L1 downregulation was identified as the main mechanism
accounting for BETi mediated antitumor effect in a Myc-driven B cell lymphoma model
[38]. Mechanistically, they further found that BETi reduces BRD4 occupancy at the PD-L 1
locus, leading to PD-L1 transcriptional suppression independent of the transcriptional factor
c-Myec. Importantly, they demonstrated that BETi JQ1 synergizes with anti-PD-1 antibodies
to suppress the progression of Myc-driven lymphoma /n vivo, suggesting that
pharmacological BET inhibitors treated in combination with immune modulatory agents
might be a novel therapeutic strategy for human cancer treatment [38]. However, although
the authors also showed that sustained ectopic expression of PD-L1 reduces the efficacy of
JQ1 treatment, it warrants further study to deplete AD-L 1 and validate whether these effects
of JQ1 treatment is largely dependent on PD-L1 and its downstream targets, Furthermore,
recent studies reveal that changes in epigenetic regulation can lead to profound changes in
the expression of endogenous retrovirus elements and immune response gene pathways to
impact antigen presenting and immunotherapy efficacy (Figure 2). It is possible that JQ1 can
potentially function through these pathways in addition to its role in modulating PD-L1
expression.

Additionally, it has been reported that class | HDAC inhibitors upregulated the expression of
PD-L1 in melanomas largely through enhancing histone acetylation of the PD-L 1 gene,
leading to relaxed chromatin state at the PD-L 1 gene promoter [39]. Lu et a/. demonstrated
that histone methyltransferase (HMTase) MLL1 directly binds and catalyzes the tri-
methylation of histone H3 on lysine 4 (H3K4me3) on the promoter of PD-L 1 to activate the
PD-L1 transcription in pancreatic cancer cells [40]. Notably, they showed that
pharmacological inhibition or silencing of MLL1 decreases PD-L1 expression, which
enhances the efficacy of anti-PD-L1/PD-1 antibody treatment in mouse models bearing
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pancreatic tumor growth [40]. However, like the JQ1 treatment, suppression of MLL1 also
affects many other downstream targets, which warrants further investigations to clarify
whether targeting MLL1 is an effective approach to enhance the efficacy of checkpoint
immunotherapy against pancreatic cancer in part via regulation of PD-L1 expression.

3. Regulation of PD-L1 at the transcriptional level to modulate anti-tumor

immunity

Increasing evidence reveals that various upstream signaling pathways regulate PD-L1
expression at the transcriptional level [41, 42]. These signaling pathways participate in
controlling PD-L1 expression largely through activating several key transcriptional factors,
which directly bind on the promoter region of PD-L 1 to promote its expression [41, 42].
Although previous studies revealed that the IFNy signaling pathways play the most
important role for translational regulation of PD-L1 expression and response to the
PD-1/PD-L1 blockade, other signaling pathways can be also activated to upregulate PD-L1
expression for evasion of anti-tumor surveillance under different cellular or tissue
circumstances. Here, we document major signaling pathways and transcriptional factors that
play critical roles in governing PD-L1 expression to regulate immune surveillance and
cancer immunotherapies by targeting PD-1/PD-L1 (Figure 4).

3.1 The IFNy-JAK-STAT signaling pathway-mediated regulation of PD-L1

Several studies have shown that PD-L1 expression can be induced by interferon gamma
(IFNy) to allow tumor cells to evade immune surveillance [43-45]. Janus kinase (JAK) and
signal transducer and activators of transcription (STAT) are essential for interferon induction
through activation of interferon-stimulated response elements (ISRES), gamma interferon
activation sites (GASs) and interferon regulatory factor 1 (IRF1) [46]. Upon IFNy
stimulation, the JAK-STAT signaling can activate IRF1, which directly binds to the PD-L 1
promoter to induce the transcription of PD-L1, resulting in suppression of anti-tumor
immunity [43-45]. A recent study reported that cyclin-dependent kinase 5 (CDK5) helps
medulloblastoma (MB) to evade immune surveillance and suppresses anti-tumor immunity
[47]. Dorand et al. found that IFN-y-induced PD-L1 up-regulation in MB requires CDK5
and depletion of CDK5results in downregulation of PD-L1 expression in tumor cells [47].
Furthermore, CDKS disruption suppresses the IFNGR signaling in part by recruiting the
IRF1 competitive repressors IRF2 and IRF2BP2 to sustain PD-L1 transcriptional repression
[47].

3.2 NF-xB pathway regulation of PD-L1

NF-xB is an ubiquitously expressed transcription factor, which is considered a major
contributor of tumor development by promoting cell survival, proliferation, angiogenesis,
and metastasis [48]. Homo-or hetero-dimerization of NF-xB subunits RelA/p65 and p50
leads to activation of NF-xB, which is required for tumor cells to evade adaptive immunity
[49]. Recent studies indicated that activation of NF-xB signaling upregulates PD-L1 to
suppress anti-tumor immunity in different cancer settings. In the T-cell lymphoma, PD-L1
upregulation mediated by activation of NF-xB via EBV-driven LMP1 signaling, which
correlates with poor prognosis in natural killer/T-cell lymphoma [50]. In ovarian cancer,
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chemotherapy treatment was demonstrated to induce PD-L1 expression in a NF-xB
activation dependent manner, which provides an immunosuppressive tumor
microenvironment to evade immune surveillance [51]. Moreover, in non-small cell lung
cancer (NSCLC), MUC1-C increased PD-L1 expression through enhancing NF-xB
occupancy on the PD-L 1 promoter to induce PD-L1 transcription [52].

3.3 Hypoxia-induced expression of PD-L1

Hypoxia is a common feature of most solid tumors, the severity of which contributes to the
acquisition of malignant properties in cancer cells such as drug resistance, metastatic ability
and immune evasion [53, 54]. The transcription factor hypoxia-inducible factor 1 (HIF-1)
mediates adaptive responses to hypoxia, which is carried out through two subunits for
HIF-1, HIF-1a and HIF-1p [55]. HIF-1a is the functional subunit, whose stability is
regulated by oxygen levels in a pVHL-dependent manner [55]. As such, HIF-1a is
upregulated under hypoxic conditions, and plays important roles in tumor cell survival and
malignancy. Several studies indicate that hypoxia induces PD-L1 expression in tumor cells,
myeloid-derived suppressor cells (MDSCs), dendritic cells, and macrophages, which are
largely mediated by HIF-1a [56-58]. Mechanistically, HIF-1a binds to a hypoxia-response
element (HRE) in the PD-L1 proximal promoter and induces the transcription of PD-L1
[59]. Hence, hypoxic conditions increase the resistance of tumor cells to cytotoxic T
lymphocytes (CTL)-mediated lysis [56]. Selective blocking HIF-1a accumulation in
hypoxic cells leads to decreased expression of PD-L1 in tumor cells and results in potent
anti-tumor response and attenuation of tumor growth in mice [56].

3.4 c-Myc regulation of PD-L1

The transcription factor c-Myc induces the expression of many genes involved in different
functions, including cell proliferation, growth, differentiation, and apoptosis [60]. The ¢-
Myec gene is frequently amplified in many cancer types and upregulation of c-Myc is thought
to be one of the driving forces to facilitate development of cancer [60]. Inactivation of c-Myc
and other oncogenes in mouse tumor models leads to complete tumor clearance
accompanied by the recruitment of CD4* T cells [61]. Notably, recent studies demonstrate
that PD-L 1is a direct transcriptional target of c-Myc [62, 63]. Inactivation of c-Myc in
mouse tumor cells decreases expression levels of PD-L1 to improve the anti-tumor immune
response. Moreover, re-expression of PD-L1 in c-Myc inactivated tumors suppresses the
anti-tumor immunity. Recent results also showed that c-Myc expression significantly
correlated with PD-L1 expression in NSCLC patients with poor clinical outcomes [64].

3.5 The effects of the MAPK pathway on PD-L1 expression regulation

Mitogen-activated protein kinase (MAPK) signaling pathways are frequently mutated and
over-activated in multiple human cancer types, which have shown promise as therapeutic
targets for cancer treatment [65]. MAPK pathways are largely mediated by extracellular-
signal-regulated kinase (ERK), c-Jun amino-terminal kinases (JNKs) and p38 [65].
Increasing evidence showed that these MAPK oncogenic signaling pathways promote tumor
development and immunotherapy resistance [66]. Pharmacological inhibition of the MAPK
pathway components improve the anti-tumor response [66]. Moreover, MAPK signaling
pathways are directly involved in regulating PD-L1 expression to evade cancer immune
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surveillance. The MAPK/ERK pathway increases PD-L1 expression by activating the
transcription factor c-Jun [67]. In keeping with this notion, inhibition of MAPK signaling
pathways lead to a decrease in PD-L1 expression levels in tumor cells [67, 68].

3.6 Theinvolvement of the PI3K pathway in regulating PD-L1 expression

Gene alterations leading to hyperactivation of the phosphatidylinositol 3-kinase (PI13K)
pathway are frequently found in many types of human cancers [69]. These alterations
include, but are not limited to, the loss of the phosphatase and tensin homolog (PTEN),
mutation and/or upregulation of PI3K catalytic and regulatory subunits, and the upstream
activator K-RAS as well as downstream effectors AKT and PDK1 [69]. In addition to
inducing cell death, PI3K inhibitors also suppress immune escape largely through
stimulation of the T-cell response or modulation of the myeloid cell compartment [70]. Loss
of PTEN results in activation of PI3K and increases PD-L1 expression in part by elevating
PD-L1 protein translation rate in glioma and lung squamous cell carcinoma, which leads to
immune resistance and escape [71, 72]. Additionally, PI3K activation can also induce PD-L1
expression through the transcription factor STAT3 in human melanoma [67].

3.7 EGFR pathway regulation of PD-L1

The epidermal growth factor receptor (EGFR) serves as one of epidermal growth factor
family of receptor tyrosine kinases (ErbBs) and is activated following binding with peptide
growth factors of the EGF-family of proteins [73]. Inappropriate activation of the EGFR was
frequently observed in various cancer types. Activation of the EGFR pathway in tumor cells
results in an immunosuppressive lung microenvironment and less responsive to the anti-
PD-1 immunotherapy through induction of PD-L1 expression [74]. Further studies showed
that the EGFR pathway elevates PD-L1 expression primarily through the 1L-6/JAK/STAT3
signaling axis, which can be reduced by treatment with EGFR inhibitors [74, 75].

3.8 Hippo signaling in the regulation of PD-L1 expression

The Hippo tumor suppressive pathway is frequently inactivated in various types of cancers
[76]. YAP1 and TAZ function as oncogenes in cancer and form a complex with TEAD,
which plays an important role in cell proliferation, apoptotic inhibition, and the epithelial-
mesenchymal transition (EMT) [76, 77]. A recent study showed that the Hippo pathway
suppresses anti-tumor immunity largely through the LAST1/2 kinases [58]. Additionally,
two groups independently reported that YAP1 could bind to the promoter region of PD-L1to
induce PD-L1 expression in lung adenocarcinoma and NSCLC to control immune evasion
[78, 79]. Moreover, it has also been reported that TAZ could induce PD-L1 upregulation at
the transcriptional level in human cancer cells, which inhibits the anti-tumor activity of T
cells in the tumor microenvironment [80].

4. Regulation of PD-L1 expression by microRNAs

MicroRNAs (miRNAS) consisting of 20-22 nucleotides regulate a large number of genes
including tumor suppressors and oncogenes through targeting their 3’-UTR to promote
cleavage of MRNA transcripts [81]. Recent studies have demonstrated that abnormal
expression of miRNAs plays an important role in regulating cancer progression and immune
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checkpoint blockade mediated cancer therapies [81, 82]. Moreover, increasing evidence
demonstrated that miRNASs directly target 3’-UTR of the PD-L1 mRNA to control PD-L1
expression and anti-tumor immunity (Figure 3, lower panel).

Chen et al. showed that microRNA-200 (miR-200), a suppressor of the epithelial-to-
mesenchymal transition (EMT) and metastasis, directly targets the 3’-UTR of PD-L1 mRNA
and suppresses PD-L1 expression [83]. They further found that the zinc-finger E-box-
binding homeobox 1 (ZEB1) factor, an EMT activator and transcriptional repressor of
miR-200, elevates PD-L1 expression and metastasis in part through suppressing CD8* T cell
activity in non-small cell lung cancer (NSCLC) [83]. These results suggest that evaluation of
the ZEB1/miR-200 axis-mediated regulation of PD-L1 might be a useful marker of lung
cancer to guide treatment selection with anti-PD-1/PD-L1 blockade therapies. MiR-34, a
downstream target of p53, directly binds to the PD-L1 3’-UTR and inhibits PD-L1
expression [84]. Notably, the authors delivered miR-34a-loaded liposomes (MRX34) in a
syngeneic mouse model of lung cancer and found that MRX34, alone or in combination with
radiotherapy, dramatically reduces PD-L1 expression on tumor cells and enhances cytotoxic
immune T cell populations in the tumor microenvironment [84]. In addition to their
functions in lung cancer, miR-200c and miR-34a also target APD-L1 mRNA to decrease PD-
L1 expression in acute myeloid leukemia [85, 86]. In gastric cancer, miR-152 and miR-570
were reported to directly bind the 3’-UTR of PD-L 1 and suppress PD-L1 expression [87,
88]. In pancreatic cancer, miR-142-5p suppresses PD-L 1 expression by binding to its 3’-
UTR, which enhances anti-tumor immunity through increasing cytotoxic CD4" and CD8* T
lymphocytes [89]. In ovarian cancer, miR-424 overcomes chemo-resistance through T-cell
immune response activation by directly binding to PD-L1 3’-UTR and decreasing PD-L1
expression [90]. Thus, it appears that various miRNAs regulate PD-L1 mRNA in different
tissues to offer functional diversities.

5. Regulation of PD-L1 by post-translational modifications to affect the
efficacy of PD-1/PD-L1 blockade

Protein post-translational modifications (PTMs) including ubiquitination, phosphorylation,
glycosylation, methylation, and acetylation play critical roles in regulating protein activity,
stability, localization, trafficking, and interactions with binding partners including protein,
DNA, RNA or lipids [91]. These above mentioned PTMs are essential for controlling
various cellular processes including tumor formation, metastasis and anti-tumor immunity
[92, 93]. Increasing evidence demonstrated that PD-L1 also undergoes different post-
translational modifications to affect its stability, internalization, localization as well as its
physiological and pathological functions (Figure 5).

5.1 Poly-ubiquitination regulation of PD-L1 stability to govern anti-PD-1 therapeutic

efficacy

The ubiquitin-proteasome system (UPS) promotes protein poly-ubiquitination and
subsequent degradation to control various cellular processes and diseases including immune
surveillance and tumorigenesis [94, 95]. Degradation by the UPS is catalyzed by three
distinct sequential actions of the activating (E1), conjugating (E2), and ligase (E3) enzymes
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that lead to the covalent attachment of poly-ubiquitin chain to lysine residues on the target
protein, which can be recognized by the 26S proteasome complex to promote its degradation
[94]. Li et al. showed that the Cullin 1 based ubiquitin E3 ligase adaptor protein p-TRCP
promoted PD-L1 poly-ubiquitination and degradation through direct binding with PD-L1 in
a 175L.SGXXTxxxS1g4 motif-dependent manner, which requires GSK3p-mediated
phosphorylation of PD-L1 at T180 and S184 residues [96]. In keeping with these findings,
the dominant-negative form of B-TRCP lacking the F-box or mutation of PD-L1 in the
GSK3p phosphorylation motif abolished B-TRCP-mediated PD-L1 poly-ubiquitination and
degradation. The Hung group further identified the epidermal growth factor (EGF) signaling
as the upstream regulator for the GSK3p/p-TRCP axis to regulate PD-L1 stability [96].
Notably, they demonstrated that the EGFR inhibitor gefitinib could dramatically reduce PD-
L1 expression in breast cancer cells through releasing EGF-mediated suppression of GSK3p
activation, which increases the activation of tumor-infiltrated CD8* T-cells and enhances the
efficacy of PD-1 antibody therapy in several syngeneic mouse tumor models [96]. Moreover,
the authors also mentioned that gefitinib might provide several lines of benefits to this
combination therapy such as reducing PD-L1 expression to limit its binding to T-cell
receptors, as well as limiting PD-L1 oncogenic potential and reducing EGFR-overexpressing
cell survivals [96].

Recently, our group showed that PD-L1 protein abundance fluctuates during cell cycle, and
further identified the cell cycle kinase cyclin D-CDK4 activity play a crucial role in
destabilizing PD-L1 [97]. Mechanistically, we identified Cullin 35POP as the physiological
ubiquitin E3 ligase for promoting PD-L1 poly-ubiquitination and degradation. We further
demonstrated that the cyclin D-CDK4 stabilizes SPOP in a phosphorylation-dependent
manner and treatment with the CDK4/6 inhibitor palbociclib destabilizes SPOP to increase
PD-L1 protein abundance to possibly induce immune evasion [97]. Pathologically, cancer
patients derived loss-of-function mutations in SPOP fail to promote PD-L1 poly-
ubiquitination-mediated degradation, which leads to stabilization of PD-L1 accompanied
with reduced numbers of tumor-infiltrating lymphocytes (TILs) in tumors [97]. Notably, the
CDKa4/6 kinase inhibitor palbociclib synergized with anti-PD-1 therapy to elicit an enhanced
therapeutic efficacy as evidenced by dramatically enhancing tumor regression and improving
overall survival rates in syngeneic mouse tumor models [97].

5.2 Mono-ubiquitination regulation of PD-L1 upon EGF stimulation

In addition to poly-ubiquitination, proteins can also be modified with mono- or multi-
ubiquitination through conjugating a single ubiquitin molecule to one (mono-ubiquitination)
or several lysines (multi-ubiquitination), which plays critical roles in regulating various
cellular processes, including control of protein stability, localization, endocytosis and
trafficking independent of proteasome mediated degradation [98]. EGF treatment induces
the mono- and multi-ubiquitination on PD-L1, leading to stabilization of PD-L1 [99].
Moreover, using chemical inhibitors targeting EGFR or ubiquitin E1 activating enzyme
dramatically reduced the mono- and multi-ubiquitination of PD-L1 accompanied with
decreasing the total PD-L1 level [99]. However, the specific E3 ligase for promoting the
mono-ubiquitination of PD-L1 remains unknown and further in-depth studies are needed to
address this critical question. Interestingly, Li ef a/. found that the EGF signaling pathway
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can also positively regulate PD-L1 stability largely through inactivating GSK3p and
suppressing GSK3p-mediated phosphorylation of PD-L1, which prevents the E3 ligase
adaptor protein B-TRCP-mediated PD-L1 poly-ubiquitination and subsequent degradation
[96]. Hence, further investigation to explore whether there is crosstalk between EGF-
induced mono-ubiquitination and GSK3p/p-TRCP-mediated poly-ubiquitination and how to
use these findings to design novel combination therapies for human cancer treatment are
warranted.

5.3 De-ubiquitination regulation of PD-L1 by CSN5 to modulate cancer immune therapy

Ubiquitination is a reversible process where deubiquitinating enzymes (DUBSs) catalytically
remove the single ubiquitin or poly-ubiquitin chains from the targeted proteins [100].
Increasing evidence demonstrate that mutation or dysregulated expression of DUBs lead to
various human diseases including immune diseases and cancer [101, 102]. Hence,
developing selective inhibitors of DUBs has been proposed as new therapeutic strategy for
human immune diseases and cancer therapy. Recently, the COP9 signalosome 5 (CSN5) was
identified as a DUB for PD-L1 deubiquitination, which results in stabilization of PD-L1 to
control T cell suppression [103]. Lim et a/. further demonstrated that tumor necrosis factor
alpha (TNF-a) stimulation enhances CSN5 expression through inducing the transcriptional
factor NF-xB p65 subunit to bind CSN5 promoter and promote its transcription [103]. Upon
TNF-a-induced CSN5 binding with PD-L1, CSN5 removes the poly-ubiquitin chain on PD-
L1 thereby stabilizing PD-L1, which subsequently promotes tumor immune escape [103]. In
keeping with these findings, inhibition of CSN5 by the natural compound curcumin reduced
TNF-a/ NF-xB signaling induced PD-L1 stability, which synergized with anti-CTLA-4
therapy to enhance anti-tumor immunity and retard tumor growth [103]

5.4 Phosphorylation of PD-L1 by GSK3p and AMPK to affect PD-L1 protein stability

Dysregulation of kinase-dependent phosphorylation signaling events are frequently observed
in many human diseases including neurodegenerative diseases, inflammatory disorders, and
cancer [104, 105]. Recently, key kinase signaling pathways such as JAK, mTOR-Akt, and
LATS1/2 kinases dependent pathways play critical roles in regulating cancer immune
therapy efficacy [58, 106, 107]. As described above, it has been reported that GSK3p
directly binds with the C-terminal domain of PD-L1 and phosphorylates T180 and S184 on
PD-L1, which is subsequently recognized by p-TRCP to promote PD-L1 poly-ubiquitination
and degradation [96]. The authors further demonstrated that activation of GSK3p through
inhibition of its upstream negative regulator EGF signaling could dramatically reduce PD-L1
levels and enhance PD-1 blockade therapy in mouse tumor models [96].

AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular
metabolism and energy homeostasis [108]. Moreover, emerging evidence also showed that
AMPK activation regulates T cell metabolism and function [109]. However, how the AMPK
signaling pathway regulates cancer immunotherapy remains elusive. Recently, Cha et al.
found that metformin-activated AMPK directly phosphorylates PD-L1 at the S195 residue to
induce abnormal glycosylation, which results in PD-L1 degradation through an ERAD
pathway [110]. Notably, this study also showed that metformin combination with the
CTLA4 blockade significantly suppresses tumor growth in syngeneic mouse models [110].
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Additionally, PD-L1 is also reported to be phosphorylated following EGF treatment [99].
However, the physiological function of EGF-induced phosphorylation of PD-L1 warrants
further in-depth investigation.

5.5 Targeting glycosylated PD-L1 for eradication of triple-negative breast cancer (TNBC)

Growing evidence has revealed that protein glycosylation plays fundamental roles in
regulating various human diseases including Alzheimer's disease, cardiovascular disease and
cancer [111]. N- and O-linked protein glycosylation, which are covalently conjugated with
glycans via the nitrogen atom of asparagine or oxygen atom of serine, threonine,
hydroxylysine or hydroxyproline residues, respectively, have been widely studied [112].
Recent studies demonstrated that dysregulation of glycosylation might serve as a new cancer
hallmark and potential therapeutic target because it has been shown to be related with tumor
initiation, angiogenesis, invasion, metastasis and immune surveillance [112, 113]. Hung’s
group showed that PD-L1 could be modified by N-linked glycosylation, which stabilizes
PD-L1 largely through preventing GSK3p/p-TRCP-mediated PD-L1 poly-ubiquitination and
degradation [96]. They also found that the upstream EGF signaling induces PD-L1 N-linked
glycosylation and stabilizes PD-L1, which leads to tumor cell immunosuppression [96].
Hence, using the small molecule gefitinib to inhibit EGF signaling could destabilize PD-L1
and promote anti-tumor immunity [96].

Furthermore, EGF signaling upregulates the expression of -1, 3-N-
acetylglucosaminyltransferase (B3GNT3) to promote the N-glycosylation of N192 and
N200 sites on PD-L1 in TNBC cells, which is required for binding with PD-1 on cytotoxic T
cells and leading to T cell exhaustion [114]. Notably, Hung’s group developed a specific
antibody targeting the glycosylated PD-L1 (gPD-L1) and gPD-L1 antibody-drug conjugates
(9-PD-L1-ADCs), which blocks PD-L1 interaction with PD-1 and promotes PD-L1
internalization for lysosome-mediated degradation [114]. Moreover, their results showed that
g-PD-L1-ADCs could reactivate cytotoxic T cells and exert a bystander effect to kill
adjacent cancer cells without PD-L1 expression, suggesting that targeting PD-L1
glycosylation might be a potential strategy to improve cancer immune therapy [114].
Additionally, the N-glycosyltransferase STT3 could stabilize and upregulate PD-L1 in
cancer stem cells to evade cancer immune surveillance, which will provide another
therapeutic target for suppressing the STT3 enzymatic activity to destabilize PD-L1 to
benefit PD-1/PD-L1-mediated checkpoint blockade [115].

5.6 Regulation of PD-L1 protein stability by PD-L1 binding partners

In addition to post-translational modifications mentioned above, two independent groups
identified through large-scale genetic screens that CKLF-like MARVEL transmembrane
domain containing protein 6 (CMTMB6) as the critical positive regulator for PD-L1 [116,
117]. Both groups reported that depletion of CMTMé6 dramatically upregulated PD-L1 in
multiple human cancer cell lines [116, 117]. They further found that CMTMBG stabilized PD-
L1 at the post-translation level via different mechanisms. Burr et a/. showed that in addition
to at the plasma membrane, CMTMBG also co-localizes with PD-L1 in recycling endosomes,
which helps endocytosed PD-L1 recycle thereby preventing lysosome-mediated degradation
(Figure 5) [117]. Mezzadra and colleagues demonstrated that CMTM6 interacts with PD-L1
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at the cell surface to inhibit PD-L1 poly-ubiquitination, which might be dependent on the
ubiquitin E3 ligase STUB1 [116]. Moreover, they also identified that the CMTM4, but not
other CMTM family members, plays a complementary function when CMTMEé is deficient
in cells [116]. Moreover, the integral membrane scaffolding protein Sigmal stabilizes and
elevates PD-L1 in cancer cells largely through preventing autophagy-mediated degradation
of PD-L1 [118], and the co-chaperone FKBP51 stabilizes PD-L1 in glioma (Figure 5) [119].
Interestingly, both Sigmal and FKBP51s stabilization of PD-L1 is through PD-L1
glycosylation in the endoplasmic reticulum (ER) [118, 119]. Together, these studies suggest
that targeting these upstream regulators including CMTM4/6, Sigmal and FKBP51s to
reduce PD-L1 expression might be alternative strategies to enhance PD-1/PD-L1 immune
checkpoint blockade, which will likely provide advantage as combination strategies with
other immune therapies such as anti-CTLA4 treatment.

6. Regulation of PD-L1 by the DNA damage pathway

6.1 Genomic instability determines sensitivity to immune checkpoint blockade

Genomic instability, driven by exogenous DNA-damaging agents or endogenous DNA repair
deficiency, confers cancer cells with an increased propensity of genome alteration, and ranks
as one of the most common hallmarks of tumors [120]. Upon double strand breaks (DSB) in
normal cells, the primary DNA damage response (DDR) transducer, nuclear kinase ataxia-
telangiectasia mutated (ATM) is activated [121], and subsequently transduce this signal to its
downstream effector such as the checkpoint kinases ATR, Chk1, Chk2, and the p53 tumor
suppressor [122-128], which in turn arrest cell cycle progression to allow DNA damage
repair to commence, or promote damage-induced cell apoptosis in instances where DNA
damage is too extensive [129-132]. Cancer cells are capable of escaping from immune
surveillance by expressing inhibitory proteins to suppress T cell function, such as the well-
defined PD-L1 immune checkpoint molecule [133, 134]. Of note, recent studies have
suggested a correlation between genomic instability and response to immunotherapy with
checkpoint inhibitors largely through generating neoantigens, which puts the interaction
between DNA damage and immune system into attention [135-137]. Given the fact that
several reviews have discussed this topic [138-142], we will specifically discuss the role of
DNA damage in the regulation of PD-L1 expression (Figure 6).

6.2 Mechanisms of DNA damage regulation of PD-L1 expression

As mentioned above, the JAK-STAT-IRF1 pathway has been shown to regulate PD-L1
expression [45, 143]. DNA damage plays a critical role in modulating the JAK-STAT
signaling cascade as well (Figure 6). For example, STAT1 is activated in a p53-dependent
manner [144], while JAK1 and STAT3 exhibit enhanced phosphorylation and transcriptional
activity upon treatment with DNA damaging agents [145]. These results indicate a potential
link between DNA damage and PD-L1 expression. In support of this notion, a recent study
suggests DSBs regulates PD-L1 expression in a JAK-STAT-IRF1-dependent manner [146].
Interestingly, STAT3 is able to modulate the DNA damage response pathway as well
[147-149], establishing a feedback loop among DNA damage response and JAK-STAT
signaling integrity.

Trends Biochem Sci. Author manuscript; available in PMC 2019 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al. Page 13

In addition, tumor cells harbor cytosolic DNA produced by DSB [150], which will further
prime cytosolic DNA sensors, such as the well-defined cyclic GMP-AMP synthase (cGAS)
and DNA-dependent protein kinase (DNA-PK) [151, 152]. Recognition of cytosolic DNA by
the cGAS-STING pathway and DNA-PK subsequently activates interferon regulatory factor
3 (IRF3) [153, 154], accounting for the causal link between DNA damage and IRF3
activation [155]. Consequently, activation of IRF3 promotes type | interferon production
[156, 157], activates JAK-STAT pathway, and elevates PD-L1 expression (Figure 4) [45,
143]. Recent studies suggest that the S-phase DNA damage-induced PD-L1 expression is
largely STING-dependent [158].

6.3 Targeting DNA damage and repair for enhancing anti-PD-1/PD-L1 efficacy

Given the observation that mutational burden and neoantigen formation are highly correlated
[159], in addition to the increased PD-L1 expression levels in the context of genome
instability, we speculate that tumors with higher mutational burden harbor more neoantigens,
which facilitates tumor infiltrating T cells recognition; on the other hand, elevated PD-L1
protein levels makes PD-L1 blockade more critical for reactivating cytotoxic T cells to target
tumor cells. Indeed, several clinical studies have observed a positive correlation between
neoantigen load and PD-L1 expression levels [160, 161], and tumors with higher mutation
burden were more susceptible to PD1/PD-L1 blockade [136].

Based on these studied, combination therapy using DNA damage agents and PD1/PD-L1
checkpoint showed encouraging results. For example, ionizing irradiation (IR) upregulates
PD-L1 in the tumor microenvironment and administration of anti-PD-L1 enhanced the
antitumor immunity in mice [162]; PARP inhibitors upregulate PD-L1 expression and the
combination treatment with PARP inhibitors and anti-PD-L1 significantly increased the
therapeutic efficacy /n vivo [163]; the combination of cGAMP and anti-PD-L1 in
combination exerted stronger anti-tumor effects than did either treatment alone [164].
Currently, the study of interaction between DNA damage checkpoint and PD1/PD-L1
immune checkpoint is still in its infancy, and more work needs to be done to establish their
relationship and provide theoretical insights for future clinical trials of DNA damaging
agents in combination with immunotherapy to combat cancers.

7. Concluding remarks and future perspectives

The success of immunotherapies, especially targeting the PD-1/PD-L1 pathway, has given
hope and confidence to better treat and possibly cure cancer [4, 5]. Next, we should explore
how to enhance the efficacy and response rate of PD-1/PD-L1 blockade to benefit a greater
range of cancer patients. To this end, in-depth investigation and elucidating the molecular
mechanisms that regulate the PD-1/PD-L1 pathway will be one of the key steps for
designing novel therapeutic strategies to overcome anti-PD-1/PD-L1 resistance and improve
the anti-tumor immunity for cancer therapy.

Based on results from clinical trials of anti-PD-1/PD-L1 immunotherapy, it is still debatable
whether PD-L1 expression level is a predictive biomarker for efficacy or response rate of
PD-1/PD-L1 blockade in at the individual patient level. Although increasing evidence
showed that patients with PD-L1-positive (PD-L1*) tumors have a better response rate and
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overall survival than PD-L1-negative (PD-L1") patients in different cancer types, it was also
reported that there are patients with PD-L1* tumors exhibiting resistance to anti-PD-1/PD-
L1 treatment and minor population patients with PD-L1~ tumors that also benefit from these
treatments [165-168]. As we discussed above, various cell signaling pathways can regulate
PD-L1 expression at the genomic, transcriptional, post-transcriptional, translational, and
post-translational levels to affect anti-PD-1/PD-L1 treatment. However, there is still a lack of
standard methods to evaluate the quantity of PD-L1 expression on tumor cells necessary to
allow a response to PD-1/PD-L1 blockade. Moreover, there is the correlation of PD-L1
expression on tumor cells with response to PD-1/PD-L1 blockade under the adaptive
immune resistance that PD-L1 expression is induced by the secreted IFNvy of infiltrated T
cells, which were well discussed in recent several reviews [169-171]. Additionally, PD-L1
expression on tumor infiltrating immune cells in tumor microenvironment, particularly
macrophages, dendritic cells and stromal cells are also critical for PD-1/PD-L1 blockade
[165, 167, 172, 173]. However, in most of current clinical trials there are no distinctions of
PD-L1 expression on the cell type such as tumor cells or infiltrating immune cells when
tumor biopsies are evaluated for PD-L1 expression. Additionally, it is still warranted to
assess whether other important signaling pathways or modifications including ubiquitin-like
modification, methylation, or acetylation can regulate PD-L1 expression levels to control
anti-tumor immunity (See Outstanding Questions).

As PD-1 is the important part for targeting PD-1/PD-L1 immuno-checkpoint blockade,
manipulating PD-1 expression on T cells might be also critical for enhancing anti-PD-1/PD-
L1 immunotherapy. Hence, exploring the upstream signaling pathways controlling PD-1
post-translational modifications such as ubiquitination, glycosylation, acetylation and
methylation will be required to understand and design better strategies for improving the
response rate and efficacy for PD-1/PD-L1 blockade in future. Moreover, additional
immune-modulatory targets such as lymphocyte activation gene-3 (LAG3), T cell-
immunoglobulin-mucin domain 3 (TIM3), T Cell Immunoglobulin and ITIM Domain
(TIGIT) as well as indoleamine 2, 3-dioxygenase (IDO) or transforming growth factor-p
(TGFB) in tumor microenvironment have been shown their abilities to suppress anti-tumor
immunity [11]. Further studies are needed to explore how these targets in tumor
microenvironment are regulated at various levels and whether manipulating these targets
expression can affect anti-tumor immune response.
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Outstanding Questions

Besides reported ubiquitination, N-linked glycosylation and phosphorylation, whether
additional post-translational modifications such as ubiquitin-like modification,
methylation, acetylation and succination also can regulate PD-L1 expression to control
immunosuppression in cancer patients?

Noncoding RNAs (ncRNAs) including microRNAs (miRNAS), long noncoding RNAs
(IncRNAs) and circular RNAs (circRNAS) have been shown to play important roles in
regulating gene expression to control tumorigenesis and cancer immunity. However,
exception of miRNAs reported in regulating PD-L1 expression and immune surveillance,
it is still unclear whether IncRNAs and circRNAs also participate in governing PD-L1
expression to control cancer immune therapy.

Although PD-1 expression was well studied at the transcriptional levels, the upstream
signaling pathways governing PD-1 post-translational modifications are less studied.
Hence, exploring the upstream signaling pathways controlling PD-1 post-translational
modifications such as ubiquitination, glycosylation, acetylation and methylation will be
required to understand and design better strategies for improving the response rate and
efficacy for PD-1/PD-L1 blockade in future.

Immunomodulatory targets in addition to PD-L1/PD-1 such as LAG3, TIM3, TIGIT, IDO
and TGF have been shown to their abilities to regulating anti-tumor immunity in single
agent or synergizing with anti-PD-1/PD-L1. However, it warrants in-depth studies to
explore how these targets could be regulated in cells and whether manipulating their
expression levels can control anti-tumor immune response.
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T cell activation
Anti-tumor activity

T cell Dysfunction
Lack of anti-tumor activity

Figure 1: A schematic illustration of the molecular mechanism for reactivating T cells using
PD-1/PD-L1 blocking antibodies.
When PD-L1* tumor cells engage with PD-1* T cells, this interaction leads to T cell

dysfunction and lack of anti-tumor activity. However, blocking PD-1 interaction with PD-L1
using the anti-PD-1 or PD-L1 antibody can reactivate T cells, releasing its anti-tumor
activity. The inhibition symbol (L) between the T cells and tumor cells represents activated
T cells possessing the anti-tumor activity. The red X symbol in the left panel represents T
cell dysfunction and lack of anti-tumor activity.
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Figure 2: Inhibition of epigenetic modifiers lead to activate interferon signaling pathways largely

through increasing endogenous retroviral elements (ERVS).

Decreasing DNMT-mediated DNA methylation by DNMT inhibitors or elevating histone

H3K4me2 by LSD1 inhibition upregulate the ERVs to activate interferon signaling

pathways, leading to promoting antigen presentation via MHC1, immunogenicity, or

cytokines production, which synergize with immune-checkpoint blockade such as anti-

PD-1/PD-L1.
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Figure 3: Genetic, epigenetic and microRNAs regulation of PD-L1.
Regulatory mechanisms for PD-L1 by genetic alterations (purple), epigenetic modifiers

(orange), and microRNAs (pink) were summarized.
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Figure 4: Upstream signaling pathways regulating PD-L1 at transcriptional level.
Tumor cells evade anti-tumor effects of T cells in part by elevating PD-L1 mRNA

expression at transcriptional level via activation of different upstream signaling pathways.
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Figure 5: PD-L1 regulation by post-translational modifications (PTM:s).
A schematic illustration of various types of PD-L1 PTMs including ubiquitination,

phosphorylation, and N-linked glycosylation.
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Figure 6: DNA damage signaling pathways regulating PD-L1 at transcriptional level.
DNA-damaging events-induced double strand break (DSB) triggers (1) ATM/ATR kinase

activation; (2) cytosolic DNA generation, both of which finally activate JNK-STAT signaling
cascade and up-regulate PD-L1 expression; (3) Insufficient or error-prone repair results in
genetic alteration and neoantigen formation, which facilitates T cell recognition.
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