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In social groups, high reproductive skew is predicted to arise when the repro-

ductive output of a group is limited, and dominant individuals can suppress

subordinate reproductive efforts. Reproductive suppression is often assumed

to occur via overt aggression or the threat of eviction. It is unclear, however,

whether the threat of eviction alone is sufficient to induce reproductive restraint

by subordinates. Here, we test two assumptions of the restraint model of repro-

ductive skew by investigating whether resource limitation generates

reproductive competition and whether the threat of eviction leads to reproduc-

tive restraint in the clown anemonefish Amphiprion percula. First, we use a

feeding experiment to test whether reproduction is resource limited, which

would create an incentive for the dominant pair to suppress subordinate repro-

duction. We show that the number of eggs laid increased in the population over

the study period, but the per cent increase in fed groups was more than twice

that in unfed groups (205% and 78%, respectively). Second, we use an eviction

experiment to test whether the dominant pair evicts mature subordinates,

which would create an incentive for the subordinates to forgo reproduction.

We show that mature subordinates are seven times more likely to be evicted

than immature subordinates of the same size. In summary, we provide exper-

imental support for the assumptions of the restraint model by showing that

resource limitation creates reproductive competition and a credible threat of

eviction helps explain why subordinates forego reproduction. Transactional

models of reproductive skew may apply well to this and other simple systems.
1. Introduction
A central focus of research on social evolution is to understand the causes of

variation in reproductive skew [1–3]. Theoretical models often assume that

the group’s reproductive output is limited, owing to limited availability of criti-

cal breeding resources such as nutrition and nest sites, and that individuals

compete for reproduction [4–7]. When such reproductive competition exists,

dominant individuals may suppress subordinate reproductive efforts by inter-

fering with mating, inducing stress or killing offspring [8–12]. Such interactions

have the appearance of being costly and inefficient for both parties, and one

might predict that natural selection would favour more efficient solutions if

the parties were to have complete information on the outcome [13,14].

Under such conditions of complete information, it may be possible for domi-

nants and subordinates to come to a more efficient, negotiated settlement,

whereby the dominant uses the threat of eviction and the subordinate shows

reproductive restraint because of this threat [13,15–22]. While the threat of evic-

tion does not seem to be effective in inducing reproductive restraint in mammal

groups with multiple subordinates that can respond retroactively to eviction [23],

theory suggests that it will be more effective in dyadic relationships or linear
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hierarchies where the threat is targeted and eviction is non-

reversible [23,24]. Still, it remains unclear whether the threat

of eviction is used to induce reproductive restraint in nature.

The clown anemonefish, Amphiprion percula, provides a

tractable system to investigate these ideas. Groups of A. percula
are found in close association with sea anemones Heteractis
magnifica [25–27]. Each group is composed of a dominant

breeding pair and a small number of unrelated non-breeders

[28–30]. Correlational evidence suggests that the reproductive

output of the group is influenced by territory quality [31].

Within each group, there is a size-based dominance

hierarchy: the female is largest, the male is second largest,

and the non-breeders get progressively smaller [32,33]. Evi-

dence suggests that the size hierarchy emerges because

subordinates show growth restraint to avoid eviction by

their immediate dominants [27,32].

Here, we test the hypothesis that subordinate A. percula
will show reproductive restraint because of reproductive

competition and the threat of eviction. Specifically, we test

two assumptions of the restraint model of reproductive

skew. First, reproduction is food limited, leading to reproduc-

tive competition within groups and providing an incentive

for the breeding pair to evict other mature group members.

Food limitation is tested by a food supplementation exper-

iment and comparing the number of eggs laid between fed

groups and unfed groups. Second, the breeding pair will

evict other mature individuals, but not immature individuals,

providing an incentive for some individuals to forgo their

own reproduction. This is tested by an eviction experiment

and comparing the response of a breeding pair with the

introduction of new mature and immature group members.
2. Material and methods
(a) Study population
This study was conducted in May–August 2017 on inshore reefs

near Mahonia Na Dari Research and Conservation Centre, in

Kimbe Bay, Papua New Guinea. All fieldwork was conducted

using SCUBA. From 26 May to 23 June, we identified 52 breeding

groups occupying the anemone H. magnifica on 10 reefs. Groups

consisted of a breeding pair and zero to three non-breeders. Indi-

viduals were ranked (1–5) based on their size relative to other

individuals within their anemone, with the largest being rank

1. Individuals were also photographed, and the photographs

were used to identify individuals and confirm that they survived

the entire study and did not move between anemones during the

study [26,32,34,35].

We monitored the reproduction of all groups, every 2 days

for three lunar months (26 May–21 August). Our monitoring

spanned three lunar months rather than calendar months,

because A. percula breed on a lunar cycle [36]. Breeding was

readily detectable. In the days before spawning, the male

selected a nest site next to the base of the anemone and cleaned

it, and in the days after spawning, the male spent much of his

time tending the eggs [37]. The age of the eggs was determined

using the colour of the yolk and the presence and developmental

stage of the embryos’ eyes [30]. The eggs hatched after 7 days.

Each clutch was photographed on day 1 or 2 to provide an esti-

mate of the number of eggs laid, and the number of eggs was

determined using the Cell Counter plugin for IMAGEJ.

The study began shortly after a severe mass bleaching event.

Many of the anemones studied were visibly affected by unusually

high temperatures in Kimbe Bay from March to May 2017. We

bore this in mind when it came to designing our two experiments:
(i) a feeding experiment (see below), and (ii) an eviction exper-

iment (see below). For the feeding experiment, the same number

of bleached and unbleached anemones was included in both treat-

ment and control groups. For the eviction experiment, bleached

anemones were not included in the experiment.

(b) Feeding experiment
To test the hypothesis that food resources for reproduction are

limiting, we conducted a feeding experiment with all 52 breeding

groups. We collected one lunar month of baseline data (26 May–

23 June), then two months of data in which we manipulated (fed)

half of the groups (n ¼ 25) while keeping the other half (n ¼ 27)

as controls (24 June–21 August). These groups were randomly

stratified to ensure equal amounts of fed/control groups for

the reefs closer to shore (n ¼ 4 reefs and n ¼ 32 anemones)

versus the reefs further from shore (n ¼ 6 reefs and n ¼ 20 ane-

mones) and for bleached anemones (n ¼ 10 anemones) versus

unbleached anemones (n ¼ 42 anemones). See Saenz-Agudelo

et al. [38], Beldade et al. [39] and Chausson et al. [40] for the

rationale for stratifying by these two factors. Consequently, dis-

tance from shore and bleached status were not included as

covariates in the analysis.

The treatment groups received one vial (3 ml) of food pellets

(New Life Spectrum, marine fish food 1 mm pellets) and one vial

(3 ml) of dried brine shrimp (Omega One, freeze dried brine

shrimp). The food was kept dry in capped tubes until delivery.

Brine shrimp (positively buoyant) were delivered first, by squirt-

ing the shrimp onto the anemone with a pipette. The pellets

(negatively buoyant) were delivered second by opening the vial

and tipping them onto the anemone. Through this method,

most food was either immediately consumed by the fish, or it

was stuck among anemone tentacles, where the fish could con-

sume it. Some food was consumed by the anemone and other

fish species present around the anemone. The control groups

were treated in the same manner, by squirting water from an

empty vial into the anemone and opening and tipping out

another empty vial over the anemone, to control for the possible

disturbance caused by feeding.

(c) Eviction experiment
To test the hypothesis that the breeding pair will evict other

mature individuals but not immature individuals, we conducted

an eviction experiment between 21 and 26 August. Thirteen

focal groups, which all consisted of at least three individuals and

had bred in the preceding months, were chosen. Only groups con-

sisting of at least three individuals were chosen to ensure that the

dominant breeders were predisposed to tolerating a non-breeding

subordinate. Only groups that were observed breeding in the pre-

ceding months were chosen to ensure the two dominant

individuals were indeed breeding adults. All individuals in each

group were caught and measured to the nearest 0.1 mm.

At the beginning of the experiment, rank 3 and other smaller

individuals (if present) were removed from the focal group, leav-

ing only the two dominant individuals, rank 1 and rank 2

(figure 1). Then, rank 2 (reproductively active male) or rank 3

(non-breeding subordinate) from different groups was intro-

duced, one at a time, on different days, in random order

(figure 1). While rank 3 is not reproductively active, they are

capable of reproduction [29]. The introduced rank 2 and rank 3

were smaller than the original rank 3, and they were size

matched, within 1 mm standard length of each other, so evictions

would not be driven by size [32].

Introductions were left overnight and the following day we

noted the presence/absence of the introduced individual and

5 min of observations were conducted. Introducees were con-

sidered evicted if they had either disappeared overnight or if

they spent most of the observed time (�3 min) outside the
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Figure 1. Schematic diagram of the eviction experiment. (a) Focal groups consisted of a breeding pair (R1 and R2) and at least one non-breeding subordinate (R3).
The rank 3 individual was removed from the focal group, and a size-matched rank 3 (R30) and rank 2 (R20) from other groups were introduced to the focal group
one at a time, on separate days and in random order. (b) After 1 day, the introduced individual was scored as either evicted or not evicted. The individual was
considered not evicted if it spent the majority of the 5 min observation period among the anemone’s tentacles. The individual was considered evicted if it was either
not present, or spent the majority of the 5 min observation outside of the anemone’s tentacles.
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Figure 2. Least-squares means (+s.e.) of number of eggs laid per month
by control and fed groups of Amphiprion percula over three months. Month 1:
ncontrol ¼ 27, nfed ¼ 25; month 2: ncontrol ¼ 24, nfed ¼ 22; month 3:
ncontrol ¼ 25, nfed ¼ 18.
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anemone, i.e. with their full body length outside of the range of

anemone tentacles (figure 1). If present, the introduced individ-

ual was then removed from the focal anemone and returned to

its host anemone.

(d) Statistical analysis
All analyses were done in R v. 3.4.2 ‘Short Summer’ [41]. To test

the hypothesis that reproduction is resource limited, we fitted a

mixed linear model (package ‘lme4’) using the number of eggs

laid per lunar month as the response variable. Month (month

1: baseline; month 2: first treatment month; month 3: second

treatment month) and treatment (fed or control) were used as

predictor variables. The interaction between month and treat-

ment was included to determine whether the effect of the

treatment varied with month. Pair identity (ID) was used as a

random factor, to control for the lack of independence between

multiple measures of reproduction from the same pair. This

was nested in reef ID, which was used as another random

factor, to control for the potential lack of independence between

multiple measures of reproduction from the same reef. Assump-

tions of normal distribution and homogeneity were checked

using q–q plots and Bartlett’s test, respectively [42].

Using the ‘MuMIn’ package [43,44], marginal R2, the variance

explained by fixed factors, was calculated as follows:

R GLMM(m)2 ¼ s f 2

s f 2 þ
P

(s l 2)þ s e 2 þ s d 2
:

Conditional R2, the variance explained by both fixed and random

factors, was calculated as follows:

R GLMM(c)2 ¼ s f 2 þ
P

(s l 2)

s f 2 þ
P

(s l 2)þ s e 2 þ s d 2
:

Post hoc pairwise comparisons were conducted using least-squares

means, implemented in the ‘lsmeans’ package.

To test the hypothesis that the breeding pair will evict other

mature individuals but not immature individuals, we used Fish-

er’s exact tests for contingency tables. Specifically, we tested

whether the number of introduced rank 2 that were evicted dif-

fered from the number of introduced rank 3 that were evicted.

We also used Fisher’s exact test to investigate whether there

was an effect of being introduced first or introduced second.
3. Results
(a) Feeding experiment
The number of eggs laid increased significantly over time and

significantly more so in the fed anemones than in the control

anemones (figure 2). The mean number of eggs laid was greater

in month 3 compared with month 1 in both the fed and control

groups (mixed linear model: month, F2,85 ¼ 33.05, p , 0.001;

Tukey’s honest significant difference (HSD): control,

q85¼ 2284.54, p , 0.001, fed, q85¼ 2525.421, p , 0.001;

figure 2). Treatment alone had no significant effect on the

number of eggs laid throughout the experiment (mixed linear

model: treatment; F1,41 ¼ 0.01, p ¼ 0.482). However, there was

a significant interaction between treatment and month (mixed

linear model: treatment �month; F2,85 ¼ 3.51, p ¼ 0.031;

figure 2): the mean number of eggs laid by fed groups increased

by 205% between month 1 and month 3, whereas the mean

number of eggs laid by the control groups increased by just

78% in the same period (figure 2). The fixed (treatment and

month) and random (reef and site) factors together explained

58% of the variance in the data (R2
m ¼ 0:23, R2

c ¼ 0:58).
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(b) Eviction experiment
Both males and females were observed being aggressive

towards introduced individuals. The individual introduced

first was neither more likely nor less likely to be evicted than

the individual introduced second (Fisher’s exact test, p ¼ 1).

Rank 2 individuals (mature males) were significantly more

likely to be evicted than rank 3 individuals of the same size

(Fisher’s exact test, p ¼ 0.03), with 54.5% of introduced rank

2 evicted and only 7.7% of introduced rank 3 evicted (figure 3).
4. Discussion
Our experiments using the clown anemonefish, A. percula, pro-

vide support for two key assumptions of the restraint model

of reproductive skew: (i) there is reproductive competition

owing to resource limitation, and (ii) dominant individuals

readily evict reproductively active subordinates. This helps

explain why subordinates exercise reproductive restraint in

this system. These results complement similar findings in a simi-

lar system—the emerald goby, Paragobiodon xanthosomus, which

is found in close association with the coral Seriatopora hystrix—

where reproduction was also food limited and eviction was

also dependent on subordinate reproductive state [45]. We con-

sider that there are two reasons for the success of the threat of

eviction inducing reproductive restraint in these systems. First,

subordinates that are evicted cannot regain access to the

group—sea anemones and coral heads are small (less than 1 m

across), can be patrolled quickly and easily, and there are few

places for subordinates to hide. Second, dominants are able to

accurately target specific individuals—not only do subordinates

differ markedly in size [32,33,46], but also they have highly

variable markings, in visible and ultraviolet spectrum, that

have all of the characteristics of individual recognition signals

[35,47–49]. These findings suggest that, as predicted by Cant

et al. [23], in relatively simple, linear hierarchies the threat of

eviction by the dominant is sufficient to induce pre-emptive

reproductive restraint by subordinates.

It is instructive to compare these findings with others where

the threat of eviction does not seem to be sufficient to induce

reproductive restraint. In banded mongooses, Mungos mungo,
for example, there is evidence of reproductive competition,

that dominants can evict subordinates, but no evidence that sub-

ordinates exhibit reproductive restraint to avoid eviction [23].

The reasons given for the failure of eviction to induce restraint

in that system are that subordinates are able to re-enter the

group post-eviction and that dominants cannot perfectly dis-

criminate among subordinates, both of which reduce the

incentive to subordinates of cooperating and pre-emptively

restraining their own reproduction [23]. Another, less well-

known example that supports these ideas is that of the pink

anemonefish, Amphiprion perideraion, which inhabits the same

species of sea anemone as A. percula, on the same reefs

in Papua New Guinea [26,50]. Compared with A. percula,

A. perideraion have little variation in their markings and are

better swimmers, probably making it harder for dominants to

target and evict specific individuals. In this system, it seems

that subordinates do not show the same level of growth or repro-

ductive restraint, and dominants eventually lose control of their

group. Following loss of control, dominant A. perideraion leave

their anemone for a nearby anemone occupied by A. percula,

and evict and kill the A. percula group en masse (P.M. Buston,

T.A. Barbasch and T. Rueger 2017, personal observation). This

latter example highlights how a small difference in biology can

influence the social system that emerges, even in closely related

species in the same ecological context.

Our study shows that clown anemonefish subordinates will

forgo their own reproduction owing to the threat of eviction,

and dominants will embrace subordinates that are not repro-

ductively active. Two outstanding questions remain for this

system. First, why do non-breeders then tolerate their situation

rather than pursuing alternative options? On the one hand,

non-breeders stand to inherit the territory within which they

reside, so they gain future genetic benefits [30,46,51]. On the

other hand, evidence suggests that non-breeders will neither

disperse to breed elsewhere owing to ecological constraints,

i.e. habitat saturation and risk of movement [27,29,50,52–54],

nor contest for a breeding position owing to social constraints

[30,35,46,55]. Second, why do breeders embrace non-breeders

rather than evict them? Evidence suggests that breeders do

not benefit from the presence of non-breeders in terms of survi-

val, growth, reproduction, rapid mate replacement [30] or by

passing on their territory to their offspring [20,28,29]. It is

plausible that breeders might benefit from the presence of

non-breeders owing to indirect effects mediated by the ane-

mone: non-breeders may enhance anemone growth and

reproduction [56–61]; large anemones may enhance fish

growth and reproduction [31,62,63].

Our results may also provide a different perspective on the

role of monogamy in social evolution. There is a widely recog-

nized association between monogamy and the formation of

social groups in which some individuals forgo their own repro-

duction [64–66]. One hypothesis to explain this association is

that monogamy together with delayed dispersal gives rise to

groups in which there are high degrees of relatedness among

group members, and in such groups, individuals will gain indir-

ect genetic benefits by helping their relatives [67,68]. Under this

scenario, monogamy causes high relatedness among group

members, which predisposes some individuals to forgo their

own reproduction and help others to reproduce. This hypothesis

for the association between monogamy and social group

formation must be incomplete, however, because there are mon-

ogamous social groups composed of non-relatives in many taxa

[28,69–71]. Here, we show that, at least for A. percula, resource
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limitation and the threat of eviction can explain why some

individuals forgo reproduction, leading to the formation of

monogamous social groups. Under this scenario, reproductive

competition and the threat of eviction cause some individuals

to forgo their own reproduction, and a social group composed

of a monogamous breeding pair and a small number of non-

breeders emerge as a result. In other words, monogamy is not

the cause of social group formation, rather it is an emergent

by-product of the interactions of individuals.

This study can be considered to provide experimental

support for the assumptions of the restraint model of repro-

ductive skew [15]. In the clown anemonefish, breeding

resources are limited and the threat of eviction leads to sub-

ordinates foregoing reproduction. Furthermore, by

comparison with other systems, this study provides support

for the idea that specific conditions need to be met for the

threat of eviction to be effective [22,23,72,73]. In groups

with reproductive competition and the threat of eviction,

but where it is hard for dominants to target individuals

and sustain evictions, subordinates do not seem to pre-

emptively restrain their reproduction or growth, as has

been observed for the dwarf mongoose [23] and pink anemo-

nefish (P.M. Buston, T.A. Barbasch and T. Rueger 2017,

personal observation). In summary, our study suggests that
transactional models might be well suited to explain

reproductive skew in some, simple systems (e.g. [13]).
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