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Sec1/Munc18 (SM) proteins promote intracellular vesicle
fusion by binding to N-ethylmaleimide–sensitive factor attach-
ment protein receptors (SNAREs). A key SNARE-binding mode
of SM proteins involves the N-terminal peptide (N-peptide)
motif of syntaxin, a SNARE subunit localized to the target mem-
brane. In in vitro membrane fusion assays, inhibition of N-pep-
tide motif binding previously has been shown to abrogate the
stimulatory function of Munc18-1, a SM protein involved in
synaptic exocytosis in neurons. The physiological role of the
N-peptide– binding mode, however, remains unclear. In this
work, we addressed this key question using a “clogged”
Munc18-1 protein, in which an ectopic copy of the syntaxin
N-peptide motif was directly fused to Munc18-1. We found that
the ectopic N-peptide motif blocks the N-peptide– binding
pocket of Munc18-1, preventing the latter from binding to the
native N-peptide motif on syntaxin-1. In a reconstituted system,
we observed that clogged Munc18-1 is defective in promoting
SNARE zippering. When introduced into induced neuronal
cells (iN cells) derived from human pluripotent stem cells,
clogged Munc18-1 failed to mediate synaptic exocytosis. As a
result, both spontaneous and evoked synaptic transmission
was abolished. These genetic findings provide direct evidence
for the crucial role of the N-peptide– binding mode of
Munc18-1 in synaptic exocytosis. We suggest that clogged
SM proteins will also be instrumental in defining the physio-
logical roles of the N-peptide– binding mode in other vesicle-
fusion pathways.

Intracellular vesicle fusion in eukaryotes requires two con-
served classes of molecules: SNAREs4 and SM proteins (1–3).
The vesicle-fusion reaction is initiated when the vesicle-an-
chored v-SNARE pairs with its cognate target membrane-asso-
ciated t-SNAREs to form a trans-SNARE complex (SNAREpin)
(4 –7). The trans-SNARE complex zippers progressively toward
the lipid bilayers, forcing the membranes into close proximity
to fuse (8 –12). SM proteins are soluble factors of 60 –70 kDa
that control vesicle fusion by binding to their cognate SNAREs
(13–18). One of the best-studied vesicle-fusion pathway is syn-
aptic exocytosis, which mediates the release of neurotransmit-
ters at chemical synapses in the nervous system (19 –21).
Synaptic exocytosis requires syntaxin-1 and SNAP-25 as the
t-SNAREs, VAMP2/synaptobrevin-2 as the v-SNARE, and
Munc18-1/STXBP1/nSec1 as the cognate SM protein (4,
22–28).

A conserved function of SM proteins is to regulate the zip-
pering of the trans-SNARE complex in the vesicle-fusion reac-
tion (14, 18, 29 –34). While supplying the energy for membrane
merging, SNAREs alone zipper inefficiently (18, 35). By recog-
nizing sequences on both the v- and t-SNAREs, SM proteins
promote the zippering of the trans-SNARE complex and accel-
erate the kinetics of SNARE-dependent fusion reactions (18,
36 –39). SM proteins selectively activate their cognate SNARE
pairs, thus augmenting the compartmental specificity of intra-
cellular vesicle fusion (18, 35, 40).

A key SNARE-SM binding mode involves the N-terminal
peptide (N-peptide) motif located at the extreme N terminus of
syntaxin (14, 18, 36, 37, 41, 42). Characterized by multiple
charged residues and a hydrophobic leucine or phenylalanine
residue (Fig. 1A), the N-peptide motif is accommodated within
a peripheral pocket on the SM protein (43–45). The N-peptide
motif recruits the soluble SM protein to the vicinity of mem-
brane-anchored SNAREs, facilitating the interaction between
the SM protein and the trans-SNARE complex (37). In recon-
stituted fusion assays, the N-peptide– binding mode is critical
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to the stimulatory function of Munc18-1 (18, 36, 37). The phys-
iological function of this N-peptide– binding mode in neurons,
however, has been debated. In genetic studies using cultured
neurons or whole animals, mutations in either the syntaxin
N-peptide or the N-peptide– binding pocket of Munc18-1
strongly inhibited synaptic exocytosis (46 –48). In other genetic
studies, however, such mutations had little impact on synaptic
exocytosis (49 –51). The discrepancy of these genetic data are
likely due to the intrinsic limitations of point mutations, which
often do not completely inhibit the N-peptide– binding mode
and/or may cause protein misfolding. Thus, a new approach is
needed to examine the physiological function of the N-
peptide–binding mode of Munc18-1 in synaptic exocytosis.

In this work, we took advantage of a “clogged” Munc18-1
protein in which an ectopic copy of the syntaxin N-peptide
motif is directly fused to Munc18-1 to block its N-peptide–
binding pocket (37). The clogged Munc18-1 protein is unable
to bind the native N-peptide motif on syntaxin and thus fails to
stimulate SNARE-dependent membrane fusion in vitro (37).
Using a reconstituted system, we found that clogged Munc18-1
failed to promote trans-SNARE zippering. When introduced
into induced neuronal (iN) cells differentiated from human
induced pluripotent stem cells (iPSCs), clogged Munc18-1 was
defective in mediating synaptic exocytosis. Thus, both sponta-
neous and evoked synaptic transmission were abrogated. Con-
sistent with our reconstitution data, these genetic results dem-
onstrated that the N-peptide– binding mode is indispensable to
Munc18-1 function in synaptic exocytosis.

Results

In our previous biochemical studies, we engineered a clogged
Munc18-1 protein in which an ectopic copy of the N-peptide

motif from syntaxin-1 was directly fused to the N terminus of
Munc18-1 through a flexible linker (Fig. 1, B and C) (37). The
ectopic N-peptide motif occupies the N-peptide– binding
pocket of Munc18-1 and prevents the latter from binding to the
native N-peptide motif on syntaxin-1. As a result, the clogged
Munc18-1 protein is unable to stimulate SNARE-dependent
membrane fusion in vitro (Fig. 1, B and C) (37). To gain further
mechanistic insights into the clogged Munc18-1 protein, we
first examined its regulatory activity in trans-SNARE zippering
in vitro. Synaptic exocytic SNAREs alone zippered poorly in a
trans-SNARE assembly assay (Fig. 2 (A and B) and Fig. S1). The
addition of WT Munc18-1 strongly accelerated the zippering
kinetics (Fig. 2 (A and B) and Fig. S1). The clogged Munc18-1
protein, by contrast, was completely inactive in regulating the
zippering process, resulting in near-background levels of trans-
SNARE zippering (Fig. 2 (A and B) and Fig. S1). Next, we exam-
ined how clogged Munc18-1 regulates the upstream docking
step of SNAREs. We observed that, like WT Munc18-1, clogged
Munc18-1 did not influence the initial docking of SNAREs (Fig.
2, C and D). The CD spectra of WT and clogged Munc18-1
proteins were very similar (Fig. 2E), suggesting that clogged
Munc18-1 was properly folded. These results demonstrated
that clogged Munc18-1 is defective in promoting trans-SNARE
zippering, providing a molecular explanation for its inability to
accelerate the kinetics of SNARE-dependent membrane fusion.

The clogged Munc18-1 protein offered an ideal opportunity
to examine the physiological role of the N-peptide– binding
mode in synaptic exocytosis. First of all, the ectopic N-peptide
motif completely blocks the N-peptide– binding pocket of
Munc18-1 in vitro (Fig. 2, A and B) (37), in contrast to point
mutations that may incompletely inhibit N-peptide binding to

Figure 1. Illustration of the clogged Munc18-1 strategy. A, sequence alignment of syntaxin-1A and syntaxin-4 with conserved residues in the N-peptide
motifs highlighted. Hereafter, syntaxin-1A is referred to as syntaxin-1. B, syntaxin-1 and Munc18-1 (WT or clogged). The domains of syntaxin-1 are shown. N,
N-peptide motif; Habc, N-terminal Habc regulatory domain; Core: SNARE core domain (SNARE motif); TMD, transmembrane domain. C, model depicting the
activities of WT and clogged Munc18-1 proteins in SNARE-dependent membrane fusion based on reconstitution studies (37). Yellow, Munc18-1; green, the
N-terminal sequence of syntaxin-1 (amino acids 1–30) containing the N-peptide motif; purple, an engineered linker (23 residues). The model is based on
the crystal structure of Munc18-1 complexed with the N-peptide motif of syntaxin-4 (Protein Data Bank code 3PUJ). Key residues of the N-peptide motif are
conserved in syntaxin-1 and syntaxin-4. The sequence of the clogged Munc18-1 protein is included under “Experimental procedures.”
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Munc18-1. Moreover, clogged Munc18-1 does not harbor
any mutation in the Munc18-1 sequence. This is important
because the folding of Munc18-1 protein is highly sensitive
to perturbations, including single-residue substitutions
(18). Thus, mutations in the N-peptide– binding pocket of
Munc18-1 may cause local misfolding of the protein, com-
plicating functional analyses.

To determine the activity of clogged Munc18-1 in neurons,
endogenous Munc18-1 needs to be eliminated and replaced
with clogged Munc18-1. Our initial plan was to silence

Munc18-1 expression in primary mouse cortical neurons using
short hairpin RNA (shRNA), similar to a strategy used in our
genetic dissection of the synaptic v-SNARE VAMP2 (52). How-
ever, we found that this shRNA method did not fully abrogate
Munc18-1 expression in neurons. In this work, we character-
ized the clogged Munc18-1 protein in iN cells derived from
human iPSCs (Fig. 3A) (53). Lentiviral expression of the tran-
scription factor Ngn2 rapidly and efficiently (nearly 100%) pro-
grammed human iPSCs into iN cells (Fig. 3, B–D) (53). As dem-
onstrated in this work and previous studies (53, 54), iN cells

Figure 2. Clogged Munc18-1 is defective in promoting trans-SNARE zippering. A, the trans-SNARE assembly assay (52). Reconstituted t- and v-SNARE
liposomes were incubated at 4 °C for the indicated durations before a 10-fold excess amount of inhibitory CDV2 was added to block unpaired t-SNAREs. The
liposomes were subsequently solubilized, and the t-SNAREs were precipitated using nickel-Sepharose beads. Levels of full-length VAMP2 in the precipitates
were measured by immunoblotting and used as an indicator for trans-SNARE assembly between liposomes. The reactions were performed in the presence of
100 mg/ml Ficoll 70. B, immunoblots showing syntaxin-1 and VAMP2 protein levels in the precipitates from the trans-SNARE assembly assays. Additional
analyses of the trans-SNARE complexes are included in Fig. S1. C, the liposome docking assay was performed as described previously (35). The biotin-labeled
t-SNARE liposomes containing syntaxin-1 and SNAP-25 were anchored to avidin beads and used to pull down rhodamine-labeled v-SNARE liposomes. A
VAMP2NTD-TolA chimera was used as the v-SNARE in the docking assay to selectively assess the NTD-mediated docking step (66). The binding reactions were
performed at 4 °C for 1 h in the absence or presence of 5 �M Munc18-1 (WT or clogged). D, effects of WT and clogged Munc18-1 proteins on liposome docking.
Data are presented as percentage of rhodamine fluorescence intensity. Binding reactions containing biotin-labeled, protein-free liposomes were included to
show the background fluorescence signals (SNARE-independent liposome docking). Error bars, S.D. E, CD spectroscopic analysis of WT and clogged Munc18-1
proteins. The CD spectra were measured using a Jasco J-815 spectropolarimeter equipped with a 1-mm quartz cell. The readings were made at 0.5-nm intervals,
and each data point represents the average of six scans at a speed of 50 nm/min over the wavelength range of 200 –250 nm. The data were converted into mean
residue weighted molar ellipticity using the equation, [�] � (100 � �)/Cnl, where C is the protein concentration (mM), � is the measured ellipticity (millidegrees),
n is the number of residues, and l is the path length (cm).
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were morphologically and functionally similar to primary excit-
atory cortical neurons. Because gene KO and rescue were car-
ried out in iPSCs, we could generate virtually unlimited supplies
of iN cells with defined genetic alterations. We used CRISPR/
Cas9 genome editing to ablate the MUNC18-1 gene in the
iPSCs. Rescue genes expressing WT or clogged Munc18-1 were
expressed in MUNC18-1 KO iPSCs using lentiviral expression.
The iPSCs were then differentiated into iN cells (Fig. 3A).

To rule out clonal variations of iPSCs, we chose to generate
iN cells using pooled KO iPSCs. CRISPR genome editing is
expected to be particularly effective for MUNC18-1 KO
because the stability of Munc18-1 protein is highly sensitive to

perturbations (18). Thus, even in-frame indel mutations will
likely create loss-of-function alleles. Indeed, MUNC18-1
expression in iN cells was abolished by CRISPR genome editing
using a guide RNA (gRNA) targeting an early exon of the
MUNC18-1 gene (Fig. 3B).

The suitability of this iN cell system for genetic dissection of
Munc18-1 function is supported by four lines of evidence. First,
similar amounts of iN cells were used for functional analysis
across the experiments. Because MUNC18-1 KO reduces the
viability of neurons (28, 55), the numbers of seeded iPSCs were
adjusted to achieve similar densities of iN cell populations at
the time of functional measurements (Fig. 3, C and D). The

Figure 3. Expression of clogged Munc18-1 in human iN cells derived from iPSCs. A, flowchart depicting the procedure of programming human iPSCs into
iN cells (53). B, immunoblots showing the expression of MUNC18-1 in iN cells. The MUNC18-1 gene was deleted in iPSCs using CRISPR/Cas9. In rescue
experiments, the MUNC18-1 KO iPSCs were infected with lentiviruses expressing WT or mutant Munc18-1 proteins. The iPSCs were then differentiated into iN
cells. Control, iN cells derived from WT iPSCs. The expression of �-tubulin was used as a loading control. C, DIC images showing live iN cells at day 16. The images
were acquired on a Carl Zeiss AxioObserver Z1 microscope. Scale bar, 100 �m. D, DIC (top) and fluorescent (bottom) images showing fixed iN cells at day 18. In
the fluorescent images, the neuronal marker MAP2 is labeled. The images were acquired on a Carl Zeiss LSM 510 confocal microscope. Scale bar, 100 �m. The
numbers of viable iN cells were similar across the populations at the time of functional analyses. FBS, fetal bovine serum.
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expression levels of �-tubulin were comparable across the iN
cell populations (Fig. 3B), confirming our cell density estima-
tion. Second, the overall morphologies of the WT and mutant
iN cells were similar without apparent cell death (Fig. 3, C and
D). Third, the expression levels of the rescue Munc18-1 (WT or
clogged) were comparable with endogenous Munc18-1 expres-
sion (Fig. 3B). Finally, the phenotype of the MUNC18-1 KO iN
cells was similar to that of primary neurons isolated from
Munc18-1 KO mice, and the phenotype could be fully rescued
by the WT Munc18-1 gene (see below).

We then examined synaptic neurotransmitter releases in the
iN cells using electrophysiological measurements. We first mea-
sured miniature excitatory postsynaptic currents (mEPSCs),
which reflected spontaneous neurotransmitter releases. As
expected, KO of MUNC18-1 strongly reduced the frequency of
mEPSCs in iN cells (Fig. 4, A and B). The frequency of mEPSCs was
fully rescued by the WT Munc18-1 gene but not by the gene
encoding clogged Munc18-1 (Fig. 4, A and B). The amplitudes of
mEPSCs were similar in all the iN cell populations (Fig. 4C), sug-
gesting that the loading of neurotransmitters into synaptic
vesicles was unchanged. These results demonstrated that clogged
Munc18-1 failed to mediate spontaneous synaptic releases.

Next, we measured evoked excitatory postsynaptic currents
(EPSCs) in the iN cells, which reflected evoked neurotransmit-
ter releases. MUNC18-1 KO strongly decreased the amplitudes
of EPSCs triggered by local electrical stimulation (Fig. 5). The
EPSCs were fully restored by the expression of WT Munc18-1
but not by clogged Munc18-1 (Fig. 5). Thus, the clogged
Munc18-1 protein was unable to mediate evoked synaptic neu-
rotransmitter release.

To rule out potential off-target effects of CRISPR genome
editing, we designed another two gRNAs targeting early exons
of the MUNC18-1 gene. These two gRNAs were simultaneously
introduced into iPSCs to mutate the MUNC18-1 gene. WT and
clogged Munc18-1 were then expressed in the KO iPSCs before
the cells were differentiated into iN cells. Immunoblotting of
the iN cells showed that MUNC18-1 expression was eliminated
in the KO cells, whereas WT and clogged Munc18-1 proteins
were expressed to the endogenous level of MUNC18-1 (Fig.

S2A). Electrophysiological measurements showed that the fre-
quency of mEPSCs was severely diminished in the KO iN cells
(Fig. S2, B and C). The frequency of mEPSCs was fully rescued
by the expression of WT Munc18-1 but not by clogged
Munc18-1 (Fig. S2, B and C). Likewise, the amplitudes of
evoked EPSCs were strongly reduced in the MUNC18-1 KO iN
cells (Fig. S3). The EPSCs were fully restored by WT Munc18-1
but not by clogged Munc18-1 (Fig. S3). These findings are con-
sistent with the results of the genetic experiments using a single
gRNA (Figs. 4 and 5), indicating that the phenotype of the
mutant cells was due to specific loss-of-function mutations in
the MUNC18-1 gene.

Together, these genetic data demonstrated that clogged
Munc18-1 is defective in mediating synaptic exocytosis in neu-
rons, correlating with its inability to promote trans-SNARE zip-
pering in vitro. Thus, we conclude that the N-peptide– binding
mode is crucial to Munc18-1 function in synaptic exocytosis.

Discussion

A major discovery of our previous reconstitution studies was
that the SM protein Munc18-1 promotes SNARE-dependent
membrane fusion, and its stimulatory function requires bind-
ing to the N-peptide motif of syntaxin-1 (18, 36, 37). In this
study, we provided direct genetic evidence for the crucial role of
the N-peptide–binding mode in synaptic exocytosis in neurons.
Our findings also further support the notion that the N-peptide
motif promotes membrane fusion by facilitating the association
between Munc18-1 and the membrane-anchored SNARE com-
plex, rather than allosterically activating Munc18-1.

Our genetic data helped resolve a major controversy in the
field regarding the physiological role of the N-peptide– binding
mode. The binding of the N-peptide motif to Munc18-1
involves a number of intermolecular interactions (44). In other
genetic studies, point mutations were introduced to disrupt a
subset of these interactions, which was expected to reduce but
not abolish the N-peptide binding. Partial inhibition of N-pep-
tide binding may lead to variable consequences in vivo, strongly
dependent on experimental conditions such as protein expres-
sion levels. Extensive mutations of the N-peptide–Munc18-1

Figure 4. Clogged Munc18-1 is unable to mediate spontaneous synaptic releases. A, representative traces of mEPSCs, which reflected spontaneous
synaptic vesicle fusion. B, summary graph of mEPSC frequency. Numbers of recorded cells are listed on the bars. Numbers of neurons and independent cultures
are listed in Table S1. Statistical analysis was performed using Student’s t test comparing a test data set with the control experiment of WT cells. Data shown in
summary graphs are mean � S.E. (error bars). ***, p � 0.001. n.s., not significant. C, summary graph of mEPSC amplitudes. Data shown in summary graphs are
mean � S.E. n.s., not significant. Scatter plots of B and C are show in Fig. S4A.
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interactions, on the other hand, likely cause local misfolding of
the protein, and the folding state may differ across experimen-
tal systems, contributing to conflicting phenotypes.

Although we cannot completely exclude the possibility that
the N-peptide– binding pocket of Munc18-1 also recognizes
another molecule, we consider this scenario unlikely. The
N-peptide motif of syntaxin is a highly specialized sequence not
known to exist in other vesicle-fusion regulators. Moreover, the
peripheral N-peptide– binding pocket of Munc18-1 is physi-
cally separate from other SNARE-binding regions (e.g. domain
3a) and is not known to associate with other molecules. Never-
theless, SNAREs and Munc18-1 are known to bind other regu-
latory factors, including Munc13 (31, 56). Further research will
be needed to determine whether and how the N-peptide–
binding mode is influenced by Munc13 and other regulatory
factors. Likewise, additional studies will be required to examine
whether the ectopic N-peptide motif binds Munc18-1 in a sim-
ilar way as the native N-peptide.

Whereas the N-peptide– binding mode is widespread in ves-
icle fusion, it is absent in certain SM proteins, including the
yeast exocytic SM protein Sec1p. For these SM proteins, the
recruitment role of the N-peptide motif is likely fulfilled by
another SNARE–SM binding mode or by a regulatory protein
physically linking the SM protein and SNAREs.

We suggest that clogged SM protein is a powerful approach
to determine the functional roles of the N-peptide– binding
mode in other vesicle-fusion pathways both in vitro and in vivo.
For example, the N-peptide motif of syntaxin-4 is recognized by
Munc18c/Munc18-3, a SM protein involved in insulin-stimu-
lated GLUT4 exocytosis in adipocytes and skeletal muscles (35,
57–59). It is still unclear whether N-peptide binding is required
for Munc18c function in GLUT4 exocytosis. Like neurons, adi-
pocytes and skeletal muscles are post-mitotic cells difficult to
genetically manipulate in culture. Recently, human iPSCs have
been successfully programmed into functional adipocytes and
muscle cells (60 –62). Thus, the gene KO and rescue strategy
described in this study will be instrumental in characterizing

the regulatory activities of clogged Munc18c in iPSC-derived
adipocytes and muscle cells.

Experimental procedures

Recombinant protein expression and purification

Recombinant proteins were expressed and purified from
Escherichia coli using nickel-affinity chromatography (37, 52).
The synaptic exocytic t-SNARE complex was composed of
untagged rat syntaxin-1 and mouse SNAP-25 with an N-termi-
nal His6 tag (36). The sequence of the clogged Munc18-1 pro-
tein used in this work is as follows (the syntaxin-1 sequence
containing the N-peptide motif is underlined, whereas the
linker sequence is shown in boldface type): MKDRTQELR-
TAKDSDDDDDVTVTVDRDRFMGGGGGGGGGGSRYPY-
DVPDYAKLMAPIGLKAVVGEKIMHDVIKKVKKKGEW-
KVLVVDQLSMRMLSSCCKMTDIMTEGITIVEDINKRR-
EPLPSLEAVYLITPSEKSVHSLISDFKDPPTAKYRAAHVFFT-
DSCPDALFNELVKSRAAKVIKTLTEINIAFLPYESQVYSL-
DSADSFQSFYSPHKAQMKNPILERLAEQIATLCATLKEY-
PAVRYRGEYKDNALLAQLIQDKLDAYKADDPTMGEGPD-
KARSQLLILDRGFDPSSPVLHELTFQAMSYDLLPIENDVY-
KYETSGIGEARVKEVLLDEDDDLWIALRHKHIAEVSQEVT-
RSLKDFSSSKRMNTGEKTTMRDLSQMLKKMPQYQKELS-
KYSTHLHLAEDCMKHYQGTVDKLCRVEQDLAMGTDAE-
GEKIKDPMRAIVPILLDANVSTYDKIRIILLYIFLKNGITE-
ENLNKLIQHAQIPPEDSEIITNMAHLGVPIVTDSTLRRR-
SKPERKERISEQTYQLSRWTPIIKDIMEDTIEDKLDTKHY-
PYISTRSSASFSTTAVSARYGHWHKNKAPGEYRSGPRLI-
IFILGGVSLNEMRCAYEVTQANGKWEVLIGSTHILTPQK-
LLDTLKKLNKTDEEISS.

The sequence of the VAMP2NTD-TolA chimera, in which
the C-terminal domain of VAMP2 was replaced with a bacterial
TolA sequence, is as follows (TolA sequence is underlined):
MSATAATVPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQ-
VDEVVDIMRVNVDKVLERDQKGGSSIDAVMVDSGAVVE-
QYKRMQSQKRKYWWKNLKMMIILGVICAIILIIIIVYFST.

Figure 5. Clogged Munc18-1 fails to mediate evoked synaptic releases. A, representative traces of EPSCs evoked by local electrical stimulation in iN cells.
B, summary graph of EPSC amplitudes. Data shown in the summary graphs are mean � S.E. (error bars). ***, p � 0.001. n.s., not significant. Numbers of recorded
cells are listed on the bars. Numbers of neurons and independent cultures are listed in Table S1. Statistical analysis was performed using Student’s t test
comparing a test data set with the control experiment of WT cells. A scatter plot of C is shown in Fig. S4B.
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Trans-SNARE assembly assay

The v- and t-SNARE liposomes were prepared as described
previously (35, 63, 64). The v- and t-SNARE liposomes were
incubated at 4 °C for the indicated durations in the presence or
absence of 5 �M Munc18-1 before a 10-fold excess amount of
inhibitory VAMP2 cytosolic domain (CDV2) was added. Each
reaction contained 5 �M t-SNAREs and 1.5 �M t-SNARE. The
liposomes were solubilized with 1% CHAPS, and the t-SNAREs
were precipitated using nickel-Sepharose beads through bind-
ing to the His6 tag on SNAP-25. The levels of full-length
VAMP2 proteins in the precipitates were measured by immu-
noblotting using monoclonal anti-VAMP2 antibodies (clone
Cl69.1, Synaptic Systems), which was used as an indicator
for trans-SNARE assembly between liposomes. Syntaxin-1 was
detected using monoclonal anti-syntaxin-1 antibodies (clone
HPC-1, Synaptic Systems).

Liposome docking assay

SNARE liposomes were prepared in a similar way as in the
trans-SNARE assembly assay except that 2% biotin-conjugated
1-(12-biotinyl(aminododecanoyl))-2-oleoyl-sn-glycero-3-phos-
phoethanolamine was included in the t-SNARE liposomes, and
WT VAMP2 was replaced with a VAMP2NTD-TolA chimera
in the v-SNARE liposomes. Because membrane docking is
mediated by the N-terminal domains (NTDs) of SNAREs, the
VAMP2NTD-TolA chimera was ideally suited for monitoring
the upstream docking step. The biotin-labeled t-SNARE lipo-
somes were incubated with avidin-conjugated Sepharose beads
at room temperature for 1 h. The bead-bound t-SNARE
liposomes were then used to pull down rhodamine-labeled
v-SNARE liposomes. The pulldown reactions were performed
at 4 °C in the presence or absence of 5 �M Munc18-1. After
washing three times with the reconstitution buffer, CHAPS was
added to a final concentration of 1% to solubilize the bead-
bound liposomes. After removing avidin beads by centrifuga-
tion, rhodamine fluorescence in the supernatant was measured
in a BioTek microplate reader. The binding reaction containing
biotin-labeled, protein-free liposomes was used as a negative
control to obtain the background fluorescence signal. The
background rhodamine fluorescence was subtracted from
other binding reactions to calculate SNARE-mediated lipo-
some docking.

Generation of iN cells

Human iPSCs (clone I50-2) were generated from human
adult fibroblasts (ATCC) using a RNA-based reprogramming
method and were characterized previously (64). The iPSCs
were programmed into iN cells following a procedure described
previously (53). The iPSCs were cultured on Matrigel (BD
Biosciences)-coated coverslips in Essential 8 medium (Life
Technologies, Inc.) supplemented with 10 �M Y-27632 dihy-
drochloride (Tocris). Lentivirus particles containing the Ngn2
expression gene were added to Essential 8 medium containing 8
�g/ml Polybrene. After 24 h (day 0), the culture media were
replaced with N2/DMEM/F12/NEAA (Life Technologies) con-
taining human brain-derived neurotrophic factor (10 �g/liter;
PeproTech), human NT-3 (10 �g/liter; PeproTech), and mouse
laminin (0.2 mg/liter; Life Technologies). Meanwhile, doxycy-

cline (2 �g/ml; Clontech) was added to induce TetO gene
expression. On day 1, 1 �g/ml puromycin was added to select
for transduced cells. After 24 h (day 2), the cells were fed with
Neurobasal medium (Gibco), and mouse glia cells were added.
The iN cells were analyzed between day 16 and day 21.

CRISPR/Cas9 genome editing

The lentiCRISPR plasmid (Addgene) was used to delete the
MUNC18-1 gene in iPSCs. For gene KO using one gRNA,
the following guide sequence targeting the second exon of the
MUNC18-1 gene was selected: 5�-GATAAAGAAGGTC-
AAGAAGAAGG-3�.

For gene knockout using double gRNAs, the following
guide sequences were used: 5�-ATCCACCACCAGCACCT-
GCAAGG-3� and 5�-CTGTTGTCGGAGAGAGTAAG-
TGG-3�.

The guide sequences were individually subcloned into the
BsmBI sites of the plentiCRISPR vector. Lentiviral particles
prepared with the lentiCRISPR plasmids were used to infect
iPSCs. On the next day, the cells were treated with 1 �g/ml
puromycin for 24 h to select for transduced cells. CRISPR/Cas9
is expected to induce compound heterozygous mutations that
are functionally equivalent to homozygous KO (65). In gene
rescue experiments, the rat Munc18-1 gene was subcloned into
the BamHI and KpnI sites of the TRC2 pLKO vector. To pre-
vent cleavage of the rescue gene by Cas9 in the single gRNA
CRISPR KO, silent mutations were introduced into the rat
Munc18-1 rescue gene near the PAM site using the following
mutagenesis primer: 5�-GCATGATGTTATCAAGAAGGTG-
AAAAAAAAAGGCGAGTGGAAGGTGCTGGTG-3�. In CRISPR
KO using two gRNAs, the rescue gene was not mutated, because
neither of the gRNAs targets the Munc18-1 rescue gene.

Immunoblotting and immunostaining

For immunoblotting, total cellular proteins were extracted
by SDS sample buffer and resolved on SDS-PAGE. After being
transferred onto polyvinylidene difluoride membranes, VAMP2
and syntaxin-1 were probed as described for the trans-SNARE
assembly assays. Munc18-1 expression was measured by
using monoclonal anti-Munc18-1 antibodies (clone 31/Munc-
18, BD Biosciences). Expression of �-tubulin was measured
using monoclonal anti-�-tubulin antibodies (clone TU-01,
BioLegend).

For immunostaining, cells were fixed by 4% paraformalde-
hyde and permeabilized using 0.2% Triton X-100. After block-
ing with 10% BSA, MAP2 was stained using mouse monoclonal
anti-MAP2 antibodies (Sigma, M9942) and goat rhodamine-
conjugated secondary antibodies (Jackson ImmunoResearch,
115-025-062). Images were acquired on a Carl Zeiss 3i Mari-
anas spinning disk confocal microscope and processed using
ImageJ.

Electrophysiological recordings

EPSCs and mEPSCs were recorded in iN cells using our
established procedures (52). Evoked synaptic transmission was
triggered by 1-ms current injections using a concentric bipolar
microelectrode (FHC; model CBAEC75) placed about 100 –150
�m from the cell bodies of patched iN cells. The extracellular
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stimuli were manipulated using an isolated pulse stimulator
(World Precision Instruments). The evoked responses were
measured by whole-cell recordings using a Multiclamp 700B
amplifier (Molecular Devices). The whole-cell pipette solution
contained 135 mM CsCl, 10 mM HEPES-CsOH (pH 7.25), 0.5
mM EGTA, 2 mM MgCl2, 0.4 mM NaCl-GTP, and 4 mM NaCl-
ATP. The bath solution contained 140 mM NaCl, 5 mM KCl, 2
mM CaCl2, 0.8 MgCl2, 10 mM HEPES-NaOH (pH 7.4), and 10
mM glucose. The mEPSCs of the neurons were sampled at 10
kHz in the presence of 1 �M tetrodotoxin (Sigma). The resis-
tance of pipettes was 3–5 megaohms. The series resistance was
adjusted to 8 –10 megaohms once the whole-cell configuration
was achieved.

The detailed numbers of cultures and neurons are listed in
Table S1. The electrophysiological data were processed using
the pClamp 10 software (Molecular Devices). For statistical cal-
culations, all data are shown as mean � S.E. The p values were
calculated using Student’s t test. In gene rescue experiments, all
data are compared with the results of WT cells.
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anchored SNAREs lacking transmembrane regions fully support mem-
brane fusion during neurotransmitter release. Neuron 80, 470 – 483
CrossRef Medline

9. Xu, H., Zick, M., Wickner, W. T., and Jun, Y. (2011) A lipid-anchored
SNARE supports membrane fusion. Proc. Natl. Acad. Sci. U.S.A. 108,
17325–17330 CrossRef Medline

10. Gao, Y., Zorman, S., Gundersen, G., Xi, Z., Ma, L., Sirinakis, G., Rothman,
J. E., and Zhang, Y. (2012) Single reconstituted neuronal SNARE com-
plexes zipper in three distinct stages. Science 337, 1340 –1343 CrossRef
Medline

11. Reese, C., Heise, F., and Mayer, A. (2005) Trans-SNARE pairing can pre-
cede a hemifusion intermediate in intracellular membrane fusion. Nature
436, 410 – 414 CrossRef Medline

12. Ellena, J. F., Liang, B., Wiktor, M., Stein, A., Cafiso, D. S., Jahn, R., and
Tamm, L. K. (2009) Dynamic structure of lipid-bound synaptobrevin sug-
gests a nucleation-propagation mechanism for trans-SNARE complex
formation. Proc. Natl. Acad. Sci. U.S.A. 106, 20306 –20311 CrossRef
Medline
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Wernig, M., and Südhof, T. C. (2013) Rapid single-step induction of func-
tional neurons from human pluripotent stem cells. Neuron 78, 785–798
CrossRef Medline

54. Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., Ima-
mura, K., Egawa, N., Yahata, N., Okita, K., Takahashi, K., Asaka, I., Aoi, T.,
Watanabe, A., Watanabe, K., et al. (2013) Modeling Alzheimer’s disease
with iPSCs reveals stress phenotypes associated with intracellular A� and
differential drug responsiveness. Cell Stem Cell 12, 487– 496 CrossRef
Medline

55. Patzke, C., Han, Y., Covy, J., Yi, F., Maxeiner, S., Wernig, M., and Südhof,
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