
INTRODUCTION

As the average life-span is being extended, the prevalence 
of diabetes mellitus is escalating (Nanditha et al., 2016). With 
an increasing number of patients (382 million people world-
wide in 2013), the drug market for anti-diabetics has grown 
enormously, establishing a multi-billion dollar market in US 
alone (Stephens et al., 2006). To address this, new anti-dia-
betics with novel therapeutic mechanisms are being actively 
explored (Gallwitz, 2016). Among these, agonists of GPR40 
(also known as free fatty acid receptor 1 [FFAR1]), a G-protein 
coupled receptor (GPCR) for long-chain fatty acids, received 
the spotlight since they, unlike other conventional anti-diabet-

ics including sulfonylurea or glinide, selectively stimulate insu-
lin secretion only in hyperglycemic conditions (Bramlage et al., 
2012). GPR40 agonists activate GPR40 expressed on β-cells, 
leading to the secretion of incretins, GLP-1 (glucagon like pep-
tide1) and GIP (glucose-dependent insulin tropic polypeptide), 
and insulin in a glucose-dependent manner (Christiansen et 
al., 2008). This distinct and ideal therapeutic profile of GPR40 
agonists avoids hypoglycemia and body weight increase, 
which are common and serious side effects of conventional 
anti-diabetics (Tsujihata et al., 2011). 

Among the tens of drug candidates targeting GPR40 cur-
rently on track for nonclinical/clinical development (Kamiyama 
and Terauchi, 2015), fasiglifam, TAK-875, was a leading can-
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mia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, 
unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly 
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tures of HepG2, a human hepatocarcinoma cell line, in concentration- (>50 mM) and time-dependent manners, both of which cor-
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didate. Its activity was demonstrated in both disease models 
(Ito et al., 2016) and clinical trials (Kaku et al., 2015) wherein 
significant improvement was observed against hyperglycemia 
without the serious side effects of hypoglycemia and weight 
gain, making TAK-875 superior to conventional anti-diabetics 
such as glinides or sulfonylureas (Naik et al., 2012). More im-
portantly, blood HbA1C levels, a crucial marker for chronic dia-
betes, were significantly improved in patients who took either 
25 or 50 mg TAK-875 without major adverse effects (Naik et 
al., 2012). However, in a global multi-center phase 3 study, 
unexpected liver toxicity was reported, which resulted in the 
premature termination of TAK-875 development (Watterson et 
al., 2014). 

It is widely known that diabetes is accompanied by vari-
ous complications including retinopathy (UK Prospective Dia-
betes Study Group, 1998), nephropathy (Adler et al., 2003), 
and hepatic diseases (Morling et al., 2016). The risk of hepatic 
diseases such as liver fibrosis, liver cancer, and chronic liver 
dysfunction, is significantly higher in Type 2 diabetics as com-
pared to healthy people, which has been well demonstrated in 
large-scaled epidemiological studies (Chen et al., 2015; Kwok 
et al., 2015). Similarly, high levels of oxidative stress (Saeidnia 
and Abdollahi, 2013) and compromised liver function or dys-
function of diabetic patients resulted in increased susceptibil-
ity to liver toxicity of anti-diabetic drugs (Chitturi and George, 
2001; El-serag et al., 2004; Gupte et al., 2004). Exemplifying 
this, some anti-diabetic drugs such as troglitazone, metformin 
and TAK-875 showed concern for drug-induced hepatotoxic-
ity, which has resulted in warning, termination of clinical trials 
and withdrawal from the market (Gitlin et al., 1998; Halegoua-
De Marzio and Navarro, 2013; Shah et al., 2015). 

The mechanism of TAK-875-induced hepatotoxicity and 
whether it is GPR40-dependent or from off-target effects has 
yet to be established (Mancini and Poitout, 2015). GPR40 is 
expressed in many organs and tissues as well as in the pan-
creas (Steneberg et al., 2005; Schnell et al., 2007). GPR40 
expression has been reported in a variety of tissues, including 
intestinal enteroendocrine cells I, K, and L and even the brain 
(Christiansen et al., 2010). The expression of GPR40 in the 
liver has been demonstrated, where it was shown to promote 
the effects of insulin (Ou et al., 2013). Accordingly, a possible 
role of GPR40 in TAK-875-induced hepatotoxicity cannot be 
excluded. Recently, it was shown that TAK-875 and TAK-875 
acyl glucuronide affect bile transporters like Ntcp and OATP/
Oatp (uptake transporters) and MRP2/Mrp2 (efflux transport-
er), leading to cholestatic liver toxicity and hyperbilirubinemia 
(Li et al., 2015; Otieno et al., 2018). However, it remains to be 
elucidated whether TAK-875 inflicts direct toxicity on hepato-
cytes.

In the present study, we employed 2D and 3D HepG2 cul-
ture models in vitro to evaluate the direct hepatotoxicity of 
TAK-875. To further elucidate the mechanisms underlying 
TAK-875 induced cytotoxicity in HepG2 cells, the genera-
tion of reactive oxygen species (ROS) and effects of GPR40 
knockdown were investigated as well as comparison of the 
cytotoxicity of TAK-875 in a non-liver fibroblast cell line. Lastly 
we confirmed the induction of hepatotoxicity of TAK-875 using 
zebrafish larvae to investigate the relevance of our findings in 
a system close to in vivo.

MATERIALS AND METHODS

Chemicals
Fasiglifam, TAK-875 , with >99% purity was kindly provided 

by the SK Chemical (Sungnam, Korea), and acetaminophen 
(APAP) was from Sigma-Aldrich (St. Louis, MO, USA). Chemi-
cals were dissolved in DMSO to prepare stock solutions for 
experiments, and final DMSO concentrations did not exceed 
0.5%.

Cell culture and cell treatment
HepG2 cell line: The human hepatocarcinoma (HepG2) 

cell line was purchased form ATCC (American Type Culture 
Collection, Rockville, MD, USA). The cells were cultivated in 
Dulbecco’s modified essential medium (DMEM, Sigma-Al-
drich) supplemented with 10% fetal bovine serum (FBS) and 
antibiotics (100 U/mL of penicillin A and 100 U/mL of strepto-
mycin) at 37°C in a humidified atmosphere with 5% CO2. The 
medium was replenished every 2 days. After confluence, the 
cells were sub-cultured following trypsinization.

HepG2 3D spheres were prepared according to a previous-
ly described method (Kim et al., 2018). Briefly, HepG2 cells 
were seeded into a 96 well ultra-low attachment plate at a 
density of 1×108 cells/well and were cultivated for 14 days. 
The medium was changed three times each week. 

Human dermal fibroblasts (HDFs): Primary HDFs were 
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Fig. 1. TAK-875-induced cytotoxicity against HepG2 cells (2D 
monolayer). (A) Dose-dependent (at 24 h) and (B) Time-dependent 
toxicity of TAK875 compared to APAP 25 mM as measured by 
WST-1 assay. Data shown are mean ± SE of at least 3 replications. 
**p<0.01.
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obtained from Biosolution Co., Ltd. (Seoul, Korea). Cells were 
cultured as described previously (Song et al., 2017) in DMEM 
supplemented with antibiotics (100 U/ml of penicillin A and 100 
U/ml of streptomycin) and 10% FBS at 37°C in a humidified 
atmosphere containing 5% CO2; 60% confluent cells were cul-
tured in serum-free medium for 24 h. 

Cell treatment: Cells were treated with various concentra-
tions of TAK-875, APAP, or DMSO (final 0.5%) in culture me-
dium for 24 h. The control group was treated with 0.5% DMSO 
only. Fibroblasts were seeded into 6 well plates at a density of 
1.5×105/well, while HepG2 cells were seeded at 1.0×104/well 
in 96 well plates. For ROS determination, each cell line was 
seeded at 1.5×105/well in 6 well plates.

MTT and WST-1 assay for cell viability
Cell viability was determined using either the 3-[4, 5-dime
thylthiazol-2-yl]-2. 5-diphenyl-tetrazolium bromide (MTT; 
Sigma-Aldrich) or the WST-1 (4-[3-(4-iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzenedisulfonate) (Roche, 
Indianapolis, IN, USA) assay, which are based on the reduc-
tion of tetrazolium into formazan dye by active mitochondria 
(Lee et al., 2017). After treatment, the medium was removed, 
and the cells were incubated with 250 ml of MTT (0.3 mg/mL 
in serum-free medium) or 100 ml of WST-1 (final 10 μg/ml in 
PBS) for 3 h at 37°C and were protected from light. For MTT, 
formazan products were dissolved in 300 ml DMSO with gentle 

shaking for 30 min at 37°C. For MTT, 200 ml of supernatants 
were transferred into 96-well plates, and absorbance was 
determined by microplate spectrophotometry at 540 nm (Mo-
lecular Devices Inc., Sunnyvale, CA, USA). For WST-1, absor-
bance was measured at 450 nm. Cell viability was calculated 
using the following formula: 

Cell viability (%) 
    =mean value of treated group/control group×100 (%).

Detection of healthy, apoptotic, and necrotic cells
Cells undergoing apoptosis and necrosis were visualized 

using a commercial fluorescence triple staining kit comprised 
of Hoechst 33258, annexin, and ethidium bromide (Promo 
Kine Apoptotic/Necrotic Cells Detection Kit, Promo Cell 
GmBH, Heidelberg, Germany) under a fluorescence micro-
scope (Axiovert 200 M microscope, Carl Zeiss, Oberkochen, 
Germany) as described previously (Hwang et al., 2018). Brief-
ly, cells were washed with 1x binding buffer and stained by 
adding 5 μL of FITC-Annexin V and 5 μL of EthD-III to 100 μL 
1X binding buffer. Samples were incubated with the staining 
solution for 15 min at room temperature and were protected 
from light.

Measurement of reactive oxygen species production
Production of ROS was measured using a 2′,7′-dichloroflu-
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Fig. 2. TAK-875 induced apoptosis and necrosis in HepG2 cells. The visualization of healthy (blue), necrotic (red), or apoptotic (green) cells 
following treatment with DMSO, TAK875, or APAP 25 mM (at 24 h), respectively, in HepG2 cells using a triple fluorescence staining kit un-
der fluorescence microscope (100×). 
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orescein-diacetate (DCF-DA, Eugene, OR, USA)-enhanced 
fluorescence assay as described previously (Kim et al., 2016). 
Briefly, HepG2 cells were pretreated with the indicated con-
centrations of TAK-875 and APAP with or without N-acetyl cys-
teine (NAC) 5 mM for 24 h, washed with PBS, and stained with 
5 μM DCF-DA for 10 min at 37°C. For the positive control, cells 
were treated with 100 μM H2O2 for 10 min before staining. The 
resulting cells were visualized using the Softmax5.2 program 
under an Axiovert 200M microscope (Zeiss, Oberkochen, Ger-
many). Cellular fluorescence was measured using the Image 
J program (NIH, Bethesda, MD, USA).

Knockdown of GPR40 through siRNA application in HepG2
To knock out GPR40, HepG2 cells were seeded onto 35mm 

dishes at a density of 2.5x105 cells/well and cultured for 24 h in 
a 37°C 5% CO2 incubator. The siRNA mixture [5 μM; GPR40: 
ON-TARGETplus FFAR1 siRNA (human)], L-005571-02-
0005, positive control: ON-TARGETplus GAPDH control pool 
– human, D-001830-10-05, negative control: ON-TARGETp-
lus Non-targeting pool, D-001810-10-05) with DharmaFECT 
agent (GE Dharmacon, Lafayette, CO, USA) in serum free 
media were added to the cells, and the cells were further incu-
bated for 48 h. Knockdown of GPR40 was confirmed through 
PCR analysis after extraction with Trizol reagent (Invitrogen, 
CARLSBAD, CA, USA). The concentration of RNA was deter-
mined using a NanoDrop 1000 spectrophotometer (NanoDrop 
Technologies, Inc., Wilmington, DE, USA).

Reverse transcription-PCR
Relative expression levels of mRNAs were measured by 

PCR. Total RNA, extracted from HepG2 cell treated with siR-

NA, was used to synthesize cDNA using the pre-master mix 
with oligo dT (Bioepis, Seoul, Korea). Semi-quantitative RT-
PCR was performed using electrophoresis though a 1.5% aga-
rose gel with eco dye (EcoDye DNA staining solution, Biofact, 
Daejeon, Korea). The sequence of primers of HepG2 was as 
follows: forward GPR40, 5′-GTGTCACCTGGGTCTGGTCT-3′; 
reverse GPR40, 5′-GAGCAGGAGAGAGAGGCTGA-3′; for-
ward Human GAPDH, 5′-GGTCACCAGGGCTGCTTTTA-3′; 
reverse Human GAPDH, 5′-TTCCCGTTCTCAGCCTTGAC-3′; 
cycling parameters were 95°C for 2 min, and then 33 cycles 
of 95°C for 20 s, 54°C for 40 s, and 72°C for 30 s, followed by 
72°C for 5 min.

Hepatotoxicity testing with zebrafish embryo
Maintenance of zebrafish: Zebrafish (Danio rerio) were 

maintained under a 14 h light/10 h dark cycle in an automatic 
circulating tank system and fed brine shrimp three times per 
day (Nirwane et al., 2016; Jeong et al., 2018). Three or four 
pairs of zebrafish were set up for mating, and approximately 
200-300 embryos were generated. Embryos were maintained 
at 28°C in egg water. Experiments were performed on hatched 
zebrafish embryos at 3 days post fertilization (dpf). All animal 
studies were performed in accordance with the international 
rules considering animal experiments and the internationally 
accepted ethical principles for laboratory animal use and care. 
The protocols were approved by the Institutional Animal Care 
and Use Committee of the Seoul National University (acces-
sion number SNU-151029-4).

Chemical treatment: Five zebrafish embryos per well at 3 
dpf were immersed in 500 μL of egg water containing 0.1 mM 
1-phenyl-2-thiourea (PTU) solution for 48-72 h on a 24-well 
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plate. TAK-875, acetaminophen, or 0.1% DMSO for vehicle 
control was added into PTU solution depending on each ex-
perimental design. Survival rates were observed every 6 h, 
and dead embryos were removed.

Morphological assessment of hepatotoxicity in zebrafish: 
To assess hepatotoxicity morphologically, zebrafish larvae 
were mounted in 1% low melting agarose. Images were ob-
tained using a stereomicroscope (Leica M165 FC) to obtain 
liver and yolk sac sizes. Liver size and yolk sac retention were 
calculated using the formulas:

Liver size (% of control) 
    =liver area (chemical)/liver area (control)×100%

Yolk sac retention (% of control) 
    =yolk sac area (chemical)/yolk sac area (control)×100%

Liver histology in zebrafish: Zebrafish larvae were col-
lected and fixed in 10% neutral buffered formalin at room 
temperature overnight and were then subjected to paraffin 
embedding and sectioning. Hematoxylin and eosin staining 
was performed to histologically examine hepatotoxicity as de-
scribed previously (Jeong et al., 2017a; Kim et al., 2017). 

Statistics
Results are presented as mean ± SE of three or more in-

dependent experiments. Statistical significance of differences 
between groups was assessed using a two-tailed Student’s 
t-test using GraphPad Prism 5 (GraphPad Software, San Di-
ego, CA, USA). A p-value<0.05 was considered statistically 
significant.

RESULTS

To evaluate the cytotoxicity of fasiglifam, TAK-875, against 
hepatocytes, a human hepatocarcinoma cell line, HepG2, cul-
tured in a monolayer was treated with various concentrations 
of TAK-875 and acetaminophen 20 mM (APAP) as a positive 
control for 24 h, and, thereafter, cell viability was measured. 
TAK-875 decreased cell viability of HepG2 cells in both con-
centration- and time-dependent manners from a concentration 
of ~100 mM, suggesting that it might cause direct hepatotoxic-

ity (Fig. 1). This level of cytotoxicity against HepG2 was similar 
to that induced by APAP at ~20 mM, reflecting that the potency 
of hepatotoxicity of TAK-875 may be much stronger than that 
of APAP. Visualization of apoptotic and necrotic cells revealed 
that TAK-875 exposed-HepG2 cells exhibited late apoptotic 
(green & red) appearance as was found with APAP (Fig. 2).

We assessed the generation of reactive oxygen species 
(ROS) employing DCF-DA enhanced fluorescence to exam-
ine the mechanism underlying the hepatotoxicity of TAK-875. 
We measured cell viability and detected changes in intracel-
lular ROS generation following the treatment of HepG2 with 
TAK-875. Intracellular ROS production increased significantly 
in HepG2 exposed to TAK-875 as compared with those ex-
posed to H2O2 and APAP, two positive controls well known for 
their toxic mechanisms associated with ROS production (Fig. 
3A, 3B). HepG2 treated with TAK-875 plus N-acetylcysteine 
(NAC), an antioxidant, resulted in significant reduction of ROS 
production (Fig. 3B) and alleviation of the cytotoxicity of TAK-
875 (Fig. 3C). 

TAK-875 is a GPR40 agonist. To identify the role of GPR40 
in the manifestation of cytotoxicity of TAK-875, GPR40 was 
knock-downed using siRNA (Fig. 4A). TAK-875-induced ROS 
generation was significantly attenuated after knockdown of 
GPR40 (Fig. 4B). This was further confirmed by the abroga-
tion of TAK-875-induced cytotoxicity in HepG2 cells (Fig. 4C). 
To examine whether the cytotoxicity of TAK-875 was common 
to other cell-types, human dermal fibroblasts considered not 
to express GPR40 (Fujita et al., 2011; Bahar Halpern et al., 
2012), were treated with TAK-875 and cell viability and ROS 
production were evaluated. TAK-875 did not induce cytotoxic-
ity or ROS generation in fibroblasts, which was in clear con-
trast to the findings in HepG2 cells (Fig. 5A, 5B). 

A 3D HepG2 culture, a spheroid system, has recently been 
used to study the hepatotoxicity of xenobiotics. We cultivated 
HepG2 in spheroid, and the hepatotoxicity of TAK-875 was 
assessed. APAP, a positive control, induced significant levels 
of cytotoxicity from the concentrations of 25 mM while TAK-
875 manifested from 250-500 mM (Fig. 6A). This was further 
corroborated by histological examination of treated spheroids 
wherein chromatin condensation and unclear demarcation 
were evident in APAP or TAK-875 treated spheroids (Fig. 6B). 
However, neither potentiation nor inhibition of cytotoxicity was 
observed, suggesting that the contribution of metabolism may 
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be minimal. 
Liver consists of various types of cells, including Kupffer 

cells, stellate cells, and parenchymal hepatocytes. 2D or 3D 
single cell culture models have limitations for addressing in-
teractions between various cell types in the liver or interaction 
between liver and other organs. To explore the potential sys-
temic effects involved in the manifestation of hepatotoxicity of 
TAK-875, zebrafish, a non-mammalian alternative to animal 
test widely used for liver physiology (Saad et al., 2017) and 
hepatotoxicity owing to its similarity to human liver (Goldstone 
et al., 2010) was employed as a surrogate in vivo model to 
assess the hepatotoxicity of TAK-875. First, we examined sur-
vival rates of TAK-875 exposed zebrafish larvae. APAP served 
as a positive drug inducing hepatotoxicity in zebrafish larvae 
(Vliegenthart et al., 2014). APAP barely induced mortality up to 
the 5 mM concentration. However, TAK-875 exposed zebraf-
ish larvae showed significant mortality from 24 h of chemical 
treatment with increased responses depending on the con-
centration (Fig. 7A, 7B). 

We assessed hepatotoxicity by determining morphologi-
cal changes in the liver and yolk sac (Fig. 8) after exposure 
to APAP or TAK-875. Because liver size can be reduced in 
response to various pathologies such as inflammation, de-
generation, and necrosis (He et al., 2013a), we assumed that 
drug induced hepatotoxicity could be quantitated by measur-
ing liver size (Fig. 8A). As expected, both APAP and TAK-875 
significantly reduced liver sizes of zebrafish larvae compared 

to the vehicle control (Fig. 8B). In addition, we observed the 
delayed yolk absorption with significantly larger yolk reten-
tions in TAK-875 and APAP exposed zebrafish larvae. These 
results suggest that TAK-875 and APAP impaired liver function 
of zebrafish larvae resulting in reduced metabolism of lipid ab-
sorbed mostly from yolk in the liver (He et al., 2013a). 

Finally we histologically evaluated TAK-875-induced hepa-
totoxicity (Fig. 8C). Normal zebrafish larvae livers were filled 
with well-delineated polygonal hepatocytes with well-pre-
served cytoplasm and prominent nuclei. However, APAP- and 
TAK-875-exposed zebrafish larvae showed typical hepato-
toxic findings, demonstrating that most of the hepatocytes in 
these livers had marked vacuolated and enlarged cytoplasm 
and eccentric nuclei. Collectively, these data confirmed that 
TAK-875 induces liver damage in a zebrafish model.

DISCUSSION

Here we demonstrated that TAK-875 induced cytotoxicity in 
HepG2 cells cultured in 2D monolayers or 3D spheroids and 
that the potency TAK-875 was almost 100 fold stronger than 
that of APAP. Interestingly, the toxic range of TAK-875 was 
~100 mM, which is in a proximate range with the therapeutic 
level of 10 mM (Cmax, 2.3 mg/mL at 50 mg) suggesting that 
the margin of safety was small. The cytotoxicity of TAK-875 
appeared to be, at least in part, ROS-mediated and GPR40 
dependent. Most importantly, the hepatotoxicity of TAK-875 
is well-illustrated in zebrafish embryos where treatment with 
25 mM TAK-875 resulted in considerable mortality and severe 
liver damage. The toxic level of TAK-875 is thousands of fold 
lower than the toxic concentration of APAP in zebrafish and 
around two fold that of the therapeutic level, demonstrating 
that the hepatotoxicity of TAK-875 may have biological and 
clinical relevance. 

The mechanism underlying TAK-875-induced hepatotoxic-
ity remains unclear. Li et al. (2015) reported that rats receiv-
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evaluated using DCF-DA enhanced fluorescence (100x magnifica-
tion). H2O2 100 mM for 10 min as a positive control for ROS gen-
eration. Data are mean ± SE of at least 3 replications. **p<0.01.
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Fig. 6. TAK-875-induced cytotoxicity against HepG2 spheroids. 
HepG2 spheroids were prepared over 2 weeks of cultivation and 
exposed to APAP or TAK-875 for 24 h. (A) Cell viability was mea-
sured using the WST-1 assay (n=3, Data is mean ± SE), and (B) 
histology was examined (H&E staining, 400x, bar=50 μm). *p<0.05, 
**p<0.01, versus DMSO control. 
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ing TAK-875 exhibited cholestatic hepatotoxicity, which they 
ascribed to abnormal activities of bile transporters like Ntcp 
and OATP/Oatp (uptake transporters) and MRP2/Mrp2 (ef-
flux transporter). Very recently, Otieno et al. (2018) showed 

that a reactive acylglucronide metabolite of TAK can be pro-
duced with a capacity to induce covalent binding and to inhibit 
mitochondrial respiration. Here, we demonstrated that ROS 
generation may be involved in the hepatotoxicity of TAK-875; 
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this has been further confirmed by the reversal of toxicity of 
TAK-875 with the antioxidant NAC. Interestingly, in fibroblasts, 
TAK-875 failed to induce cytotoxicity and ROS generation 
suggesting that a hepatocyte-selective cytotoxic mechanism 
may exist, an issue that must be addressed in the future. 

TAK-875 directly induced cytotoxicity against HepG2 cells 
at much lower concentrations than APAP, a representative 
therapeutic drug with well-established hepatotoxicity con-
cerns. Considering the therapeutic levels of TAK-875 (plasma 
Cmax 2.3 mg/mL, ~ 5-10 mM), the safety margin is around 25-
50 fold. Actually, the effective concentration of APAP is ap-
proximately 20-40 mg/mL (corresponding to around 125-250 
mM), and the toxic level is around 25 mM, resulting in a toxicity 
margin of 50 to 100 fold, which gives extra weight to the prob-
able induction of TAK-875 hepatotoxicity in humans. More-
over, considering that a single or intermittent dose regimen of 
APAP for analgesic or antipyretic purposes is used in relatively 
healthy people, the repeated intake of TAK-875 to lower blood 
glucose in the chronically ill diabetic patients who frequently 
have compromised liver functions may prominently increase 
the chance of liver injury. 

The zebrafish genome has 70% homology with that of hu-
mans, and many studies have successfully evaluated and 
elucidated the hepatotoxicity of xenobiotics using zebrafish 
(Hill, 2011). Liver toxicity in zebrafish is commonly evaluated 
through examination of morphological endpoints that include 
liver degeneration, changes in size, liver shape, and yolk sac 
retention (He et al., 2013b). TAK-875 and APAP caused typical 
signs of hepatotoxicity in zebrafish livers including reduction in 
liver size and impaired yolk sac absorption. Interestingly, TAK-
875 induced hepatotoxicity at much lower concentrations in 
zebrafish in vivo than in HepG2 cells in vitro. This discrepancy 
could be attributable to the contribution from other cell types in 
the liver, to the interaction between the liver and other organs, 
or to species differences.

Since the recent termination of the clinical development of 
TAK-875, a GPR40 agonist, studies regarding associations 
between TAK-875 and hepatotoxicity are scarce. Otieno et al. 
(2018) speculated that other GPR40 agonists may not be free 
from hepatotoxicity but this is largely because of the presence 
of carboxylic group in their structures, which can produce re-
active acylglucuronide as observed in TAK-875. We confirmed 
that TAK-875 may cause hepatotoxicity through increasing 
cytosolic ROS generation in hepatocytes, a process that is 
GPR40-dependent. Resistance of fibroblasts to TAK-875-in-
duced cytotoxicity may support this further. Furthermore, the 
hepatotoxicity of TAK-875 was demonstrated in zebrafish lar-
vae at the exposure levels relevant to therapeutic doses in 
humans. These findings may provide important clues to reveal 
the mechanism of hepatotoxicity of TAK-875 although further 
studies are necessary to elucidate the pathways for GPR40-
dependent ROS generation.
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