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Ecological interactions shape adaptations through coevolution
not only between pairs of species but also through entire mul-
tispecies assemblages. Local coevolution can then be further
altered through spatial processes that have been formally parti-
tioned in the geographic mosaic theory of coevolution. A major
current challenge is to understand the spatial patterns of coad-
aptation that emerge across ecosystems through the interplay
between gene flow and selection in networks of interacting
species. Here, we combine a coevolutionary model, network
theory, and empirical information on species interactions to inves-
tigate how gene flow and geographical variation in selection
affect trait patterns in mutualistic networks. We show that gene
flow has the surprising effect of favoring trait matching, espe-
cially among generalist species in species-rich networks typical
of pollination and seed dispersal interactions. Using an analyti-
cal approximation of our model, we demonstrate that gene flow
promotes trait matching by making the adaptive landscapes of
different species more similar to each other. We use this result to
show that the progressive loss of gene flow associated with habi-
tat fragmentation may undermine coadaptation in mutualisms.
Our results therefore provide predictions of how spatial pro-
cesses shape the evolution of species-rich interactions and how
the widespread fragmentation of natural landscapes may modify
the coevolutionary process.

coadaptation | ecological networks | gene flow | mutualism |
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Ecological interactions are a fundamental component of bio-
diversity (1). Phenotypic traits of many species have evolved

through selection imposed by ecological interactions, such as tox-
ins in prey and resistance to toxins in their predators (2) or floral
tubes of plants and mouthparts of their pollinators (3). These
examples show how reciprocal selection shapes coadaptation
in pairs or small groups of interacting species. However, small
groups of species rarely interact in isolation. Species are usually
embedded in networks containing dozens or even hundreds of
interacting species (4, 5). Understanding how patterns of coad-
aptation arise and favor species persistence in large assemblages
of interacting species is currently a major challenge requiring
approaches at the interface of ecology, evolution, and network
science (6–8).

For mutualisms, previous studies have explored how coevo-
lution may affect network architecture—that is, the pattern of
interactions among species—and, in turn, how such architec-
ture may drive coevolution. The role of coevolution in shaping
the organization of links of empirical networks is still uncer-
tain (9–12). Nevertheless, it is known that network architecture
varies with fundamental aspects of the natural history of inter-
actions, potentially leading to distinct coevolutionary dynamics
(7, 13). For example, multiple-partner mutualisms, in which
an individual interacts with several individuals throughout its
life, such as pollination or seed dispersal by animals, typically
form species-rich and nested networks (14, 15). Theoretical
evidence suggests that coevolution in multiple-partner mutu-
alisms operates in part through indirect evolutionary effects—
that is, evolutionary outcomes caused by species that are not

linked as interacting partners (7), favoring similarity in traits at
the community level (i.e., trait convergence) (16, 17). In con-
trast, intimate mutualisms, in which an individual completes
at least a life stage on a single host, such as protection of
host plants by ants or protection of anemonefishes by host
anemones, generate species-poor and modular networks (18,
19). Coevolution in intimate mutualisms is expected to exhibit
frequent and reciprocal effects between species that interact
directly (13), leading to the tight trait matching observed in
many intimate interactions (20). Thus, studies of coevolution in
mutualistic networks have shown how adaptive landscapes may
be modified by the underlying network structure, molding trait
patterns (Fig. 1A).

Coevolution in multispecific interactions, however, is a geo-
graphic process, as the assembly of interaction networks and the
ongoing coevolution in these networks may vary across space
(1). In pairs or small groups of species, theoretical and empir-
ical work on the geographic mosaic of coevolution have shown
that patterns of adaptation vary widely across geographic regions
depending on the distribution of local selection regimes (2, 21–
23). In addition, the connection of different populations via gene
flow as well as other genetic and genomic processes may remix
trait distributions across the landscape, promoting or inhibit-
ing the evolution of local coadaptation (24–27). Although gene
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Fig. 1. Potential effects of gene flow on trait evolution in mutualistic net-
works. In this example, there are two sites in which the same two pollinator
species interact with the same plant species. Each curve represents a trait
distribution with mean zi of one population in one of the sites (light gray
and black: pollinator species; dark gray: plant species). Dashed lines indicate
the trait values favored by the local environment (θi). (A) In the absence
of gene flow across sites, trait matching (colors in the interaction matrix)
evolves because mutualistic interactions modify local adaptive landscapes.
(B and C) Gene flow across sites with distinct selection regimes may shift
species traits, further altering adaptive landscapes and trait patterns in two
possible ways. (B) First, gene flow may induce trait mismatching. (C) Second,
gene flow may strengthen the coadaptation pattern previously observed for
the isolated assemblage.

flow may strengthen local adaptation by increasing the genetic
variation available to selection in some systems (28), this mech-
anism alone is unlikely in coevolving systems, in which gains in
genetic variation would not compensate the deviations from local
adaptation (21).

Despite the importance of gene flow and geographical vari-
ation in selection in interactions involving few species, we
currently lack a framework to understand how these pro-
cesses shape trait evolution in species-rich metacommunities
(29, 30). In spatial metanetworks (31), the interplay between
gene flow, geographical variation in selection, and both direct
and indirect coevolutionary effects may reshape local adap-
tive landscapes with important consequences for trait evolution
(Fig. 1 B and C).

Here, we combine a mathematical model of coevolution,
network theory, and empirical data on species interactions to

develop a framework that merges the geographic mosaic of
coevolution with coevolutionary networks. We use this frame-
work to investigate how the interplay between gene flow, geo-
graphical variation in selection, and network structure may affect
the emergence of coadaptation in mutualisms. Through numer-
ical simulations parameterized by 72 empirical networks, we
show that gene flow increases trait matching between mutualistic
partners, especially in species-rich, nested networks. Additional
simulations using an analytical approximation of our model show
that the progressive loss of gene flow due to habitat fragmenta-
tion could undermine coadaptations by altering species adaptive
landscapes.

Results
Gene Flow, Geographical Variation in Selection, and the Evolution
of Trait Patterns. We first explored the emergence of trait match-
ing in a single site using a previously developed model (7) that
describes the evolution of a single trait shaped by mutualistic
interactions among populations of different species (Materials
and Methods). In this model, the mean trait value of each species
(zi) evolves toward a fixed environmental optimum (θi) in the
absence of mutualism. Mutualistic selection modifies this simple
adaptive landscape by favoring trait matching among mutual-
istic partners (Fig. 1A). We performed numerical simulations
of this model parameterized by the structure of 72 empirical
mutualistic networks (SI Appendix, Table S1). We found that
increasing mutualistic selection (mi) leads to stronger reciprocal
selection and to higher trait matching (SI Appendix, Fig. S1). As
a consequence, networks in which mi is high and there is strong
reciprocal selection (hereafter hotspots) favor higher levels of
trait matching than networks in which mi is low and there is weak
reciprocal selection (hereafter coldspots).

We next extended the coevolutionary model to two sites to
explore how gene flow and geographical variation in mutualis-
tic selection affect trait evolution (Materials and Methods). We
performed simulations parameterized by our 72 empirical net-
works, assuming that the same network occurs at both sites. We
found that gene flow (gi) can either enhance or reduce trait
matching, depending on mutualistic selection. For the majority
of combinations of mutualistic selection, including two hotspots
(mA =mB =0.7), gene flow favors the emergence of trait match-
ing (Fig. 2A and SI Appendix, Fig. S2). This surprising effect
occurs because gene flow cancels out local conflicting selective
pressures and allows trait matching to evolve, especially in pairs
of generalist species (i.e., species with many interactions; Fig. 2A
and SI Appendix, Fig. S3). This effect of gene flow results both
from the uncoupling of species traits from their environmental
optima and from the geographical homogenization of traits (SI
Appendix, Fig. S4).

Importantly, gene flow promotes trait matching especially
when environmental optima (θi,A, θi,B ) are not correlated across
sites, meaning that the selection regime of each species varies
geographically as a selection mosaic (SI Appendix, Fig. S5). For a
few combinations of mutualistic selection, such as a hotspot and
a coldspot (mA =0.9, mB =0.1), gene flow disrupts trait match-
ing at the hotspot (Fig. 2B and SI Appendix, Fig. S2). In this case,
populations at the coldspot are trapped into their environmental
optima, and gene flow inhibits the evolution of trait matching at
the hotspot. Sensitivity analyses showed that these results hold
for many different parameter values (SI Appendix, Table S2 and
Fig. S5), for a scenario in which gene flow is greater in generalist
than in specialist species (SI Appendix, Fig. S6), and for a sce-
nario in which species composition and network structure vary
across sites (SI Appendix, Fig. S7).

We then obtained analytical equilibrium expressions to under-
stand how coevolution shapes trait patterns (SI Appendix). With
a single site, the trait values at equilibrium (vector z∗) are
connected to species environmental optima (vector θ) through
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Fig. 2. Effects of gene flow on the evolution of trait matching in mutualistic networks. (A and B) Each point is the mean trait matching at equilibrium at the
hotspot (τA*) for 100 simulations parameterized with a seed dispersal network (network 64 in SI Appendix, Table S1), and bars show the 95% confidence
interval. (A) When mutualistic selection is high at both sites (mA = mB = 0.7), gene flow favors trait matching at each hotspot. (B) When mutualistic selection
is high at only one site (mA = 0.9, mB = 0.1), gene flow reduces trait matching at the hotspot. Changes in mean trait matching (A and B) are a consequence of
changes in the matching among generalist species, as shown in the interaction matrices (colors depict equilibrium pairwise trait matching for one simulation
with the indicated value of gene flow). Sample distributions and values for simulation parameters: ϕi,A,ϕi,B∼N [µ= 0.5,σ2 = 10−4], θi,A∼U [0, 10], θi,B∼
U [10, 20], mi,A∼N [mA, 10−4], mi,B∼N [mB, 10−4], gi ∼N [g, 10−6], and α= 0.2.

a matrix (T) that contains direct and indirect coevolutionary
effects: z∗ =Tθ (7). Row i of T represents how other species
directly or indirectly affect the adaptive landscape of species i .
By measuring the correlation among rows of T, we showed that
similar mutualistic adaptive landscapes among species favor trait
matching and trait convergence (SI Appendix). Moreover, we
found that increasing mutualistic selection leads to greater simi-
larity of adaptive landscapes and higher trait matching, because
indirect effects become stronger when mutualistic selection is
higher (SI Appendix, Figs. S8 and S9). With two sites, the matrix
T combines direct and indirect coevolutionary effects within and
between sites. We found that increasing gene flow contributes
to the similarity of adaptive landscapes, fueling trait matching in
both mutualistic assemblages (SI Appendix, Figs. S10 and S11A).
It does so by expanding the indirect effects of mutualistic selec-
tion across sites. In contrast, gene flow between a hotspot and a
coldspot has an opposite effect and decreases trait matching (SI
Appendix, Fig. S11B).

Network Structure and the Evolution of Trait Patterns. Our next
step was to investigate how network structure influences coevo-
lution and mediates the effects of gene flow. We characterized
the structure of our 72 empirical networks using four met-
rics: species richness, connectance, nestedness, and modularity
(Materials and Methods). We performed a Principal Compo-
nent Analysis (PCA) of these metrics to obtain two variables
(PC1 and PC2) that describe the range of variation in net-
work structure in our empirical dataset (Fig. 3A and SI Appendix,
Table S1).

In the absence of gene flow, species-poor, modular net-
works typical of intimate mutualisms favored the evolution of
higher levels of trait matching than species-rich, nested net-
works typical of multiple-partner mutualisms (Fig. 3B, mul-
tiple linear regression: τ∗∼ 0.73− 0.01PC1− 0.05PC2,m =
0.7, g =0). When gene flow is present, however, network struc-
ture has a weaker effect on the emergence of trait matching,
allowing multiple-partner mutualisms to attain levels of trait

matching almost as high as the ones observed for intimate mutu-
alisms (Fig. 3C, τ∗A ∼ 0.86− 0.005PC1− 0.01PC2,mA =mB =
0.7, g =0.3). This result occurs because networks of multiple-
partner mutualisms contain a core of interacting generalists and
the effect of gene flow on trait matching is stronger for pairs of
generalist species than for other pairs of species (SI Appendix,
Fig. S3). Our simulations using other combinations of mutualistic
selection (mA, mB ) support the interpretation that gene flow has
a stronger effect on multiple-partner mutualisms (SI Appendix,
Fig. S2).

Disruption of Gene Flow and Its Consequences for Coevolution.
Having shown that gene flow may favor the emergence of
coadaptation in mutualistic networks, we next considered the
consequences of the disruption of gene flow to trait evolu-
tion. To do so, we simulated a progressive loss of gene flow
in two initially connected mutualistic assemblages and com-
puted equilibrium trait values using our analytical approxi-
mation (Materials and Methods). We used empirical informa-
tion on ecological dependencies between mutualistic partners
(i.e., weights in adjacency matrices; SI Appendix, Table S1)
of 29 networks in our dataset to parameterize the evolution-
ary effects (qij ) of the matrix T. By removing gene flow from
an increasing fraction of species, we altered the direct and
indirect coevolutionary effects within and between networks
present in T.

We found that the ongoing disruption of gene flow causes
trait matching to decrease, but extreme loss of gene flow may
recover some level of trait matching (Fig. 4and SI Appendix,
Fig. S12). Further analysis revealed that the lowest values of
trait matching in these simulations occur when gene flow is
highly variable across species in the network (SI Appendix,
Fig. S13).

Discussion
The geographical and multispecific complexity of coevolution
poses a challenge to our understanding of the evolution of
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Fig. 3. Network structure, gene flow, and the emergence of trait match-
ing in mutualistic networks. (A) PC1 and PC2 of a PCA using four net-
work structure metrics measured for our 72 empirical networks. PC1
accounted for 60.9% of all variation and was strongly correlated with con-
nectance (0.56), nestedness (0.58), and modularity (−0.56). PC2 accounted
for 32.4% of all variation and was strongly correlated with species rich-
ness (0.81). Network structure was highly variable, as illustrated by an
ants–myrmecophytes (Left, network 14 in SI Appendix, Table S1) and a
seed dispersal (Right, network 64 in SI Appendix, Table S1) network. Types
of mutualism: green, pollination; cyan, ants–nectary-bearing plants; dark
blue, marine cleaning; purple, seed dispersal; red, ants–myrmecophytes;
orange, anemones–anemonefishes. (B and C) Predicted mean trait matching
at the hotspot (τA*) for a linear model with PC1 and PC2 as explana-
tory variables and trait matching from simulations as the response variable
(white points are the networks in A). (B) Species-poor, modular networks
favored the emergence of trait matching in isolated hotspots (m = 0.7,
g = 0, n = 100 simulations per network). (C) The effect of network structure
is reduced when the two hotspots are connected by gene flow, and species-
rich, nested networks may also favor high trait matching (mA = mB =

0.7, g = 0.3, n = 100 simulations per network). Simulation parameters as
in Fig. 2.

interacting species. In this study, we tackled this challenge
by taking a first step in merging the geographic mosaic the-
ory of coevolution with the recent approach of coevolutionary
networks. Our framework combines a coevolutionary model
and network theory to evaluate how gene flow, hotspots, and
coldspots shape trait matching in multiple-partner and inti-
mate mutualisms. Our findings reveal three main ways in which
gene flow may be a fundamental process catalyzing the evo-
lution of coadaptation in species-rich systems across simple
landscapes.

First, gene flow may promote trait matching among mutu-
alists within large networks. Previous results have shown that
gene flow is capable of promoting adaptive evolution in natu-
ral populations by increasing local genetic variation (28) or when
individuals disperse to specific habitats (32). Here, we reveal an
additional mechanism for how gene flow may contribute to adap-
tation. When two mutualistic assemblages are connected by gene
flow, the effects of environmental selection are canceled out,
allowing mutualistic selection to drive trait evolution. As a con-
sequence, gene flow makes the adaptive landscape of different
species more similar to each other, erasing the conflicting selec-
tive pressures on highly interacting species and allowing trait
matching and trait convergence to emerge. This result may pro-
vide a mechanism for one of the most challenging problems in
coevolution, which is how local adaptation scales up to gener-
ate trait patterns in interacting species across broad geographical
areas. We also found that gene flow may reduce trait matching
for some specific scenarios, such as when a hotspot is linked to a
coldspot. Therefore, specific combinations of gene flow and geo-
graphical variation in selection may generate trait mismatching
in interacting species (2, 21). By analyzing pairs of interacting
species, we showed that the observed changes in coadaptation
patterns are mainly driven by species with a high number of inter-
actions, such as generalist bees in pollination networks (33). This
result, combined with our simulations incorporating simple spa-
tial turnover in species composition, allows us to hypothesize
that the observed effects of gene flow and geographical variation
in selection should hold whenever generalist species are consis-
tently present across local interaction networks. Our conclusions,
however, may not hold for more complex landscapes, in which
spatial heterogeneity may lead to unanticipated evolutionary
dynamics.

Second, we show that network architecture mediates the effects
of gene flow and geographical variation in selection on the evo-
lution of trait patterns. The study of coadaptation in mutualistic
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Fig. 4. Disruption of gene flow and its consequences for trait matching in
mutualistic networks. Trait matching decreases as gene flow is progressively
lost in mutualistic networks but increases slightly with an extreme loss of
gene flow. Initially, all species in the network have a high value of gene flow
(gi = 0.3 ∀ i), and species randomly lose gene flow until all species lack gene
flow (gi = 0 ∀ i). Each point is the mean equilibrium trait matching at site A
(τA*) calculated with our analytical equilibrium expression using 10 differ-
ent environmental optimum (θ) samples in each of 10 distinct simulations.
Lines connect points from the same network, and different colors indicate
different types of mutualism. Sample distributions and values for simulation
parameters: ϕi,A =ϕi,B = 1, θi,A∼U [0, 10], θi,B∼U [10, 20], mi,A = mi,B = 0.5,
and α= 0.2.
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systems has often focused on specialized interactions, such as
the protection of host plants by their sheltered ant colonies (20,
34). In small networks of specialized species, coevolution should
operate through frequent reciprocal changes between interacting
species, generating impressive matching between morphological
or physiological traits (20, 23, 34). However, in networks with
dozens of interacting partners, coevolution may proceed through
indirect effects (7), potentially driving community-level trait pat-
terns such as trait convergence in assemblages of mimetic species
(35) or fruiting plants (16). Because our results indicate that
gene flow favors coadaptation mainly among generalist species,
the effect of gene flow is greater in species-rich, nested net-
works than in species-poor, modular networks. Thus, networks
of intimate mutualisms such as protective ants and their host
myrmecophytes may favor tight trait matching between interact-
ing partners irrespective of how well-connected populations are
across a landscape. In contrast, the emergence of strong trait
matching in multiple-partner mutualisms such as pollination may
be contingent upon gene flow between populations.

Third, the trait patterns observed in species-rich mutualisms
may be fragile in the face of processes leading to the disruption of
gene flow, such as habitat fragmentation. Habitat fragmentation
is one of the most widespread environmental impacts of human
activities (36). Because habitat fragmentation may disrupt gene
flow, genetic variability may wane in isolated populations, with
severe consequences for the persistence of such populations (37).
Our results suggest an additional effect of the gradual disruption
of gene flow: the loss of coadaptation in mutualistic systems. This
loss of coadaptation could, in turn, erode the potential robust-
ness of coevolved interaction networks to human disturbance (8).
We hypothesize, therefore, that habitat fragmentation may cause
species-rich mutualisms to lose their ecological effects over time,
with severe consequences for ecosystem services such as crop
pollination and regeneration of plant populations (38).

Materials and Methods
Single-Site Coevolutionary Model. We first used a single-site coevolutionary
model to explore the emergence of trait patterns (7) (SI Appendix). This
model is based on a selection gradient that connects trait evolution with
the mean fitness consequences of mutualisms. In this model, N populations
of distinct species interact mutualistically at a given site, and the mean value
of a single trait of each population (zi) evolves in discrete time. Trait zi medi-
ates mutualistic interactions (e.g., flower tube length, pollinator mouthpart
length) and affects the fitness consequences of the mutualism (mutualis-
tic selection) as well as other fitness components, such as abiotic factors
(environmental selection). The trait evolution of species i is described as
follows:
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where ϕi is proportional to the slope of the selection gradient and to the
additive genetic variance of the trait, q(t)

ij represents the evolutionary effect

of species j on species i
(

0≤ q(t)
ij ≤ 1

)
, and θi is the trait value favored by the

environment. We assumed that mutualistic selection is mediated by trait
matching and, therefore, the trait value of species i favored by selection
imposed by species j is zj . The evolutionary effects q(t)

ij are defined as a
function of trait matching as:
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where mi measures the relative importance of all mutualistic interactions(
0≤
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)
, aij is an element of A—the binary adjacency

matrix of a given mutualistic network—and τ (t)
ij is the level of trait match-

ing between i and j
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. We defined trait matching as τ (t)
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, in which α controls the sensitivity of τ (t)
ij to differences

between traits. If species i and j do not interact in the mutualistic net-
work, then aij = 0 and q(t)

ij is an evolutionary forbidden link. In contrast, if

i and j are mutualistic partners, then aij = 1 and q(t)
ij changes through time

according to trait matching.

Two-Site Coevolutionary Model. We extended the single-site coevolutionary
model to a scenario with two mutualistic assemblages connected by gene
flow (SI Appendix), which is consistent with the concept of a spatial
metanetwork (31). We assumed that, at each generation, a fraction gi of
the individuals of species i migrate from site A to site B and from site B to
site A (0≤ gi ≤ 1). Thus, a fraction 1− gi of all individuals in both popu-
lations remains at its own site. The mean trait value of species i at site A
changes according to the following equation:
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The term δ(t)
zi,B

and the equation for the evolutionary change in zi,B are

obtained by interchanging subscripts A and B in δ(t)
zi,A

and in Eq. 3. Impor-

tantly, model parameters (ϕi , mi , θi), species richness (N), and interaction
networks (aij) can all vary across sites, which allowed us to explore how
geographical variation in these components affects trait evolution (SI
Appendix).

Simulations of the Coevolutionary Models. We performed numerical simula-
tions of the coevolutionary models to investigate how mutualistic selection
(mi,A, mi,B) and gene flow (gi) influence the emergence of trait matching(
τ (t)

ij

)
(SI Appendix). First, we explored how mutualistic selection affects

reciprocal selection and trait matching in an isolated site by performing
simulations of the single-site model (Eq. 1), using different values of the
mean mutualistic selection in the network (m = 0.1, 0.3, 0.5, 0.7, 0.9). Then,
we focused on how the mean value of gene flow in the network (g), which
we varied from 0 to 0.3, affects the evolution of trait matching in two
connected hotspots (mA = mB = 0.7) in which reciprocal selection among
species was strong and in a hotspot connected to a coldspot (mA = 0.9, mB =

0.1) in which reciprocal selection was weak. For each combination of mA,
mB, and g, we performed 100 simulations of the two-site model (Eq. 3) per
empirical mutualistic network in our dataset (n = 72 networks, SI Appendix,
Table S1). In all simulations with the same empirical network, we parame-
terized the term aij by setting aij = 1 when species i and j interacted in the
network and aij = 0 otherwise. All other parameters (ϕi,A, ϕi,B, θi,A, θi,B, α)

and initial trait values
(

z(0)
i,A, z(0)

i,B

)
were sampled at the beginning of each

simulation from statistical distributions (SI Appendix, Table S2). In each sim-
ulation, we recorded trait values through time and computed trait matching

for pairs of species
(
τ (t)

ij

)
as well as the mean value across all interacting

species
(
τ (t)
)

at both sites. The equilibrium values of trait matching
(
τA*

and τB*
)

were calculated when species traits at both sites achieved asymp-

totic values, defined as
∣∣∣z(t+1)
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i,A

∣∣∣< 10−6 and
∣∣∣z(t+1)

i,B − z(t)
i,B

∣∣∣< 10−6. In

addition to performing simulations, we obtained analytical approxima-
tions of the coevolutionary models (Eqs. 1 and 3) to understand how trait
patterns emerge in mutualistic networks (SI Appendix). All of the codes
and empirical datasets required to reproduce our results are available at
https://github.com/wgar84/spatial coevo mutnet.

Empirical Dataset. Our dataset consisted of 72 empirical networks of both
terrestrial and marine mutualisms (SI Appendix, Table S1). We chose these
networks because they spanned diverse natural history attributes and net-
work structures. Our dataset included six types of mutualism that can be
divided into two broad categories: first, multiple-partner mutualisms in
which individuals may interact with dozens or hundreds of different part-
ners over a lifetime and form species-rich, nested networks—(i) ants that
protect plants with extrafloral nectaries (n = 5 networks), (ii) animals that
pollinate flowering plants (n = 28), (iii) fruit-eating vertebrates that disperse
the seeds of plants with fleshy fruits (n = 17), and (iv) fishes and shrimps that
clean client fishes (n = 3); second, intimate mutualisms in which individuals
create sustained interactions and form species-poor, modular networks: (v)
anemones that protect anemonefishes (n = 11) and (vi) ants that protect
their host plants, the myrmecophytes (n = 8).
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Network Structure. We quantified four widely used metrics to character-
ize the arrangement of interactions in our networks: (i) species richness,
(ii) connectance, (iii) nestedness, and (iv) modularity (SI Appendix). We
used only information on the presence and absence of interactions (i.e.,
1 and 0) to quantify these metrics. Species richness (N) is the total num-
ber of species in the network. Connectance (C) is the proportion of all
possible interactions that are in fact realized (14). Nestedness measures
how much the interactions of species with low degree values are proper
subsets of the interactions of species with higher degree values (15). We
quantified nestedness using the metric NODF (39). Finally, modularity mea-
sures how much the network is partitioned into groups of species with
many interactions within groups and few interactions among different
groups (33). We computed modularity using a simulated annealing algo-
rithm to optimize the value of a bipartite version of the metric Q (40).
Because network structure metrics are often highly correlated among each
other, we used PCA to describe how the values of our four metrics covary
across networks. We used the first and second principal components (PC1
and PC2) to describe the variation in network structure of our dataset
and to explore how network structure affects the emergence of trait
patterns.

Disruption of Gene Flow and Its Consequences for Coevolution. We used
our analytical approximation of the coevolutionary model to simulate the

progressive loss of gene flow in two initially connected mutualistic assem-
blages (SI Appendix). We began each simulation by building a matrix T
with mi,A = mi,B = 0.5 ∀ i and a high value of gene flow (gi = 0.3 ∀ i). We
used the ecological dependencies between interacting species (i.e., weights
in adjacency matrices; SI Appendix, Table S1) available for 29 networks in
our dataset as proxies for the evolutionary effects (qij) in T. Then, we per-
turbed T by randomly removing gene flow from an increasing proportion
of species (i.e., 0.05, 0.1, . . . , 0.95, 1 of species without gene flow). The sim-
ulation ended when all species had lost gene flow (gi = 0 ∀ i). After each
perturbation of matrix T, we sampled 10 different θ vectors using a statisti-
cal distribution and used our analytical equilibrium expression to calculate
trait values (z*) and trait matching (τij*). We performed simulations for many
different combinations of mi,A, mi,B, and gi (SI Appendix).
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