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How mutation and selection determine the fitness landscape of
tumors and hence clinical outcome is an open fundamental
question in cancer biology, crucial for the assessment of thera-
peutic strategies and resistance to treatment. Here we explore the
mutation-selection phase diagram of 6,721 tumors representing
23 cancer types by quantifying the overall somatic point mutation
load (ML) and selection (dN/dS) in the entire proteome of each
tumor. We show that ML strongly correlates with patient survival,
revealing two opposing regimes around a critical point. In low-ML
cancers, a high number of mutations indicates poor prognosis,
whereas high-ML cancers show the opposite trend, presumably
due to mutational meltdown. Although the majority of cancers
evolve near neutrality, deviations are observed at extreme MLs.
Melanoma, with the highest ML, evolves under purifying selec-
tion, whereas in low-ML cancers, signatures of positive selection
are observed, demonstrating how selection affects tumor fitness.
Moreover, different cancers occupy specific positions on the ML–
dN/dS plane, revealing a diversity of evolutionary trajectories.
These results support and expand the theory of tumor evolution
and its nonlinear effects on survival.
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The paradigm of tumor clonal evolution by acquisition of
multiple mutations has been firmly established since the

landmark work of Knudson (1), Cairns (2), and Nowell (3).
Similarly to microbial populations (4–6), tumors evolve under
constant selective pressure, imposed by the microenvironment as
well as by therapy, such that surviving tumor cell lineages harbor
mutations that confer selective advantage and resistance to
treatment. This has been demonstrated both in space, showing
intratumor branched evolution across different anatomical sites
(7), and in time, showing the existence of a population bottle-
neck following treatment and rapid emergence of resistant
phenotypes (8). Under this paradigm, the evolutionary trajec-
tories of cancers can be viewed as different realizations of the
same evolutionary process, shaped by the specific microenvi-
ronment, the genomic makeup of each tissue and individual, and
the unique history of mutations in each clone (3, 9).
Notwithstanding the importance of epigenetics, tumor evolu-

tion is marked by a wide range of genomic aberrations and in-
stabilities. These genomic changes occur at every length scale
and accumulate in a highly nonlinear manner, as exemplified by
local elevated mutation rates (kataegis) (10), complex short in-
sertions and deletions (11), hypermutation and microsatellite
instability (12), punctuated equilibrium and chromosomal rear-
rangements (chromoplexy) (13), and biased distribution of mu-
tations across different genomic regions (14). Eventually, these
somatic aberrations provide for the ability of cancers to pro-
liferate, invade, and metastasize (15) by affecting a plethora of
cellular functions (16).
Although recent advances in cancer genomics have greatly

improved our understanding of how somatic genomic aberra-
tions are linked to tumor progression and patient survival (17–
20), the fundamental question of how mutation and selection
jointly determine the clinical outcome remains open (21–23).
The population-genetic theory of tumor evolution predicts that

there exists a critical mutation-selection state that corresponds to
a transition between evolutionary regimes (24−25). Below the
critical state, mutations that increase tumor fitness, known as
cancer drivers (26–28), are the main factors of tumor evolution,
whereas above the critical state, accumulation of (moderately)
deleterious passenger mutations outcompetes the drivers, even-
tually leading to tumor regression through mutational meltdown
(25), a process known in population genetics as Muller’s ratchet
(29). However, the rarity of spontaneous tumor regression, cou-
pled with strong evidence of increased cancer risk at high muta-
tional loads (MLs) in hypermutator genotypes (30), contests the
existence and relevance of such criticality in clinical outcome.
Furthermore, recent studies indicate that the bulk of cancers

(31) and most genes (32−33) in tumors evolve neutrally. Con-
versely, somatic evolution of some normal tissues appears similar
to that detected in certain cancers (34), in particular showing
comparable signatures of positive selection (35). Together, these
findings prompt the fundamental question of how different
mutation-selection regimes of tumor evolution determine cancer
fitness and ultimately patient survival. Here, we address this
question by exploring the dependence of tumor fitness and
clinical outcome on ML and selection and demonstrate the ex-
istence of criticality in tumor evolution.

Results
Population Genetics Approach for Assessing Tumor Evolution and
Fitness. To study the interrelationship between mutation, selec-
tion, and clinical outcome on a large scale, we quantified the
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evolutionary state of 6,721 tumors that represent 23 different
cancer types from The Cancer Genome Atlas (TCGA) database
(Methods and SI Appendix, Fig. S1). All tumors in this dataset are
primary, except for melanoma tumors.
The time of tumor initiation and the nonlinearity in the ac-

cumulation of mutations during its evolution to a primary state
are unknown. Further, although the number of cancer-stem cells
that confer tumorigenic renewal potential is believed to be small,
their actual prevalence and impact on the fitness of tumors re-
mains incompletely understood (36−37). Thus, from the avail-
able data that typically present a single snapshot in time of
primary tumor states, the effective population size (Ne) cannot
be reliably determined. Therefore, we define the evolutionary
status of each tumor by the overall ML—that is, the sum of
nonsilent (N) local somatic genomic alterations including point
mutations, small deletions, and insertions—and by the strength
of selection (dN/dS)—that is, the ratio of nonsynonymous to
synonymous nucleotide substitution rates, acting on the entire
protein-coding exome (hereafter, proteome) (Methods and SI
Appendix, Figs. S2 and S3).
Respectively, dN/dS and ML can at least conceptually serve as

proxies for the effective Ne and the mutation rate (μ), the key
variables that are conventionally used in population genetics
(21), which determine the evolutionary fates of all organisms
(38). This is the case because dN/dS and Ne are inversely related
(39) so that high Ne implies dominance of purifying selection, a
common evolutionary regime in prokaryotes and unicellular
eukaryotes, whereas low Ne implies the dominance of neutral
evolution by genetic drift, a typical scenario in at least some
groups of multicellular eukaryotes (40−41). The case of ML, an
important clinical measure, is somewhat more complicated. It
represents the integration of all N somatic point mutations

across the proteome over an unknown but defined time interval.
Because some mutations could have accumulated before tumor
initiation (42), this interval can be defined as the time from the
birth of the cell that eventually transformed into a neoplastic cell
to the primary tumor state. Thus, ML represents the product of μ
and an effective evolutionary time; nonetheless, it can be trans-
lated into μ under simplifying assumptions, as we discuss below.
Assuming that the survival of patients is inversely proportional

to the fitness of tumors, we explored how ML and dN/dS cor-
relate with survival. We used both the semiparametrized Cox
regression analysis and the empirical Kaplan–Meier (KM) log-
rank test as two complementary approaches to increase the sig-
nificance of the analysis (Methods). These tests were applied to
both clinical overall survival (OS) and disease-free survival
(DFS) times.

Criticality in Clinical Outcome as Function of ML. First, we explored
how ML correlates with clinical outcome. To estimate ML, we
considered all N somatic mutations in each patient, including
missense (82.3%), in- and out-of-frame insertions and deletions
(8.6%), nonsense (5.8%) and splice-site/region (3.2%) variants
(SI Appendix, Fig. S1). The distribution of ML across the
23 cancer types is in full accord with the well-known ordering of
cancers (27−28), in which thymoma and acute myeloid leukemia
(AML) have the lowest ML, whereas lung and melanoma exhibit
the highest ML (Fig. 1, Top).
We performed a univariate Cox analysis for each cancer type

separately. To ensure that the hazard ratios (HRs) associated
with the different ML variables are comparable across cancer
types, the values of ML within each cancer type were normalized
to 0–1 (Methods). The Cox analysis of both OS and DFS of each
cancer type reveals two opposing trends of clinical outcome

Fig. 1. ML criticality in clinical outcome across cancer types. Log distributions of the number of N mutations per proteome/sample in each cancer type (Top)
and the corresponding results of Cox regression analysis (Bottom) are shown. Statistical significance is indicated for three thresholds: *P < 0.1, **P < 0.01, and
***P < 0.001. The KM results (SI Appendix, Fig. S4) are superimposed; the cases where a low (L, blue) or high (H, red) number of mutations was associated with
better survival (P ≤ 0.1) are highlighted. Gray letters (L or H) indicate an observed but not significant (P > 0.1) correlation. Complementing Cox regression
models stratified by cancer types are summarized in Table 1. Cancers are ordered by the median ML (N). Oncotree codes: (1) Thym, thymoma; (2) Laml, AML;
(3) Thca, thyroid carcinoma; (4) Pcpg, pheochromocytoma and paraganglioma; (5) Lgg, brain lower grade glioma; (6) Brca, breast invasive carcinoma; (7) Prad,
prostate adenocarcinoma; (8) Sarc, sarcoma; (9) Ov, ovarian serous cystadenocarcinoma; (10) Paad, pancreatic adenocarcinoma; (11) Kirc, kidney renal clear
cell carcinoma; (12) Kirp, kidney renal papillary cell carcinoma; (13) Gbm, glioblastoma; (14) Tgct, testicular germ cell cancer; (15) Lihc, liver hepatocellular
carcinoma; (16) Cesc, cervical squamous cell carcinoma and endocervical adenocarcinoma; (17) Hnsc, head and neck squamous cell carcinoma; (18) Stad,
stomach adenocarcinoma; (19) Luad, lung adenocarcinoma; (20) Blca, bladder urothelial carcinoma; (21) Esca, esophageal carcinoma; (22) Lusc, lung squamous
cell carcinoma; (23) Skcm, skin cutaneous melanoma.
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(Fig. 1, Bottom). Among the low-ML cancers (first 8; median
ML < 40), those that have accumulated higher numbers of N
mutations, on average, have poorer prognoses than those with
lower numbers of N mutations (β > 0, where β is the coefficient
of the Cox analysis such that HR = eβ; see Methods for details).
However, the relationship between ML and survival reverses in
high-ML cancers (last 8; median ML > 70), where a higher
number of N mutations corresponds to a better prognosis (β <
0). Cancers with medium ML (#9 to #15) do not show a sig-
nificant association with survival (β ∼ 0) except for ovarian (#9,
median ML = 40) and liver (#15, median ML = 70) at the two
sides of the mutation “watershed,” where the pattern of ML
distributions flattens (ML medians ∼50). The complementary
KM analysis, where we compared the prognosis for patients with
low- and high-ML values within each cancer, is concordant with
the univariate Cox analysis (Fig. 1 and SI Appendix, Fig. S4).
Notably, ovarian cancer behaves as a typical high-ML cancer
type, whereas liver cancer behaves as a low-ML cancer type,
indicating that the mutation watershed represents a critical point
in the ML-survival dependency. Viewing the flat mutation wa-
tershed as a point in ML, it is conceivable that cancers in its
vicinity can swap positions, such that liver exhibits characteristics
of a low-ML cancer type, whereas ovarian cancer exhibits char-
acteristics of a high-ML cancer type.
Fig. 1 depicts a striking overall correlation between the be-

havior of β and ML across cancer types (SI Appendix, Fig. S5).
Nonetheless, because the Cox and KM analyses of some indi-
vidual cancers are not statistically significant, presumably due to
the small number of patients, we further tested the existence of
opposite regimes, by increasing the statistical power of the
analysis. To this end, we compared between two groups of can-
cers below and above the watershed: the low- (L) ML cancers
(#1–8) with the high- (H) ML cancers (#16–23). To account for
differences between cancer types, we performed Cox regression
analyses, in which the data were stratified by the cancer types in
each group (Methods). The results of this analysis substantiate
the significance and existence of opposing regimes in low- (β < 0)
versus high- (β > 0) ML cancers (Table 1). This biphasic effect is
highly robust, as exemplified by its rapid convergence as more
cancers are considered for analysis in each group and by its in-
sensitivity to the exclusion of any particular cancer type in the
analysis of either group (SI Appendix, Fig. S6). The comple-

mentary KM analysis, which does not stratify the data, is more
sensitive. It displays a weak biphasic effect for the L and H groups;
nonetheless, the effect becomes significant for cancers further
away from the watershed, aggregating data across cancers that
exhibit association with survival (β ≠ 0) in their respective tests (SI
Appendix, Fig. S7). Last, in breast cancer, the cancer type with the
largest number of patients, we verified that β is robust with respect
to stratifying ML by subtypes (i.e., Ductal/Lobular, and estrogen
receptor, progesterone receptor, and human epidermal growth
factor receptor 2 statuses) (SI Appendix, Fig. S8).

Robustness and Validation of Criticality in Clinical Outcome. To test
how robust the distinction between the opposite cancer evolution
regimes with respect to ML is, we estimated ML using different
sets of genes, including known cancer genes and random sets
(Methods). The emergence of opposite evolutionary regimes
around the watershed was highly robust to the choice of the set
of genes compared (SI Appendix, Fig. S9). This robustness stems
from the high correlation between ML values estimated for
different sets of genes, which results in similar associations of the
ML of each set of genes with patients’ survival. Thus, the exis-
tence of criticality does not seem to depend on a particular set of
mutations or genes but is rather a consequence of the overall
accumulation of diverse mutations in the proteome.
Given that the overall ML represents summation over differ-

ent types of mutational events, it appears likely that other so-
matic aberrations could provide a comparable signal predictive
of survival. Thus, we tested how copy-number alterations
(CNAs) predict survival. We used two standard estimators (lin-
ear and gistic) to evaluate the overall CNAs as well as the overall
level of deletions and amplifications in each proteome (Meth-
ods). We found that CNA and ML are moderately correlated
(Spearman ρ = 0.44) (SI Appendix, Fig. S10). However, Cox
analysis applied to each cancer type showed that, although at low
ML, high CNA corresponds to poor prognosis (β > 0), it does not
predict the transition in clinical outcome around the mutation
watershed (SI Appendix, Fig. S10). Thus, the transition at high
ML, most likely, is caused primarily by point mutations and other
small-scale mutational events. These observations were con-
firmed with a stratified Cox analysis comparing low- with high-
ML cancers (Table 1). Further, we tested the association of the
commonly used variable, DNA burden, defined by the fraction of
genes affected by CNAs, finding that it displays similar behavior
to the overall CNAs (Table 1). The contrast between the sub-
stantial effect of CNAs in low-ML cancers and the lack of such
effect in high-ML cancers (Table 1 and SI Appendix, Fig. S10)
suggests nonlinearity, whereby the positive effect of increased
CNAs on tumor fitness is diminished as ML increases, consistent
with previous findings indicating the association of intermediate
copy-number DNA burden values with worse prognosis (20).
Testing for the effects of possible confounding factors, in-

cluding age, stage, and grade, by building stratified multivariate
Cox regression models (Methods), established that ML is the only
factor responsible for the transition in clinical outcome (SI Ap-
pendix, Table S1). Advanced age and stage, and to a lesser ex-
tent, grade, were significantly associated with poorer clinical
outcome (β > 0), both in low- and high-ML cancers. However,
the transition between the low-ML cancers (β > 0) and high-ML
cancers (β < 0) was observed only for ML (SI Appendix, Table
S1), in agreement with the results shown in Table 1.
Lastly, we validated the existence of the transition in clinical

outcome by analyzing an independent recent cohort of ∼10,000
patients (43) (Methods and SI Appendix, Fig. S11). Although in
this dataset only ∼400 genes were sequenced, which limits the
attainable statistical significance, compared with the TCGA
pan-cancer dataset, we observed that for low-ML cancers, the
prognostic factor β was always positive, whereas in most of the
high-ML cancer types, β was negative (SI Appendix, Fig. S11).

Table 1. Stratified Cox regression analysis of ML, overall CNA,
DNA burden, and dN/dS in different cancer groups

OS DFS

Variables (Set) Βeta (SE) P value Βeta (SE) P value

ML, all −1.63 (1.16) 0.1621 −1.14 (1.00) 0.2575
ML, L 3.48 (1.46) 0.017 2.81 (0.89) 0.0015
ML, H −4.79 (1.73) 0.0057 −4.18 (1.73) 0.0155
CNA, all 0.9 (0.19) 2e-6 1 (0.2) 7.3e-7
CNA, L 1.98 (0.31) 2e-9 1.35 (0.32) 1.8e-5
CNA, H 0.27 (0.22) 0.22 0.21 (0.25) 0.39
Burden, all 0.48 (0.1) 2.5e-6 0.37 (0.11) 6.8e-4
Burden, L 1.17 (0.22) 1.9e-7 0.86 (0.21) 2.9e-5
Burden, H 0.14 (0.15) 0.35 −0.07(0.17) 0.71
dN/dS, all −0.5 (0.4) 0.21 −0.12 (0.39) 0.76
dN/dS, L −0.62 (0.55) 0.26 −0.54 (0.53) 0.31
dN/dS, H 0.48 (0.58) 0.41 1.08 (0.68) 0.11

For each tested variable, the estimated scaling coefficient β (i.e., HR = eβ),
its SE,and the corresponding P value of the stratified Cox regression model
are shown for OS and DFS. Statistically significant trends are indicated by
bold type. Cancer groups (L, H) correspond to the low-ML (#1–8) and high-
ML (#16–23) cancer types (Fig. 1). In each test/group, variables are normal-
ized to 0–1 and are stratified by the cancer type (Methods).
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Thus, the results of this analysis on an extended dataset largely
recapitulate the transition in clinical outcome as a function
of ML.

Dominance of Neutral Evolution in the Pan-Cancer Dataset. We next
estimated the dN/dS acting on the entire tumor proteome in each
patient (Methods). Because of the highly variable rates of mu-
tations across a tumor genome and the small overall number of
mutations, a conventional direct estimation of selection at the
gene level in a patient is impossible, unless integration of mu-
tations across patients is permitted (SI Appendix, Fig. S2).
Therefore, to explore the potential link between the selection at
the patient level (rather than the gene level) and the survival of
the respective patient, we estimated the selection that affects the
entire proteome in each patient (Methods and SI Appendix, Fig.
S2). Specifically, we calculated the ratio between the number of
nonsynonymous mutations per nonsynonymous site (pN) and the
number of synonymous mutations per synonymous site (pS)
across all genes, considering the proteome (or a large group of
genes) as a single sequence. The ratio pN/pS was used as a proxy
for selection (dN/dS). In cancer, pN/pS is a valid approximation
of dN/dS, assuming that a site is not mutated more than once
during tumor evolution, such that correction for multiple mu-
tations that effectively transforms pN/pS into dN/dS is un-
necessary (Methods). Estimation at the proteome level is not
sensitive to statistical biases that are usually encountered at the
gene level (Methods and SI Appendix, Fig. S3) due to the in-
creased statistical power of integrating mutations over thousands
of genes.
Estimation of the number of mutations in the entire proteome

of each patient shows that, in accord with many previous ob-
servations on evolving organisms (44), the numbers of N and
silent (S) mutations are highly correlated and display a linear
relationship, albeit with different ratios across cancer types,
suggesting some diversity of evolutionary regimes (Fig. 2A). To
ensure that our estimate yielded a stable measure of selection,

characteristic of the diversity among cancer types, we examined
the dependency of dN/dS on the number of genes used for the
estimation. The median dN/dS value in each cancer type reached
a plateau rapidly as more genes were included, and the variance
across patients in each cancer type was low (Fig. 2B). Thus, the
median dN/dS across an entire proteome appears to be an ad-
equate measure for a pan-cancer comparative analysis. The
distributions of dN/dS indicate a (near) neutral evolutionary
regime, where for most cancer types, dN/dS values were dis-
tributed around 1 across patients (Fig. 2 B and C). This obser-
vation was robust to using only missense point substitutions,
instead of all N mutations, for the dN/dS estimation (SI Ap-
pendix, Fig. S12). Near-neutral evolution was observed also when
evaluation of dN/dS was based on mutations in diploid regions or
based on mutations in regions affected by CNAs, whereby dN/dS
in the latter was slightly lower (SI Appendix, Fig. S13).
This result is consistent with those of three recent studies, each

using a different approach to estimate selection in tumors (and
genes), but all coming to similar conclusions on the prevalence of
neutral evolution in the pan-cancer data: (i) an integrative ap-
proach which fits the distribution of subclonal mutations in each
patient to a 1/f power law model, by accurate calling of the allele
frequencies (f) (31); (ii) an integrative approach that infers the
selection acting on genes, by a applying a Bayesian framework to
the overall distribution of mutations (32); and (iii) inference of
the exact substitutions rates in different mutational contexts,
using a model with 192 parameters (33). Although some differ-
ences exist among the methods and conclusions of these studies
(Methods), all of them show that the majority of tumors (and
genes) evolve close to neutrality. The convergence of all these
studies on the predominant neutral regime of tumor evolution
additionally indicates that, at least at the entire proteome level,
measures of selection capturing neutral evolution are insensitive
to the exact characteristics of mutations (e.g., clonal vs. sub-
clonal) or the distinct (nonlinear) dynamics by which different

Fig. 2. Proteomic selection (dN/dS) across cancer types. (A) The relationship between the numbers of N and S mutations per tumor proteome, where rep-
resentative cancer types that span the different ML regimes are color-coded. (B) Stability of the proteomic measure of selection for comparative analysis
between cancer types. The median of protein-level selection (dN/dS) across patients is shown as a function of the number of proteins considered for the
evaluation of dN/dS, in each cancer type (gray). Selected cancer types are highlighted as in A. Genes are ordered alphabetically. The tendency to low dN/dS at
the transient is due to low statistical power (SI Appendix, Fig. S3). (C) Distributions of dN/dS in the tumor proteome across patients, for different cancer types.
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mutations accumulate in the proteome (e.g., variable substitution
rate and allele frequency).

Deviations from Neutrality in Low- and High-ML Cancers. Notwith-
standing the prevalence of neutral evolution (dN/dS ∼ 1), Fig. 2
also reveals deviations from neutrality at extreme MLs. In thy-
moma, the cancer type with the lowest ML, the median of dN/dS
is greater than 1, and more generally, heavier tails of dN/dS >
1 are observed in low-ML but not in high-ML cancers, indicative
of positive selection at low ML. In contrast, in melanoma, the
cancer type with the highest ML, dN/dS was distributed com-
pletely below 1 (except for a few patients), which is indicative of
purifying selection acting on the tumor proteome. These obser-
vations were robust to using only missense point substitutions (SI
Appendix, Fig. S12).
To elucidate how these deviations from neutrality emerge

across the proteome and to assess their significance, we exam-
ined in detail the distribution of mutations, across different
groups of genes, in AML (Fig. 3A) and melanoma (Fig. 3B),
which represent the cancer types with extreme ML values. AML
was selected as an example of a low-ML cancer to analyze the
heavy tails that are indicative of positive selection because, on
average, AML appears to evolve neutrally. The analysis of AML
patients (n = 163) shows that 64 patients had dN/dS ≥ 1 and
63 had dN/dS < 1 (Fig. 3A), leading to the observed median of
dN/dS = 1. The remaining 36 patients harbored many N muta-
tions but not a single S mutation (i.e., dN/dS = Inf, which is
discarded from analysis); hence, the heavy tail in AML patients
(cf. Fig. 2C) is underestimated. The signature of positive selec-
tion (dN/dS > 1), manifested by heavy tails of the dN/dS distri-
butions, was detected in AML patients that harbored numerous
mutations (despite AML being classified as a low-ML cancer)
and, therefore, could not be an artifact caused by the small

number of mutations in low-ML cancers. The dN/dS < 1 values
in AML patients were a consequence of the large number of S
mutations (and not of increased statistical power). In contrast, in
the case of melanoma, dN/dS values were below unity in the vast
majority of samples and sharply dropped with the increasing
number of mutations in the proteome, in a clear sign of purifying
selection correlated with the ML (Fig. 3B). More generally, the
relationship between dN/dS and ML is diverse across the pan-
cancer data. In most cancers, these variables are not (or very
weakly) correlated, but a positive correlation exists in some low-
ML cancers (hence, high dN/dS is not due to low statistics), and
only in melanoma (and, to a smaller extent, in bladder) are dN/dS
and ML negatively correlated (SI Appendix, Fig. S14). Nevertheless,
all cancers, on average, evolve near neutrality, except for melanoma
(cf. Fig. 2C).
To assess the evolutionary pressures that affect different

classes of genes in tumors, we compared the dN/dS distributions
for known cancer genes (26) (n = 585) and house-keeping genes
(45) (n = 3,518) (Methods). The results of this analysis could not
be as significant as those for all genes, due to the relatively small
number of genes in each set (especially the cancer genes). De-
spite this limitation, dN/dS in the cancer genes across all cancer
types was significantly higher than in randomly selected genes,
which was not the case for the house-keeping genes (SI Appendix,
Fig. S15). Thus, cancer genes appear to be subject to stronger
than average positive selection. Nonetheless, the accumulation
of many N mutations outside of the set of known cancer genes
indicates that positive selection can affect diverse genes in a
tumor, with the implication that many cancer-related genes re-
main to be discovered. In contrast, in melanoma, purifying se-
lection (dN/dS < 1) was found to act on large portions of the
proteome (SI Appendix, Fig. S15). This signature of purifying
selection is manifested by a sharp increase in ML, with the

Fig. 3. Distribution of mutations in different groups of genes, in cancer with extreme ML values. (A) AML patients (n = 163). The number of N minus the
number of S mutations (left y axis) indicates the excess of N mutations in each group of genes separately (color). The number of S mutations in the entire
proteome is superimposed (black). Patients are ordered by the dN/dS acting on the proteome (right y axis). (B) Melanoma patients (n = 287). In AML, for more
than half of the patients, dN/dS > 1, and cancer genes harbor a substantial fraction of the N mutations. In melanoma, dN/dS is below unity in the vast majority
of patients, and dN/dS sharply drops with the number of mutations in the proteome, which, coupled with β < 0, indicates mutation meltdown (Muller’s
ratchet).

Persi et al. PNAS | vol. 115 | no. 47 | E11105

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807256115/-/DCSupplemental


number of S mutations growing faster than that of N mutations
across the proteome (Fig. 3B). Coupled with the observation of
better prognosis (β < 0) in these melanoma patients (cf. Fig. 1),
this expansion of mutations across the proteome appears to be a
sign of a looming mutational meltdown. Proteomic measures of
selection can provide information on the evolutionary regimes of
different groups of genes but not of individual genes (Methods).
Nevertheless, our results are concordant with previous findings
(32) showing that in AML more genes are subject to positive
than to purifying selection, whereas in melanoma, the opposite is
the case. Furthermore, in melanoma, the number of genes under
purifying selection was found to be greater than in any other
cancer type.
Nonetheless, melanoma is characterized by a long evolution-

ary trajectory that requires further investigation. While other
high-ML cancers (e.g., bladder, lung) also exhibit better prog-
nosis (β < 0), they evolve near neutrality (dN/dS ∼ 1), and only
melanoma evolves under purifying selection (dN/dS < 1), which
intensifies with the increasing ML. Indeed, it is largely driven by
exposure to UV radiation, which causes mostly C > T/G > A
mutations (46) in specific contexts (e.g., CC > TT) (47). At the
gene level, this can lead to an overestimation of negative selec-
tion (33). Hence, we explored how the mutational context affects
dN/dS of tumor proteomes using accordingly designed tests. We
used the 12-context formalism to classify the mutations (i.e., A/T/
C/G > X), given that previous studies have demonstrated com-
parable performances of parameter-low and parameter-rich
models (48). The distributions of the 12 contexts were diverse
across cancer types, with melanoma patients exhibiting the
largest fraction (>80%) of C > T/G > A mutations (SI Appendix,
Fig. S16). The dN/dS values and the fraction of C > T/G > A
mutations negatively correlated in some cancers, but this corre-
lation was substantially higher and more significant for mela-
noma than it was for other cancers (Fig. 4A and SI Appendix,
Fig. S17).
We performed two tests to assess the relative impact of the

C > T/G > A mutations on the dN/dS in melanoma and other
cancers. First, we compared between the selection in patients
with a medium range of C > T/G > A mutations (fraction 40–
80%). For these patients, dN/dS values were distributed around
unity in all cancers, expect in melanoma, where dN/dS was below
unity (Fig. 4 A, Inset and SI Appendix, Fig. S18). Second, a
straightforward estimation of dN/dS weighted by contexts (dN/
dS =

P
wi × dNi/dSi/

P
wi; wi the weight of context i in the

proteome) is not feasible, because of data sparsity (i.e., dNi/dSi =
0 or ∞ for some contexts, rendering the weighted dN/dS biased).

Hence, we performed an extreme test. We increasingly removed
C > T/G > A mutations from analysis and reestimated dN/dS in
patients. Also in this test, melanoma patients had significantly
lower dN/dS values compared with any other cancer type, even at
the extreme case of complete removal of these mutations (hence
eliminating any surrounding contexts) (SI Appendix, Fig. S19).
Together these results suggest that negative selection affects the
majority of melanoma patients, although UV-associated muta-
tions may contribute to an overestimation of its extent. All of the
melanoma samples analyzed here are annotated as metastatic,
which might explain the difference between melanoma and all
other cancer types (in particular other high-ML cancers, with β <
0 and dN/dS ∼ 1), with the metastatic state characterized by an
excess level of mutations, far beyond the critical point, exposing a
long evolutionary trajectory and the action of purifying selection
(Discussion).

Clinical Outcome Weakly Depends on Selection. To determine
whether any of the selection regimes in tumors affect survival, we
tested the potential link between dN/dS and prognosis, under the
assumption that the scatter of the dN/dS values within tumor
types represents biological variation rather than noise alone.
First, we performed KM analysis in each cancer type, comparing
positive vs. purifying selection (SI Appendix, Fig. S20). All of
these tests failed to detect a significant predictive signal of dif-
ferential survival. A complementary Cox regression, comparing
between the pan-cancer data and the two groups of cancers types
with low and high ML, stratifying the data by cancer types in
each test, verified the lack of association of purifying or positive
selection with clinical outcome (Table 1). Nonetheless, KM
analysis shows that, in certain cancer types (Gbm, Cesc, and
Lusc, but significantly Skcm), intermediate values of selection
around neutrality (dN/dS ∼ 1) were associated with poorer
prognosis than either positive or purifying selection (Fig. 4B and
SI Appendix, Fig. S21). Indeed, neutral evolution was associated
with poorer prognosis when the comparison was performed
across all cancer types, although this connection was less signif-
icant for DFS (Fig. 5).

Discussion
The results of the present analysis can be best interpreted by
projecting ML and dN/dS onto an empirical mutation-selection
phase diagram that emphasizes the existence of distinct evolu-
tionary regimes (Fig. 6A). This diagram shows how ML and dN/
dS jointly determine cancer fitness, which is assumed to be in-
versely related to the patient survival (Fig. 6B). In low-ML

Fig. 4. Analysis of melanoma patients. (A) The fraction of UV-associated mutations (C > T/G > A) are plotted against dN/dS, depicting a strong correlation,
more than in any other cancer type (SI Appendix, Fig. S17). Patients with 0.4 < Fraction < 0.8 (n = 56, blue) have lower dN/dS (<1) in melanoma than in any
other cancer type; each displays dN/dS values distributed around unity (SI Appendix, Fig. S18) (Inset). Extreme test, of removal of C > T/G > A mutations from
evaluation of dN/dS, also indicates negative selection in melanoma (SI Appendix, Fig. S19). (B) The selection (dN/dS) vs. the ML. Patients with 0.8 < dN/dS < 1.2
(n = 23, red) have worse clinical outcome (Inset).
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cancer types, tumor fitness increases with the number of muta-
tions (β > 0). In this regime, some tumors appear not to have
acquired a sufficient number of driver mutations, and therefore,
positive selection (dN/dS > 1) promotes driver mutations to in-
crease or maintain the tumor fitness (e.g., AML). In contrast, at
high ML, cancer fitness decreases with the number of mutations
(β < 0), due to the accumulation of deleterious passenger mu-
tations. Although for the vast majority of tumors, the mean value
of dN/dS is close to unity, which corresponds to near-neutrality,
in extremely high ML, the expansion of mutations can lower the
fitness of tumors such that purifying selection becomes notably
stronger (dN/dS < 1). As we observed for melanoma, this puri-
fying selection eliminates deleterious mutations, thus avoiding
tumor collapse by mutational meltdown (Muller’s ratchet). Im-
portantly, the findings for melanoma, a special case of a tumor
type with a long evolutionary trajectory, likely due to transitions
to metastatic states, are consistent with this view, whereby dN/dS
is below unity in samples with large ML but turns toward unity in
patients with lower ML, with tumors that evolve near neutrality,
on average, being associated with a worse prognosis (Fig. 4B).
This deviation from neutrality in melanoma is consistent with
recent independent studies that estimate selection at the sample
level (31) and at the gene level (32). The phase diagram (Fig. 6B)
hence predicts that purifying selection can be observed in high-
ML cancers, during the transition to a metastatic state if such a
transition is accompanied by an excess level of mutations that
pushes tumors further toward the Muller’s ratchet zone. Con-

versely, in low-ML cancers, this transition could be accompanied
by an increase in dN/dS because these tumors evolve below
criticality.
In contrast to the clear dependency on ML, tumor fitness is

only weakly correlated with dN/dS, such that the majority of
cancers evolve near neutrality (Fig. 2), consistent with previous
findings (31–33). This lack of detectable proteomic-level selec-
tion signatures is likely due to the fact that tumor fitness mostly
depends on a small number of drivers, whereas the bulk of the
fixed mutations are neutral or slightly deleterious passengers
(33). Indeed, more detailed analysis demonstrated significant
differences in selection between groups of genes, in particular
positive selection in cancer genes, with an overall neutral effect
on the entire proteome (Fig. 3 and SI Appendix, Fig. S15). Thus,
in summary, under neutrality, a sufficient number of drivers can
accumulate, whereas the overall deleterious effect of passengers
is balanced, explaining the association (albeit weak) of neutrality
with poor prognosis (Fig. 5). Taken together, our results cor-
roborate the theory of tumor evolution that predicts the exis-
tence of a critical mutation-selection state (25). Nonetheless, the
existence of tumors with high ML, some of these with poor
prognosis, suggests that other somatic aberrations could increase
or maintain tumor fitness, to compensate for the deleterious
effect of the passengers. This seems to be the case for micro-
satellite instability. In many hypermutation tumors, microsatellite
instability is associated with better prognosis, thus apparently re-
ducing tumor fitness (12), and high-ML tumors across different

Fig. 5. Selection versus survival in the pan-cancer data. KM OS (Left) and DFS (Right) rates are compared across all studies for cases of neutral evolution
(intermediate values around dN/dS = 1, blue) and cases of positive and negative selection (red). Insets depict the 5-y survival rates and the corresponding P
values of log-rank tests for each cutoff. The survival curves in the larger panels correspond to the case of dN/dS = 1 ± 0.2 as indicated by the arrows in the
Insets. Complementary Cox regression analysis, stratifying by cancer types, is provided in Table 1.

Fig. 6. Empirical mutation-selection phase diagram of tumor evolution. (A) Mutation-selection empirical diagram for all analyzed cancers (gray) and selected
cancer types (color-coded) that show distinct evolutionary regimes depending on the ML. (B) A schematic conceptual depiction of the emerging fitness
landscape of tumors as a function of the ML (Top) and selection (Bottom). Dashed curves are theoretical, and solid curves are observed. Down-triangles
(green) indicate purifying selection and up-triangles (orange) positive selection. The gray ovals show the critical area.
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cancer types, on average, have low microsatellite instability (49).
Thus, a compensatory relationship appears to exist between point
mutations and microsatellite instability with respect to the tumor
fitness. Further, both high ML (50) and high microsatellite in-
stability (51) evoke immune response, due to the generation of
neo-antigens, such that, in addition to intracellular mechanisms,
negative selection could be exercised by the immune system (52).
In addition to these general trends, examination of the em-

pirical dN/dS–ML plane reveals a diversity of tumor evolution
regimes. For example, in kidney renal clear cell carcinoma, we
identified a cluster of patients with high ML and dN/dS > 1,
suggesting that the specific microenvironment and other factors,
such as competition between subclones (21, 53), could be im-
portant for understanding the precise relationship between ML,
dN/dS, and survival. Hence, coupled with the overall weak as-
sociation of selection with survival, selection appears to maintain
cancer fitness in diverse microenvironmental conditions, geno-
mic contexts, and phases of evolution, leading to a diversity of
roughly equally successful evolutionary strategies (with respect to
dN/dS) of extant cancers, while the neutral evolutionary regime
dominates overall. Further analysis, specifically of cancers within
the watershed, is needed to assess the nature of the critical point
and determine whether it is a stable point.
Our analyses indicate that the overall ML is a key determinant

of patient survival. The ML counts all N mutations, wherever
they occur in the tumor genome (including portions involved in
structural variation, such as gene duplication) and whenever they
emerge during the lifetime of tumor cells. Given that the survival
dependency on ML captures the transition in the clinical out-
come, the effects of various mutations appear to be context-
dependent, so that, in a given genomic state, mutations can lead
to either an increase or a decrease in the tumor fitness. Ac-
cordingly, all mutations should be included to assess the patient’s
prognosis. Thus, the total ML becomes a key variable for clinical
assessment, which is not sensitive to cellularity, ploidy, clonality,
and other specific features of tumors. The high correlations be-
tween the ML values for different classes of genes (SI Appendix,
Fig. S9) as well as between those for different mutation classes
(Fig. 2A and SI Appendix, Fig. S12), with all these values being
tissue-specific (27−28), suggest that ML is a stable measure that
reflects the effective (tissue-specific) evolutionary age of a tumor
(weighted by the respective variable μs). This is consistent with
recent observations showing that the tissue-specific cell division
rate is a key determinant of cancer risk and the ML in diverse
tissues, whereby about two-thirds of the mutations accumulate at
random due to replication errors (54−55). Our findings are also
consistent with the observation that both genetic and epigenetic
characteristics of the original normal cell are key determinants of
the mutational spectrum of the respective cancer cell (56). Due to
this tissue specificity, the attainable values of ML of a given cancer
type are constrained, being determined by the tissue properties
(e.g., number of stem cell and cell division rate) and, presumably,
by the microenvironment, such that each cancer spans only a portion
of the phase plane, often a small one (Fig. 6B).
The criticality observed around the mutation watershed cor-

responds to the transition in the clinical outcome at ML of
∼50 N mutations per tumor proteome. Under certain simplifying
assumptions, this value can be linked to previous results. Data-
driven theoretical studies suggest that, for ∼60 passengers (P = N +
S − D; P, total number of passenger mutations; D, number of
drivers among the N mutations), there are ∼10 drivers (24). Thus,
for the critical point as identified here, N ∼ 50, S ∼ 20, and D ∼ 10.
To accumulate 10 drivers, it takes ∼5–50 y with a cell division rate of
∼4 d (i.e., the number of cell generations G = 450–4,500) (24). Thus,
we can estimate that the range of μs (per locus per cell division)
associated with N ∼ 50 is μ ∼ 5 × 10−9 – 5 × 10−10 (μ = N/Ns/G;
Ns, the total number of N sites in the proteome). This range of
μs closely matches the lower range of rates where a non-

monotonic accumulation of passengers vs. drivers starts to be
detectable, leading to the effect of Muller’s ratchet predicted by
theory (25). Further, if D ∼ 10 and each clone in a tumor harbors a
small number of drivers (∼2–3), then the critical number of clones for
tumor progression is ∼3–4, in agreement with recent findings (20).
Theoretically, in the plane of the μ and selection coefficient of

passenger mutations (sp), the critical state is reached at very
small sp (25). In the framework of our model, this state would
correspond to the effectively neutral evolution at the proteome
level, with a small number of positively and negatively selected
mutations. The sum of selection coefficients of the few drivers
(sd) and numerous passengers (where jspj<<jsdj) should ap-
proach zero around criticality. However, given that many if not
most passengers could accumulate through hitchhiking, which
would affect the inference of the selection coefficients, and also
because clonal interference could play an important role in tu-
mor evolution, the complete theoretical interpretation of the
empirical results presented here awaits further investigation.

Concluding Remarks
To summarize, in addition to known genomic markers (18, 20),
our results reveal major, global features of cancer genome evo-
lution that affect tumor fitness and, accordingly, clinical out-
come. In accord with theoretical predictions, we show that the
dependency of tumor fitness on the ML is nonmonotonic, with a
critical region where the evolutionary regime changes, empiri-
cally corroborating the theory of tumor evolution, as a tug of war
between driver and passenger mutations (25). In contrast, the
dependency of tumor fitness on proteome-level selection is weak.
We conclude that tumor fitness and clinical outcome strongly
depend on the total ML and that most tumors evolve under a
predominantly neutral regime, with relatively small contributions
of both purifying and positive selection that become stronger
only at extreme ML values. These conclusions are compatible
with the well-accepted view that tumors evolve and progress via
random accumulation of a few driver mutations.
By analyzing proteomes of a broad range of cancers, we identify

tumors that evolve in different regimes that are characterized by
opposite effects of ML. Knowledge of the evolutionary status of a
given tumor could have implications for therapy that would aim to
either increase or decrease the ML, depending on the position of
the given tumor on the dependency curve. This might be partic-
ularly important for immunotherapy, where ML plays a critical
role (57). Our results further imply that targeted therapy can be
effective in low ML, where few drivers determine the course of
tumor evolution, whereas at high ML, alternative strategies, such
as immunotherapy, are likely to be more effective, consistent with
the well-known success of immunotherapy in melanoma (58−59).
The present analysis could also serve as a framework for future
research to study how the transition from the primary to the
metastatic state and how therapy could change the status of tu-
mors in the ML–dN/dS–β hyperplane.

Materials and Methods
Datasets. The complete raw data from all TCGA studies (n = 23) that included
at least 100 patients each were downloaded from cBioPortal (60) (www.
cbioportal.org/). All tumors in this dataset are primary, except for mela-
noma, which is metastatic. For analysis, we considered all “three-way com-
plete” samples (i.e., containing somatic point mutations, CNAs, and gene
expressions data, relative to matched-normal samples; n = 6,721) and all
human protein-coding genes for which we identified both SwissProt and
NCBI-Entrez unique accessions (n = 18,179). This data matrix (samples by
genes) as well as patients’ clinical data were also downloaded from Firehorse
(https://gdac.broadinstitute.org/) for comparison, verifying that there is little
discrepancy between the two databases and that each mutation had at least
10 reads of the tumor variant (standard quality control) and are fully non-
redundant (i.e., a variant in a given sample and gene are not counted more
than once). Data from cBioPortal were downloaded also via Matlab appli-
cation program interface (API), which routinely updates annotations of
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mutations, and were used to remove germ-line mutations from analysis.
Clinical survival data included OS for 98.3% of the patients (n = 6,609) and
DFS for 82% of the patients (n = 5,508). Distribution of patients’ race and
age, tumor stage and grade as well as the distribution of variants across
different mutational classes are provided in SI Appendix, Fig. S1.

Known cancer genes were downloaded from COSMIC database (26)
(https://cancer.sanger.ac.uk/census). House-keeping genes were extracted
from a recent survey (45). For validation (SI Appendix, Fig. S11), a recent
cohort of ∼10,000 patients with advanced cancer (MSK-impact-2017), where
43% of the samples originate from metastatic sites and 414 cancer genes
were sequenced (43), was downloaded via cBioPortal. Data for all samples
and genes, including all of the information needed for full reproducibility of
the results in this study, are provided in Dataset S1.

CNAs. To estimate gene CNA, we extracted and analyzed both the “linear” and
“gistic” measures. Linear measures provide continuous variables that represent
the extent of amplification and deletions of each gene. The gistic measure im-
plements additional computation inferencing the zygotic gain/loss using integers
(−2 to 2). For evaluation of the overall level of CNA (Table 1 and SI Appendix,
Table S1), we used summation over the linear measure, verifying that it corre-
lated with the summation over the gistic values (SI Appendix, Fig. S10). The copy-
number DNA burden was also calculated, using the gistic measure, as the fraction
of altered genes (gain or loss) in the proteome (Table 1).

Selection in Tumor Proteomes. Protein-level selection (dN/dS) at the molecular
level is measured by comparing two sequences and computing the ratio
between the nonsynonymous substitution rate (dN) and the synonymous
substitution rate (dS) (61). Generally, this is done in two steps: (i) calculating
the number of N sites (nN) and the number of S sites (nS) over the length of
the compared sequences and calculating the number N mutations per N sites
(pN = N/nN) and the number of S mutations per S sites (pS = S/nS), and (ii)
applying methods, such as Jukes and Cantor (62) or Goldman and Yang (63),
that transform the counts pN and pS into the respective rates dN and dS, by
considering the possibility that, over time, a single locus mutates several times
before fixation, in a context-dependent manner. Over long evolutionary dis-
tances, this second step is crucial. During cancer evolution, however, the
likelihood for a particular locus to mutate more than once is low (9) and a
considerable number of mutations might not be fixed, such that estimates of
selections should be based on the integration of mutation counts rather than
rates (64). Hence, we chose to approximate dN/dS by the ratio pN/pS.

Selection can be assigned and computed at different length scales (e.g.,
locus, domain, gene). In practice, the pan-cancer mutation data are highly
sparse such that a gene in a patient rarely harbors both N and S mutations (SI
Appendix, Fig. S2). Thus, a direct estimation of dN/dS at the gene level in a
patient is not feasible, and integration of mutations, either over patients
providing estimates of selection in individual genes or over genes providing
estimates of selection in individual patients, is necessary. Estimation of se-
lection in genes suffers from strong statistical biases, due to the relatively
low number of patients (∼100–500 per cancer type) (SI Appendix, Fig. S3).
Measures of selection at the gene level that correct for these biases have
been recently developed, using both a Bayesian framework (32) and a
context-dependent inference of substitution rates (33). Here, our goal was
to investigate the link between the patient survival and the selection acting
on the respective tumor proteome, so data from different patients should
not be integrated. Therefore, we compute selection at the patient level,
integrating mutations over genes (g) within a patient’s tumor proteome and
treating them as a single concatenated sequence, such that there are suf-
ficient numbers of N and S mutations for statistical inference of dN/dS:

dN
dS

≈
pN
pS

=

P
gNg

.P
gnNg

P
gSg

.P
gnSg

. [1]

The dN/dS values were estimated using Eq. 1, for each patient, considering
the mutations in the entire proteome (Fig. 2), or groups of genes, such as
known cancer genes or house-keeping genes (SI Appendix, Fig. S15). Prac-
tically, to calculate the dN/dS ratios, the canonical amino acid sequences of

all human proteins and their respective DNA coding sequences were
extracted primarily from Ensembl (65) and from GeneBank for completeness.
For each nucleotide sequence, translation into the exact respective canonical
protein sequence in SwissProt was verified. The numbers of nN and nS in
each protein were calculated, considering all alternative nucleotides in each
position. Importantly, the estimation of selection at the proteome level does
not suffer from low statistical power effects (SI Appendix, Fig. S3), because
of the integration across many observations (i.e., 18,179 genes), as evident
from Fig. 2. Selection in genomes cannot be directly compared with selection
in genes. Nonetheless, the full accord of the selection in entire proteomes
(Fig. 2) with the dominance of neutral evolution in the pan-cancer data,
reported by recent studies, using different methodologies to estimate se-
lection both at the sample level (31) and at the gene level (32, 33), in-
dependently validates the choice of Eq. 1 as adequate for large-scale
comparative analyses of patients and cancer types.

Survival Analysis. To test the association of variables with survival, we used
both KM log-rank test (66, 67) and Cox proportional hazard regression
analysis (68), and applied these approaches to both OS and DFS clinical data.
KM is a nonparameterized empirical test that compares the survival curves
using long-rank test for censored data. In this analysis, groups of patients are
defined and compared by splitting the tested variable. This approach allows
flexibility in defining and testing different ranges of the tested parameter,
albeit at the risk of losing robustness. Hence, to assess the stability of this test,
we used several cutoffs as indicated for each analysis. Cox regression is a
semiparameterized approach that fits the survival clinical data to a hazard
function [h(t) = −d[logS(t)]/dt, where S(t) is the survival probability at time t]
and tests the effect of variables (X) under the “proportional hazard” as-
sumption [h(X,t) = ho(t)e

Xβ; ho the baseline hazard]—namely, that the tested
hazard functions are log-linearly scaled by a constant factor beta (β),
which determines the HR (i.e., HR = eβ). This assumption, however, does
not always hold for real data. Hence, the KM and Cox analyses are
complementary.

Using Cox analysis, we normalized each tested variable (e.g., ML, dN/dS,
CNA) in each test to 0–1, such that the results of different tests can be easily
compared (see also ref. 20). Hence, in Fig. 1, ML is normalized in each cancer
type to 0–1, and a univariate Cox analysis is performed in each cancer type
separately. Similarly, when several cancer types were grouped (e.g., low or
high ML in Table 1), the aggregated distribution of the MLs across patients in
each group was normalized to 0–1, and the variables were stratified by the
cancer types to build stratified regression models for each group separately.

Using Cox analysis, we also built stratified multivariate regression models,
testing the effects of possible confounding factors such as age, stage, and
grade (SI Appendix, Table S1). The categorical clinical data, stages I–IV and
grades I–IV, were tested each using dummy indicator variables, relative to
the reference category stage/grade I, respectively. Subcategories were
grouped (e.g., stages IA–IC were assigned stage I). Any stage or grade out-
side the range I–IV (e.g., stage/grade “X”) were not included in this analysis
and were not given any value (i.e., Nan). Variables were stratified by cancer
types. The constants of each Cox proportional hazard regression model (β, its
error, and the P value) are provided in each figure and in Table 1 for
each test.

Analysis and Code Availability. All of the analyses were performed in Matlab
R2016b, using only built-in functions, under license to University of Maryland
(UMD), Institute of Advanced Computer Studies (UMIACS), Center of Bio-
informatics and Computational Biology (CBCB). Matlab files, including the
datasets and analysis scripts, which fully reproduce the results as they ap-
pear in the manuscript, are available upon request from the authors
(contact E.P.).
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