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Corneal Confocal Microscopy 
detects a Reduction in Corneal 
Endothelial Cells and Nerve Fibres 
in Patients with Acute Ischemic 
Stroke
Adnan Khan   1, Saadat Kamran   2, Naveed Akhtar2, Georgios Ponirakis1, Hamad Al-
Muhannadi1, Ioannis N. Petropoulos1, Shumoos Al-Fahdawi3, Rami Qahwaji3, Faheem Sartaj2, 
Blessy Babu2, Muhammad Faisal Wadiwala2, Ashfaq Shuaib2,4 & Rayaz A. Malik1

Endothelial dysfunction and damage underlie cerebrovascular disease and ischemic stroke. We 
undertook corneal confocal microscopy (CCM) to quantify corneal endothelial cell and nerve 
morphology in 146 patients with an acute ischemic stroke and 18 age-matched healthy control 
participants. Corneal endothelial cell density was lower (P < 0.001) and endothelial cell area (P < 0.001) 
and perimeter (P < 0.001) were higher, whilst corneal nerve fibre density (P < 0.001), corneal nerve 
branch density (P < 0.001) and corneal nerve fibre length (P = 0.001) were lower in patients with acute 
ischemic stroke compared to controls. Corneal endothelial cell density, cell area and cell perimeter 
correlated with corneal nerve fiber density (P = 0.033, P = 0.014, P = 0.011) and length (P = 0.017, 
P = 0.013, P = 0.008), respectively. Multiple linear regression analysis showed a significant independent 
association between corneal endothelial cell density, area and perimeter with acute ischemic stroke 
and triglycerides. CCM is a rapid non-invasive ophthalmic imaging technique, which could be used to 
identify patients at risk of acute ischemic stroke.

The major risk factors for stroke include diabetes, hypertension, smoking, dyslipidemia1–5 and metabolic syn-
drome6. Endothelial dysfunction is a key underlying abnormality in stroke and in those at risk of stroke, by pro-
moting vasoconstriction and enhanced plaque vulnerability and rupture, with thrombus formation7. Endothelial 
dysfunction can be assessed using a variety of techniques including brachial flow-mediated dilation, cerebro-
vascular reactivity to L-arginine and laser Doppler8. Indeed we have previously shown impaired endothelium 
dependent dilatation in patients with obesity9, diabetes and hypertension10 and an association between small 
artery remodeling and diastolic dysfunction in obese subjects11. Patients admitted with an acute ischemic stroke 
have reduced forearm flow mediated dilatation and increased circulating levels of P-selectin, a marker of endothe-
lial dysfunction12. Direct imaging of the cerebral blood vessels can identify atherosclerosis and stenosis13 and 
brain imaging can identify silent infarcts, cerebral microbleeds, periventricular white matter hyperintensities 
and perivascular spaces, which all predict a higher risk of stroke14,15. Subtle alterations in the microstructure of 
normal-appearing white matter also predicts stroke16. Retinal vessel dysfunction and altered structure have been 
related to cardiovascular disease8,17, stroke18 and recurrent stroke19.

The major function of the corneal endothelium is to regulate corneal hydration and the passage of nutrients 
and metabolic waste to and from stromal keratocytes20. However, it produces comparable type and amount of 
extracellular matrix and collagen to aortic and venous endothelium21, and exposure of corneal endothelial cells to 
fibrin22 or thrombin23 leads to the induction of tissue-plasminogen activator. Non-contact specular microscopy 
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has been used to identify a reduction in corneal endothelial cell density and increased polymegathism in some 
studies of patients with Type 2 diabetes24 and children with Type 1 diabetes25, but not in others26.

Corneal confocal microscopy is a rapid non-invasive ophthalmic imaging technique that demonstrates cor-
neal nerve damage in patients with diabetic and HIV neuropathy27,28, Parkinson’s disease29, multiple sclerosis30,31 
and acute ischemic stroke32. We have also previously demonstrated a reduction in corneal endothelial cell density 
in patients with Type 1 diabetes33 and Type 2 diabetes34.

In the present study, we have utilized CCM to quantify corneal endothelial cell and nerve morphology in 
patients with acute ischemic stroke.

Results
Clinical and Metabolic parameters.  The clinical and laboratory characteristics of the participants are 
given in Table 1. One hundred and forty-six patients with acute ischemic stroke, with (HbA1c  ≥  6.5%) (n = 50) 
and without (HbA1c ≤ 6.4%) (n = 96) type 2 diabetes mellitus (T2DM) were compared with 18 age-matched 
healthy control participants. The duration of diabetes in diabetic patients with ischemic stroke was 7.94 ± 7.50 
years. There were no differences in age, BMI, total cholesterol, LDL and HDL between controls and stroke 
patients. Stroke patients had higher triglycerides (P = 0.05), HbA1c (P < 0.04), systolic blood pressure (P < 0.001) 
and diastolic blood pressure (P < 0.001) compared to control participants (Table 1).

Corneal Confocal Microscopy.  Corneal Endothelium.  Corneal endothelial cell density was lower 
(P < 0.001) and endothelial cell area (P < 0.001) and perimeter (P < 0.001) were higher, but there were no sig-
nificant difference in the percentage polymegathism and pleomorphism in stroke patients compared to healthy 
controls (Table 1; Fig. 1).

There was no significant difference in corneal endothelial cell density (3363.87 ± 34.45; 3302.55 ± 45.16, 
P = 0.283), area (242.90 ± 2.56; 247.19 ± 3.40, P = 0.322), perimeter (55.53 ± 0.31; 56.14 ± 0.41, P = 0.247), 
polymegathism (52.35 ± 0.57; 52.45 ± 0.70, P = 0.920) or pleomorphism (33.61 ± 0.61; 33.59 ± 0.87, P = 0.985) 
in patients with and without diabetes, respectively.

Corneal Nerves.  Corneal nerve fibre density (P < 0.001), corneal nerve branch density (P < 0.001) and corneal 
nerve fibre length (P = 0.001) were lower in patients with acute ischemic stroke compared to controls (Table 1).

Correlation between endothelial cell and nerve morphology.  In all stroke patients, corneal endothelial cell den-
sity correlated with corneal nerve fiber density (r = 0.177, P = 0.033) and corneal nerve fiber length (r = 0.199, 

Variables Controls Stroke P value

Number of 
Participants 18 146

Age (years) 47.73 ± 3.10 48.93 ± 0.79 0.714

Gender (M/F) (11/7) (141/5) <0.001

BMI (kg/m2) 25.78 ± 0.63 29.40 ± 0.83 0.217

NIHSS Score N/A 4.08 ± 0.33 NA

Triglycerides (mmol/l) 1.23 ± 0.24 1.86 ± 0.10 0.053

Total Cholesterol 
(mmol/l) 4.63 ± 0.35 5.05 ± 0.10 0.337

LDL (mmol/l) 2.96 ± 0.33 3.27 ± 0.09 0.421

HDL (mmol/l) 1.10 ± 0.07 0.94 ± 0.02 0.058

BP Systolic (mmHg) 120.40 ± 3.96 161.03 ± 2.47 <0.001

BP Diastolic (mmHg) 73.60 ± 2.44 94.10 ± 1.41 <0.001

HbA1c (%) 5.36 ± 0.17 6.83 ± 0.18 0.035

Diabetes Duration 
(years) NA 7.94 ± 7.50 NA

Mean ECD (no./mm2) 3664.72 ± 43.88 3342.87 ± 27.45 <0.001

Mean ECA (µm2) 219.81 ± 2.69 244.37 ± 2.05 <0.001

Mean ECP (µm) 52.95 ± 0.35 55.74 ± 0.25 <0.001

Polymegathism (%) 52.26 ± 1.31 52.39 ± 0.44 0.923

Pleomorphism (%) 33.51 ± 1.21 33.60 ± 0.50 0.953

CNFD (no./mm2) 37.54 ± 1.97 28.73 ± 0.65 <0.001

CNBD (no./mm2) 73.96 ± 6.15 49.35 ± 2.26 < 0.001

CNFL (mm/mm2) 21.31 ± 1.01 16.92 ± 0.42 0.001

Table 1.  Clinical metabolic and corneal endothelial and nerve parameters in control subjects and patients with 
acute ischemic stroke. BMI (Body Mass Index), NIH stroke severity (NIHSS), LDL (Low Density Lipoprotein), 
HDL (High Density Lipoprotein), BP (Blood Pressure), HbA1c (Glycated hemoglobin), mean ECD (Endothelial 
Cell Density), mean ECA (Endothelial Cell Area), mean ECP (Endothelial Cell Perimeter), CNFD (Corneal 
nerve fibre density), CNBD (Corneal nerve branch density), CNFL (Corneal nerve fibre length). Results are 
expressed as mean ± SE with significance indicated by the exact P value.
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P = 0.017). Endothelial cell area and perimeter correlated with corneal nerve fiber density (r = −0.204, P = 0.014, 
r = −0.211, P = 0.011) and corneal nerve fiber length (r = −0.207, P = 0.013, r = −0.220, P = 0.008), respectively 
(Table 2). There was no significant correlation between corneal endothelial cell parameters and corneal nerve 
branch density or between % polymegathism and pleomorphism and corneal nerve parameters.

In stroke patients without diabetes, corneal endothelial cell density correlated with corneal nerve fiber density 
(r = 0.208, P = 0.042). Endothelial cell area and perimeter correlated inversely with corneal nerve fiber density 
(r = −0.241, P = 0.018, r = −0.236, P = 0.021) and corneal nerve fiber length (r = −0.207, P = 0.037, r = −0.216, 
P = 0.0035), respectively (Supplementary Table 1). There was no significant correlation between corneal endothe-
lial cell parameters and CNBD or between % polymegathism and pleomorphism and corneal nerve parameters. 
In stroke patients with diabetes, there was no significant correlation between endothelial cell density, cell area 
or perimeter and corneal nerve parameters. Endothelial cell pleomorphism correlated with CNFD (r = 0.309, 
P = 0.031) and polymegathism correlated with corneal nerve fiber density (r = −0.373, P = 0.008), corneal nerve 
fiber length (r = −0.296, P = 0.039) and corneal nerve branch density (r = −0.334, P = 0.019) (Supplementary 
Table 2).

Figure 1.  Graphs showing endothelial cell density (a), endothelial cell area (b) and endothelial cell perimeter 
(c) expressed as Mean and SEM in participants with acute ischemic stroke and control subjects and an image of 
corneal endothelial cells in a control participant (d) and a patient with acute ischemic stroke (e).
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Multiple Linear Regression.  There was an independent association between endothelial cell density and triglyc-
erides (P = 0.05) (Table 3). Endothelial cell area was independently associated with higher triglycerides (P = 0.04) 
and acute ischemic stroke (P = 0.05) (Table 4). Endothelial cell perimeter was independently associated with 
higher triglycerides (P = 0.04) and acute ischemic stroke (P = 0.05) (Table 5).

Discussion
This is the first study to show a reduction in corneal endothelial cell density and an increase in endothelial cell size 
in patients with acute ischemic stroke. A study in Type 2 diabetic rats has shown impaired posterior ciliary artery 
relaxation and corneal nerve loss, suggesting that impaired blood flow to the trigeminal ganglion may be related 
to corneal nerve loss35. In the present study, we show a modest but significant correlation between the change 
in corneal endothelial cells and loss of corneal nerves. However, a correlation cannot imply cause and effect 
and common underlying abnormalities could drive both corneal endothelial cell and nerve fibre abnormalities. 
Indeed Olsen previously showed a higher prevalence of ischemic heart disease in patients with Fuch’s dystrophy 
and suggested that endothelial dystrophy and atherosclerosis may have common mechanisms36. Additionally, 
a number of studies of patients with corneal endothelial dystrophies have demonstrated a reduction in corneal 
nerve fibres37. Conversely, patients with neurotrophic keratitis and hence a primary loss of corneal nerve fibres 
have been shown to have endothelial cell abnormalities37,38. Furthermore, corneal nerve loss has been related to a 
progressive reduction in corneal endothelial cells in patients with dry eye disease39.

Diabetes, hypertension, smoking, dyslipidemia1–5,40,41, obesity and metabolic syndrome6,42 lead to endothelial 
dysfunction and atherosclerosis and are major risk factors for stroke. Circulating markers of endothelial dys-
function and inflammation can identify patients at risk of stroke43 and endothelial dysfunction occurs in patients 

Variables CNFD CNFL CNBD

Endothelial Cell Density

   Coefficient (r) 0.177 0.199 0.116

   P (0.033) (0.017) (0.166)

Endothelial Cell Area

   Coefficient (r) −0.204 −0.207 −0.128

   P (0.014) (0.013) (0.125)

Endothelial Cell Perimeter

   Coefficient (r) −0.211 −0.220 −0.140

   P (0.011) (0.008) (0.093)

Polymegathism

   Coefficient (r) −0.082 −0.018 −0.054

   P (0.327) (0.831) (0.515)

Pleomorphism

   Coefficient (r) 0.093 0.068 0.092

   P (0.263) (0.416) (0.271)

Table 2.  Correlation between endothelial cell and corneal nerve parameters in patients with ischemic stroke, 
with significant values in bold. ECD (Endothelial Cell Density), ECA (Endothelial Cell Area), ECP (Endothelial 
Cell Perimeter), CNFD (Corneal nerve fibre density), CNBD (Corneal nerve branch density), CNFL (Corneal 
nerve fibre length).

Parameter Estimate
95% CI Lower 
Bound

95% CI Upper 
Bound

Standard 
Error

Significance level 
P Value

Dependent Variable: Endothelial Cell Density

Constant 3707.505 3127.029 4287.980 293.492 <0.001

Age −3.873 −10.062 2.315 3.129 0.218

BMI −3.159 −8.863 2.545 2.884 0.275

Triglycerides −95.066 −191.861 1.729 48.940 0.054

Cholesterol 144.913 −67.325 357.152 107.309 0.179

LDL −110.805 −329.658 108.049 110.654 0.318

HDL −269.492 −572.551 33.567 153.228 0.081

Systolic BP −1.174 −3.895 1.547 1.376 0.395

Diastolic BP 4.362 −0.418 9.143 2.417 0.073

HbA1c 5.169 −20.947 31.285 13.204 0.696

Stroke −277.299 −595.120 40.523 160.692 0.087

Table 3.  Estimates of endothelial cell density and independent variables in multiple regression with 
significance.
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with acute stroke44. Structural alterations on MRI, indicative of small vessel disease, include white matter hyper-
intensities, lacunes, microbleeds and perivascular spaces and are associated with an increased risk of ischemic 
stroke16. There is a link between abnormalities in the eye and stroke, based on observations that altered retinal 
vessel function, diameter and geometry are related to cardiovascular disease8,17, stroke18 and recurrent stroke19.

Loss of cells with migration and increased size of neighboring cells and a loss of their hexagonal shape, lead-
ing to increased polymegathism and pleomorphism, respectively, characterize corneal endothelial cell pathol-
ogy. However, these changes are inconsistent and vary in different conditions. We show a reduction in corneal 
endothelial cell density and an increase in size, but no change in polymegathism or pleomorphism. A recent study 
in patients with Type 2 diabetes has shown a reduction in endothelial cell density and increased polymegathism, 
but no change in pleomorphism24. In a study of children with Type 1 diabetes, polymegathism was increased, but 
pleomorphism was reduced25. In subjects with HIV, endothelial cell density was preserved, but polymegathism 
was increased45. In the present study we also show no difference in endothelial cell morphology between patients 
with and without diabetes, but an association with triglycerides diastolic blood pressure and HDL. Of relevance, 
metabolic syndrome, characterized by raised triglycerides and blood pressure and a low HDL, is an important 
risk factor for stroke46. Triglycerides were also the only lipid component to confer an increased risk of stroke in 
the prospective EPIC-Heidelberg cohort47.

This study has several limitations including the modest number of patients with mild ischemic stroke and 
we did not include other types of stroke. Nevertheless, we show corneal nerve loss and an alteration in corneal 
endothelial cell morphology in patients with acute ischemic stroke. Larger, longitudinal studies assessing corneal 
endothelial cell and nerve fibre morphology in those at risk of stroke and in relation to therapies to reduce risk 
factors for stroke are warranted to establish the clinical utility of corneal confocal microscopy in ischemic stroke.

Methods
Subjects.  This study was a prospective, non-randomized clinical study. 146 patients underwent CCM within 
the first week (most within three days) of admission for an acute ischemic stroke. Stroke was confirmed clinically 
and radiologically by a neurologist subspecialized in stroke, based on WHO criteria48. Patients underwent assess-
ment of the NIHSS (National Institutes of Health Stroke Scale) on admission. It allows grading of the severity of 

Parameter Estimate
95% CI Lower 
Bound

95% CI Upper 
Bound

Standard 
Error

Significance level 
P Value

Dependent Variable: Endothelial Cell Area

Constant 217.302 174.154 260.45 21.816 <0.001

Age 0.323 −0.137 0.783 0.233 0.167

BMI 0.202 −0.222 0.626 0.214 0.348

Triglycerides 7.564 0.369 14.759 3.638 0.039

Cholesterol −12.025 −27.801 3.752 7.977 0.134

LDL 9.956 −6.312 26.224 8.225 0.228

HDL 19.112 −3.415 41.639 11.39 0.096

Systolic BP 0.086 −0.117 0.288 0.102 0.403

Diastolic BP −0.337 −0.692 0.018 0.18 0.063

HbA1c −0.679 −2.621 1.262 0.982 0.49

Stroke 23.883 0.258 47.507 11.945 0.048

Table 4.  Estimates of endothelial cell area and independent variables in multiple regression with significance.

Parameter Estimate
95% CI Lower 
Bound

95% CI Upper 
Bound

Standard 
Error

Significance level 
P Value

Dependent Variable: Endothelial Cell Perimeter

Constant 52.7 47.456 57.943 2.651 0.001

Age 0.035 −0.021 0.091 0.028 0.218

BMI 0.025 −0.026 0.077 0.026 0.330

Triglycerides 0.893 0.018 1.767 0.442 0.045

Cholesterol −1.313 −3.23 0.604 0.969 0.178

LDL 1 −0.977 2.977 0.999 0.319

HDL 2.271 −0.467 5.008 1.384 0.103

Systolic BP 0.009 −0.016 0.033 0.012 0.487

Diastolic BP −0.041 −0.084 0.002 0.022 0.063

HbA1c −0.052 −0.288 0.184 0.119 0.666

Stroke 2.933 0.062 5.803 1.451 0.045

Table 5.  Estimates of endothelial cell perimeter and independent variables in multiple regression with 
significance.
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stroke into minor stroke (1–4 score), moderate stroke (5–15 score), moderate to severe stroke (16–20 score) and 
severe stroke (21–42 score). We could not undertake CCM in participants with major weakness; therefore only 
patients with mild stroke were examined.

Exclusion criteria included patients with intracerebral hemorrhage, a known history of eye trauma or surgery, 
any corneal or anterior segment pathology including neurotrophic keratitis, trigeminal neuralgia, keratoconus, 
high refractive error, dry eye, contact lens wear, Fuchs corneal dystrophy, posterior corneal dystrophy and glau-
coma. Age-matched healthy control participants (n = 18) were recruited and assessed from Rumailah Hospital 
and Hamad General Hospital in Doha, Qatar.

This study adhered to the tenets of the declaration of Helsinki and was approved by the Institutional Review 
Board of Weill Cornell Medicine (15–00021) and Hamad General Hospital (15304/15). Informed, written consent 
was obtained from all patients/guardians before participation in the study. Clinical demographic parameters, 
blood pressure, HbA1c, total cholesterol, HDL, LDL and triglycerides were assessed on admission.

Corneal Confocal Microscopy.  All patients underwent CCM (Heidelberg Retinal Tomograph III Rostock 
Cornea Module, Heidelberg Engineering GmbH, Heidelberg, Germany). This device uses a 670 nm wavelength 
helium neon diode laser, which is a class I laser and therefore does not pose any ocular safety hazard. A 63x objec-
tive lens with a numerical aperture of 0.9 and a working distance, relative to the applanating cap (TomoCap©, 
Heidelberg Engineering GmbH, Heidelberg, Germany) of 0.0 to 3.0 mm is used. The size of each two-dimensional 
image produced is 384 μm × 384 μm with a 15° × 15° field of view and 10 μm/pixel transverse optical resolution. 
To perform the CCM examination, local anesthetic (0.4% benoxinate hydrochloride, Chauvin Pharmaceuticals, 
Chefaro, UK) was used to anaesthetize each eye and Viscotears (Carbomer 980, 0.2%, Novartis, UK) were used as 
the coupling agent between the cornea and the applanating cap. All patients were asked to fixate on an outer fix-
ation light throughout the CCM scan and a CCD camera was used to correctly position the applanating cap onto 
the cornea. The examination took approximately 10 minutes for both eyes and was undertaken by experienced 
examiners (AK, GP, HA and INP), masked from the subject’s clinical status. Images of the endothelial cells and 
subbasal corneal nerves were captured using the “section” mode.

Image Analysis.  Corneal endothelial cell morphology was undertaken in 2-3 representative central images 
from each eye based on the depth (endothelial cell layer), focus (sharp focused images) and position (central cor-
nea), with a frame size of at least 25%49. The image analysis was performed blindly without the investigator being 
aware of whether the images were from a control subject or patient with stroke. Each image was exported to a 
real-time automated image analysis system (Corneal Endothelium Analysis System (CEAS))50. A central region of 
interest (ROI) was traced for each image to identify the optimal area for quantification, avoiding peripheral darker 
areas. The CEAS system consists of a cell segmentation and morphometric parameter quantification stage. The 
former stage can be further divided into two steps: a pre-processing step and cell contour detection step. In the 
pre-processing step an FFT-Band-pass filter is applied to reduce noise and enhance image quality, followed by the 
detection of all endothelial cells in the image using a watershed transform and a Voronoi tessellation approach. A 
number of clinically useful features were extracted from the segmented endothelial cell images in an automated 
and objective manner to accurately describe the health of the corneal endothelium and include: Mean Endothelial 
Cell Density (ECD) (cell/mm2), Mean Endothelial Cell Area (ECA) (µm2), Mean Endothelial Cell Perimeter 
(ECP) (µm), polymegathism (%) and pleomorphism (%)51 (Fig. 1). Polymegathism (coefficient of variation) was 
defined as the standard deviation of the cell area divided by the mean cell area. Pleomorphism was defined as the 
hexagonality coefficient. The mean SD of the number of cells analysed per image was 136.38+/−61.22.

6 images/subject were selected for corneal nerve image analysis52. All CCM images were analyzed using val-
idated, purpose-written software (CCMetrics®, M. A. Dabbah, ISBE, University of Manchester, Manchester, 
UK)52. Corneal nerve fiber density (CNFD) (no./mm2), corneal nerve fiber branch density (CNBD) (no./mm2) 
and corneal nerve fiber length (CNFL) (mm/mm2) were manually quantified.

Statistical analysis.  All statistical analysis was carried out using IBM SPSS Statistics software Version 24. 
Normality of the distribution of data was examined using the Kolmogorov-Smirnov test, and by visual inspection 
of the histogram and a normal Q-Q plot. Data is expressed as the mean ± standard error (Table 1). Statistical jus-
tification for the number of participants was based on a power analysis using the freeware program G*Power ver-
sion 3.0.10 for α (type 1 error) of 0.05 and power (1 − type 2 error) of 0.80 using corneal nerve fibre density mean 
(37.12 vs 29.18) and standard deviation (8.35 and 7.16) comparing healthy controls to patients with stroke32.

The statistical distribution of healthy controls and patients with acute ischemic stroke and between stroke 
patients with and without diabetes was compared using the unpaired t test (2-tailed) (normally distributed varia-
bles) and Mann-Whitney test (non-normally distributed variables). Bonferroni correction was applied to control 
for multiple testing where P = 0.006, based on eight independent observations.

To investigate the association between risk factors for stroke and corneal endothelial cell parameters, Pearson 
correlation was performed and multiple linear regression was conducted to assess the association between 
endothelial cell abnormalities and co-variates. Significance level was set at P = 0.05. Prism 6 (version 6.0 g, 
Graphpad software Inc., CA, USA) was used to plot the graphs.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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