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ABSTRACT Listeria monocytogenes is an important foodborne pathogen that causes
listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes
strains isolated from food, environmental, and clinical sources. Sequence differences
at the genome level may help in understanding why these strains displayed differ-
ent virulence and stress response characteristics.

Listeria monocytogenes is a Gram-positive bacterial pathogen that is present ubiqui-
tously in the environment. L. monocytogenes is often associated with foods such as

ready-to-eat meats, raw produce, and dairy products (1). It is a foodborne pathogen
that can cause listeriosis with a high mortality rate. L. monocytogenes is very difficult to
control in the food industry since it can survive under very harsh conditions, such as
high salt, low pH, and low temperature (2, 3). Strains of L. monocytogenes isolated from
food, environmental, and clinical sources have displayed different serotypes, stress
responses, and virulence potentials. In the current study, isolates from food were
serotypes 1/2a, 1/2b, or 1/2c, whereas the clinical isolate was serotype 4b (Table 1),
similar to many other reported clinical isolates (4).

Here, we report the draft genome sequences of seven L. monocytogenes strains
isolated from food, environmental, and clinical samples (Table 1) which belong to
different serotypes and have shown different stress response and virulence profiles. For
example, both strains LMB33029 and LMB33868 displayed sensitivity to salt (10% NaCl)
treatment, whereas strain LMB33029 was more sensitive to nisin (125 �g/ml) treatment
than is strain LMB33868. LMB33761, LMB57147, and LMB33724 displayed weak ability
to form biofilms as shown by biofilm assays (5). However, as determined by a plaque
assay, strains LMB33761 and LMB57147 had strong virulence potential compared to
that of strain LMB33724 (6). LMB33922 and LMB33123 had a strong biofilm-forming
ability and a virulence potential similar to that of LMB33724 but less than that of
LMB33761 and LMB57147 (our unpublished data).

For whole-genome sequencing, genomic DNA was extracted using the DNeasy
blood and tissue kit (Qiagen, Valencia, CA) from 1 ml of overnight culture grown in
tryptic soy broth (TSB), and the concentrations of genomic DNA were measured using
a Qubit 3.0 fluorometer (Life Technologies, Carlsbad, CA). Library preparation was
carried out using the Nextera DNA Flex library prep kit (Illumina, San Diego, CA)
according to the manufacturer’s instructions. Libraries generated with 600-bp frag-
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ments were quantified by a Qubit 3.0 fluorometer (Life Technologies), and the dena-
tured pooled libraries were loaded onto a flow cell for cluster generation. Sequencing
was performed using the Illumina MiniSeq platform with a 2 � 150-bp paired-end read
protocol with more than 151� coverage. The quality of the sequences was assessed by
FastQC and assembled using the SPAdes genome assembler (version 3.9.0) (7), available
on the BaseSpace cloud platform (BaseSpace software version 2.0.2018) from Illumina.
Virulence factors, multilocus sequence types (MLST), rRNA, tRNA, genes, pseudogenes,
and coding sequences (CDSs) were determined using the Illumina Bacterial Analysis
Pipeline (version 1.0.4) and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP)
version 4.3 (8). A description of the characteristics of the seven L. monocytogenes strains
is presented in Table 1. Whole-genome sequence information can be used to identify
the sequence differences among these strains and assist in understanding why these
strains have displayed different virulence potentials and stress responses.

Data availability. The draft genome sequences reported here have been deposited

in DDBJ/ENA/GenBank under the accession and BioProject numbers listed in Table 1.
The versions described in this paper are the first versions.
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