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ABSTRACT As components of freshwater and marine microflora, Arcobacter spp. are
often recovered from shellfish, such as mussels, clams, and oysters. Arcobacter mol-
luscorum was isolated from mussels from the Ebro Delta in Catalonia, Spain. This ar-
ticle describes the whole-genome sequence of the A. molluscorum strain LMG
256937 (= F98-3T = CECT 7696").

embers of the genus Arcobacter are often recovered from shellfish (1-7). The

prevalence of Arcobacter species in environmental waters (8) suggests that
contamination of shellfish by these organisms might be the result of filter feeding-
associated bioaccumulation, with this contamination potentially resulting in human
iliness following the consumption of raw or partially cooked shellfish. Arcobacter
molluscorum was isolated from farmed shellfish harvested in Catalonia, Spain (4). In this
article, we report the first closed genome sequence of the A. molluscorum type strain
LMG 25693 (= F98-3T = CECT 7696"), isolated in 2009 from farmed mussels from the
Ebro Delta in Catalonia, Spain.

The genome of A. molluscorum strain LMG 25693 was completed using the Roche
GS FLX+, lllumina HiSeq, and PacBio RS Il next-generation sequencing platforms.
Genomic DNA was isolated with the Wizard genomic DNA purification kit (Promega,
Madison, WI) using a loop (~5 ul) of cells taken from cultures grown (aerobic environ-
ment, 48 h, 30°C) on anaerobe basal agar (Oxoid) amended with 5% horse blood.
Shotgun and paired-end Roche 454 libraries were constructed following the manufac-
turer’s protocols, and 454 sequencing was performed using the Titanium chemistry and
standard methods. PacBio SMRTbell libraries were prepared from 10 ug of genomic
DNA using the standard 20-kb PacBio protocol (9). Single-molecule real-time (SMRT) cell
sequencing was performed using standard protocols, the 20-kb libraries, P6-C4 se-
quencing chemistry, and the 360-min data collection mode. lllumina HiSeq reads were
obtained from SeqWright (Houston, TX). Shotgun and paired-end Roche 454 reads were
assembled using Newbler v. 2.6 (Roche) and default parameters into 88 total contigs;
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TABLE 1 Sequencing metrics and genomic data for A. molluscorum strain LMG 256937

Feature Value(s)?
Sequencing metrics
454 (shotgun) platform
No. of reads 177,873
No. of bases 73,714,660
Average length (bases) 4144
Coverage (X) 26.3
454 (paired-end) platform
No. of reads 150,593
No. of bases 46,384,064
Average length (bases) 308.0
Coverage (X) 16.6
lllumina HiSeq 2000 platform
No. of reads 25,306,576
No. of bases 2,530,657,600
Average length (bases) 100
Coverage (X) 903.6
PacBio platform
No. of reads 129,047
No. of bases 399,548,656
Average length (bases) 3,096.1°
Coverage (X) 142.7
Newbler metrics©
N50ContigSize (454) (bases) 90,324
Q40PlusBases (454) (%) 99.84
N50ContigSize (HiSeq pool 1) (bases) 78,972
Q40PlusBases (HiSeq pool 1) (%) 99.99
N50ContigSize (HiSeq pool 2) (bases) 90,503
Q40PlusBases (HiSeq pool 2) (%) 99.96
N50ContigSize (HiSeq pool 3) (bases) 79,027
Q40PlusBases (HiSeq pool 3) (%) 99.97
Genomic data
Chromosome
Size (bp) 2,800,582
G+C content (%) 26.25
No. of CDS4 2,666
Assigned function (% CDS) 1,044 (39.2)
General function annotation (% CDS) 995 (37.3)
Domain/family annotation only (% CDS) 199 (7.5)
Hypothetical (% CDS) 428 (16.1)
Pseudogenes 31
Genomic islands/CRISPR
No. of genetic islands 3
No. of CDS in genetic islands 71, [1]
CRISPR-Cas loci I-B, [III-A]

Gene content/pathways
IS elements, mobile elements, or tranposases
Signal transduction
Che proteins
No. of methyl-accepting chemotaxis proteins
No. of response regulators
No. of histidine kinases
No. of response regulator/histidine kinase fusions
No. of diguanylate cyclases
No. of diguanylate phosphodiesterases (HD-GYP, EAL)
No. of diguanylate cyclase/phosphodiesterases
No. of other
Motility
Flagellin genes
Restriction/modification
No. of type | systems (hsd)
No. of type Il systems
No. of type Ill systems
Transcription/translation
No. of transcriptional regulatory proteins
Non-ECFe o factors

3 (IS7595); 1, [1] (other)
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TABLE 1 (Continued)

Feature Value(s)®

No. of ECF o factors 0

No. of tRNAs 56

No. of ribosomal locif 3 (A), 3 (B)
CO dehydrogenase (coxSLF) Yes
Ethanolamine utilization (eutBCH) Yes
Nitrogen fixation (nif) Yes
Osmoprotection BCCT;, ectABC
Pyruvate — acetyl-CoA

Pyruvate dehydrogenase (E1/E2/E3) Yes

Pyruvate:ferredoxin oxidoreductase por
Urease ureAB
Vitamin B, biosynthesis Yes

aNumbers in square brackets indicate pseudogenes or fragments.

bMaximum length, 25,747 bases.

Features and values taken from largeContigMetrics within 454NewblerMetrics.txt for each assembly. Large
contigs were defined as =500 bases. Due to the large number of HiSeq reads, the total reads were split
into three pools and assembled independently.

9dNumbers do not include pseudogenes; CDS, coding sequences.

eECF, extracytoplasmic function.

A: 165-tRNA, .-tRNA,|,-23S-5S; B: 165-235-5S.

(DNASTAR, Madison, WI), with the remaining 28 contigs that represent repeat regions
added to the assembly manually at two or more locations. This assembly was confirmed
using an optical restriction map (restriction enzyme Xbal; OpGen, Gaithersburg, MD).
Verification and error correction of base calls within the composite 454/PacBio assem-
bly were performed using the HiSeq reads. These reads were assembled de novo within
Newbler using the same parameters as with the 454 reads; small contigs represented
by <20 reads were deleted. The remaining contigs were assembled into the SeqMan
454/PacBio assembly described above, with base calls adjusted to the Illumina consen-
sus sequence. Single nucleotide polymorphisms within the repeat contigs and se-
quences between the Illlumina contigs were assessed/verified by assembling the Illu-
mina reads onto these regions within Geneious v. 8.1 (Biomatters, Auckland, NZ) and
using the “find variations/SNPs” module, with a default minimum variant frequency
parameter of 0.3. The final coverage across the genome was 1,089X.

A. molluscorum strain LMG 25693T has a circular genome of 2,800,582 bp with an
average G+C content of 26.25%. Protein-, rRNA-, and tRNA-encoding genes were
identified and annotated as described (11, 12). Briefly, putative coding sequences
(CDSs), tRNA/transfer-messenger RNA (tmRNA) genes, and rRNA loci were identified
using GeneMark, ARAGORN, and RNAmmer, respectively (13-15). The genome se-
quence and the CDS coordinates from GeneMark were used to create a preliminary
GenBank-formatted file which was entered into Artemis v. 16 (16) to identify putative
pseudogenes and genes missed in the original GeneMark analysis and to manually
curate the start codon of each putative CDS. Initial annotation was accomplished by
comparing the proteome of strain LMG 256937 to proteomes derived from other
Arcobacter genomes (primarily A. butzleri strain RM4018 and A. nitrofigilis [GenBank
accession numbers CP000361 and CP001999, respectively]) and to proteins in the NCBI
nonredundant (nr) database using BLASTP. Annotation was further refined, e.g.,
through an analysis of Pfam motifs (17) and a BLASTP analysis that utilized a larger
custom protein database that also included proteomes from all current completed
Campylobacter genomes.

The LMG 25693T genome is predicted to encode 2,666 putative protein-coding
genes and 31 pseudogenes. Additionally, the LMG 25693T genome contains 56 tRNA-
encoding genes and 6 rRNA operons; however, 3 of these rRNA operons do not contain
the isoleucyl-tRNA or alanyl-tRNA genes that are commonly found in other rRNA loci.
Three genomic islands were identified in the LMG 25693T genome; one genomic island
is a putative integrated plasmid containing genes for a P-type type IV conjugative
transfer system, while a second 28-kb island putatively encodes a type VI secretion
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system. The LMG 25693T genome also contains a type I-B CRISPR-Cas system. A second
CRISPR-Cas system (type Ill-A) was identified; however, although this locus contains the
cas6, csm2, csm3, csm4, and csm5 genes, it does not contain cas1 or cas2, and the cas10
gene is presumably nonfunctional. No plasmids were identified in the strain LMG
25693T genome.
Data availability. The complete genome sequence of A. molluscorum strain LMG
256937 has been deposited in GenBank under the accession number CP032098. HiSeq,
454, and PacBio sequencing reads have been deposited in the NCBI Sequence Read
Archive (SRA; accession number SRP155187).
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