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ABSTRACT Fusarium oxysporum is a pathogenic fungus that infects hundreds of
plant species. This paper reports the improved genome assembly of a reference
strain, F. oxysporum f. sp. lycopersici Fol4287, a tomato pathogen.

Fusarium oxysporum is a filamentous fungus that can infect hundreds of plant
species, as well as immunocompromised human patients (1). The reference genome

of F. oxysporum was first generated using Sanger sequencing with 6� coverage using
a tomato-infecting strain, F. oxysporum f. sp. lycopersici Fol4287 (race 2, VCG 0030) (2).
The strain was originally isolated from an infected tomato plant in Murcia by Javier Tello
from the University of Almería, Spain (2, 3). It is available from the Fungal Genetics Stock
Center (FGSC 9935), NCAUR/USDA (NRRL 34936), and CBS-KNAW (CBS 123668) collec-
tions. A comparative study of this reference genome with those of closely related
species identified lineage-specific (LS) chromosomes that are rich in transposons and
genes related to pathogenicity. The transfer of these LS chromosomes between strains
of F. oxysporum was experimentally confirmed to convert a nonpathogenic strain into
a pathogen (2, 4–6). These studies enabled the structural and functional partitioning of
the F. oxysporum genome, which provides a novel means of dissecting fungal patho-
genesis.

Unfortunately, this reference genome has a high level of single-nucleotide-level
sequencing errors due to the low sequencing coverage. To improve its quality, we
regenerated the whole-genome assembly with increased sequence coverage and
combining Illumina and PacBio sequence technologies. Genomic DNA was extracted
from the mycelium of Fol4287 (the same isolate that was sequenced before). The DNA
library for short reads was prepared with an average 400-bp insert size. The DNA library
was sequenced at 66� coverage, using the Illumina HiSeq 2500 platform, into 71-bp
paired-end reads. The genomic DNA was sequenced using the PacBio RS II system with
10� subread coverage. FastQC (version 0.11.5) was used to check the quality of all
reads. The average base quality of Illumina reads is 36.8, with a 71-bp read length. The
PacBio reads have average and maximum read lengths of 6.8 kb and 52 kb, respectively.

The initial assembly was generated via SPAdes version 3.9.1 (7), combining raw
Illumina and PacBio reads with default parameters. Quiver in SMRT Analysis (version
2.2.0) (8) was used to polish the assembly based on the PacBio reads. Further polishing
was performed by mapping the Illumina reads to the assembly using BWA version
0.7.12 (9). FreeBayes v0.9.10-3-g47a713e (10) was used to identify base variants be-
tween the reads and the assembly. Highly confident variant sites were used to correct
the assembly using a custom script (available at github.com/d-ayhan/tools). We also
used structural variant (SV) callers, GRIDSS version 1.4.1 (11) and Sniffles version 1.0.8
(12), to identify the SVs in the initial assembly. All identified SVs were inspected
manually to ensure accuracy. High-confidence merges/splits were integrated into the
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assembly. The improved assembly was then quality checked by remapping. This
process was repeated until no future correction could be identified.

The final assembly is 53.9 Mb, with 499 contigs and an N50 value of 1.3 Mb. The
largest contig size is 5.7 Mb. The GC content is 47.7%. The assembly includes a contig
of 52,424 bp that captures the complete mitochondrial DNA and a contig of 7,875 bp
of the complete ribosomal DNA sequence (2). In a comparison of the new assembly to
the reference assembly of F. oxysporum (assembly GCA_000149955) by BLAST, the
contigs that belong to each chromosome were identified, ordered, and oriented within
each chromosome. The contigs were divided into three categories, including 11 core
chromosomes (C), 4 LS chromosomes (S), and some unmapped contigs (U). Except for
chromosomes 1 and 2, each core chromosome was assembled into a single contig
GenBank assembly number (GCA_003315725).

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number QESU00000000. The version described in this
paper is version QESU01000000. The PacBio and Illumina reads are available in SRA
under accession numbers SRR7015920 and SRR7690004, respectively.
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