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ABSTRACT Achromobacter spanius strain 6 is a Gram-negative soil bacterium iso-
lated from a hydrocarbon-degrading microcosm. The draft genome sequence of A.
spanius strain 6 is 6.57 Mb with a G�C content of 64.7% and 5,855 protein coding
genes. Multiple genes involved in degradation of aromatics are present in this strain.

Achromobacter spanius strain 6 was isolated as a predominant member of the
hydrocarbon-degrading bacterial community in a desert soil sample obtained from

under a fuel bladder in Kuwait (1). Achromobacter spp. have been shown to grow using
aromatic compounds (2). The desert soil sample was initially enriched in jet fuel, and
the starter enrichment was subjected to 5 successive enrichments with jet fuel. From
the fifth enrichment, a pure Achromobacter spanius colony was isolated on Trypticase
soy agar (TSA). The prevalence of A. spanius strain 6 in the jet fuel enrichments
prompted us to sequence its genome to obtain a better understanding of the meta-
bolic and adaptive pathways in this bacterium. Previously, the whole-genome sequence
of P. aeruginosa ATCC 33988 (3) helped researchers to understand the hydrocarbon
degradation pathways and fuel-adaptive mechanisms in this bacterium (4–6).

High-quality genomic DNA was isolated from an overnight-grown monoculture of A.
spanius strain 6 in lysogeny broth (LB) using the UltraClean Microbial DNA isolation kit,
(Mo Bio Laboratories, Carlsbad, CA) and was subjected to DNA library preparation using
the SMARTer Apollo library prep system (TaKaRa Bio, Mountain View, CA). The ligated
and indexed pre-PCR library was enriched by performing 5 cycles of PCR using the
NEBNext high-fidelity 2� PCR master mix. The amplified library was purified for quality
control (QC) analysis and sequencing using the Apollo PCR cleanup script and AMPure
XP beads (Beckman Coulter, Brea, CA). The purified library was then sequenced using
an Illumina HiSeq 1000 sequencer, producing 33,278,050 paired-end reads with a read
length of 100 bp. The raw sequence reads were trimmed using Trimmomatic version
0.36 (7) with the following settings: LEADING, threshold quality of 5; TRAILING, thresh-
old quality of 5; SLIDINGWINDOW, average quality of 15 across 4 bp; AVGQUAL, average
read quality of 15; and MINLEN, minimum length of 50 bp. The trimmed reads were de
novo assembled using SPAdes version 3.11.0 (8) with the settings �careful� and �only-
assembler.� The draft genome assembly comprises 57 scaffolds with an L50 value of
6 bp and an N50 value of 425,841 bp. The genome size of A. spanius strain 6 is 6.57 Mb
with a G�C content of 64.7% and 5,855 protein coding genes.

Genome annotation was performed using the Prokaryotic Genome Annotation
Pipeline (PGAP; https://www.ncbi.nlm.nih.gov/genome/annotation_prok/), and meta-
bolic networks were constructed with Rapid Annotations using Subsystem Technology
(RAST) (9). RAST predicted 195, 511, and 211 proteins related to stress response,
membrane transport, and metabolism of aromatic compounds, respectively. The 16S
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rRNA gene sequence of A. spanius strain 6 shares 100% homology with the16S rRNA
gene of A. spanius strain DSM 23806. However, the 23S rRNA gene of strain 6 presents
four mismatches and a similarity of only 99% with strain DS23806, indicating that A.
spanius strain 6 is a different strain. Previous studies have shown that stress response
and solvent resistance mechanisms play central roles in the adaptation of bacteria to
hydrocarbon fuel (4, 5). The presence of genes related to hydrocarbon degradation,
including those involved in catabolism of aromatic compounds, stress response, and
membrane transport in the genome of A. spanius strain 6, may explain why this strain
is well adapted to jet fuel. The NCBI Prokaryotic Genome Annotation Pipeline predicted
multiple genes responsible for aromatic degradation, including naphthalene 1,2-
dioxygenase, gentisate 1,2-dioxygenase, catechol 1,2-dioxygenase, and protocatech-
uate 3,4-dioxygenase. Understanding microbial interactions and bacterial community
structure in environments contaminated with hydrocarbons is essential when devel-
oping bioremediation strategies (10). The genome sequence of A. spanius strain 6 will
help us understand the genetic mechanisms utilized by this organism to thrive in
hydrocarbon-rich environments.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number PREU00000000. Raw sequences were
deposited in the NCBI SRA database under accession number SRP158285.
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