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ABSTRACT Based on a combination of next-generation sequencing and single-
molecule sequencing, we obtained the whole-genome sequence of Bacillus megate-
rium strain TG1-E1, which is a highly salt-tolerant rhizobacterium that enhances plant
tolerance to drought stress. The complete genome is estimated to be approximately
5.48 Mb containing a total of 5,858 predicted protein-coding DNA sequences.

Our group characterized Bacillus megaterium strain TG1-E1 as a highly salt-tolerant
Gram-positive bacterium that is capable of enhancing plant tolerance to drought

stress. It was originally isolated from a rhizospheric soil sample of Spartina anglica at
Zhangpu Yanchang in Fujian Province, China. This rhizobacterium collection is rich in
specimens of the Firmicutes and Proteobacteria phyla, with about 70% belonging to the
Bacillaceae family. High salinity in the sampling area possibly contributes to the
enrichment of Bacillus strains in the rhizosphere (1–4). In addition, more than half of
the strains isolated in this sampling area can produce phytometabolites, such as auxins
and aminocyclopropane-1-carboxylate deaminase (ACCd), displaying the characteristics
commonly described in plant tolerance-enhancing strains (5–10). B. megaterium TG1-E1
has been deposited in the China General Microbiological Culture Collection Center
(CGMCC) with reference number 14422.

DNA samples (at least 100 nM in 10 �l) were obtained from bacteria grown in LB
medium until an optical density of 1 at 600 nm (OD600) was obtained. The sequencing
of the B. megaterium TG1-E1 genome was completed by combining next-generation
sequencing (NGS) and single-molecule sequencing. NGS was performed with 20 �g of
DNA with an Illumina HiSeq platform (Core Facility of Genomics, Shanghai Center for
Plant Stress Biology, China), and single-molecule sequencing was performed with 20 �g
of DNA with a PacBio platform (Tianjin Biochip Corporation, China) (11–14). The
shotgun sequencing strategy was applied to NGS, and 12,471,203 paired reads (150 bp)
were obtained with a sequencing depth of approximately 260-fold. Meanwhile, single-
molecule sequencing produced 98,959 reads with a mean read length of 10,551 bp and
an N50 length of 14,471 bp. The total number of sequenced bases was 961,774,920. For
de novo assembly, Canu v1.5 was used with default parameters, and the genome
correction step was performed using Illumina data with support of Pilon v1.18 (15, 16).
The size of the circularized genome was calculated to be about 5.48 Mb. Genes
including protein-coding DNA sequences (CDSs) were predicted by a pipeline imple-
mented by Prokka v1.12 (17). On a whole-genome scale, The GC content of this genome
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is 38.26%, and 5,858 protein-coding genes, 4 rRNA operons, and 164 tRNA genes were
called during annotation.

The whole-genome sequence of B. megaterium TG1-E1 reveals information such as
the biosynthesis pathways of flagella, spores, and polysaccharides. Concerning charac-
teristics potentially contributing to TG1-E1-induced plant stress tolerance, pathways
found within this genome that have potential relevance in aiding plant drought stress
include trehalose and antioxidant biosynthesis. In addition, genome annotation also
revealed possible mechanisms for plant growth-promoting effects, including bacterial
production of acid phosphatases, siderophores, and exopolysaccharides. Further re-
search with this genomic information will help us discover mechanisms through which
B. megaterium TG1-E1 induces plant drought stress tolerance and will contribute to the
subsequent development of biotechnological applications.

Data availability. The complete genome sequence of B. megaterium TG1-E1 has
been deposited in the TBL/EMBL/GenBank databases under the BioProject number
PRJNA430758 and the accession number PRKV00000000 (sequences PRKV01000001 to
PRKV01000036).
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