
Aquaculture, Exaptation, and the Origin of mcr-Positive
Colistin Resistance

Felipe C. Cabello,a Henry P. Godfreyb

aDepartment of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
bDepartment of Pathology, New York Medical College, Valhalla, New York, USA

KEYWORDS aquaculture, mcr genes, colistin resistance, exaptation, Aeromonas,
antimicrobial resistance

The interesting work by Shen et al. (1) discusses the pathogenicity of Aeromonas for
freshwater fish in passing but does not mention that Aeromonas are not only

pathogenic for freshwater fish but also survive and cause furunculosis in aquacultured
salmonids and other fish in the marine environment (1, 2).

Antimicrobials are heavily used both for metaphylaxis and for the treatment of
Aeromonas salmonicida, strongly suggesting the generation and selection of mcr-
positive Aeromonas spp. in this marine environment (1–3). These freshwater and
saltwater environments are heavily contaminated with animal and human pathogens in
many countries from the disposal of untreated sewage and the employment of
so-called integrated aquaculture, where fish are raised on manures from antimicrobial-
treated animals (3–5). They thus constitute hotspots for genetic recombination and
horizontal gene transfer and are probably responsible for the worldwide dissemination
of the mcr gene variants repeatedly found in bacterial genera containing human,
terrestrial animal, and piscine pathogens (3, 4). Consistent with this, mcr-positive
colistin resistance was first reported from China where intensive aquaculture and heavy
antimicrobial use are common (6).

The relationship between excessive antimicrobial use, aquaculture, and the poten-
tial emergence of the mcr genes not only illustrates the accelerated dynamics of
evolutionary events triggered by the use of large amounts of antimicrobials in aqua-
culture but may also exemplify “exaptation,” defined by Gould and Vrba as a change in
the function of a gene in the course of evolutionary succession (7, 8). The mcr genes
may be an example of exaptation, since they are variants of phosphoethanolamine
transferases originally found in aquatic Shewanella spp. (9). A modification of the
lipopolysaccharide (LPS) core produced by these enzymes may provide protection for
the cell wall in hypertonic marine environments but also against vertebrate antimicro-
bial peptides and lysozyme (9, 10). When transferred to Aeromonas and Enterobacteri-
aceae in environments rich in colistin residues, mcr genes may then endow the cells
with resistance to this antimicrobial (1, 11, 12). In this regard, mcr genes appear to be
similar to several plasmid-mediated quinolone resistance genes [qnrA, qnrB, qnrS, and
aac(6=)-Ib-cr], which evolved long before the synthesis of quinolones and are widely
distributed among aquatic bacteria; their original function is unknown, but they now
provide resistance to quinolones following recent transfer to animal and human
pathogens (13–15).

The findings of Shen et al. and others strongly suggest the aquatic environment is
the new frontier in the accelerated evolution of antimicrobial resistance through its
facilitation of recruitment and the exaptation of aquatic bacterial genes to the resis-
tomes of animal and human pathogens (1, 6, 11–13, 15). Aquacultural activities are thus
additional reactors, alongside terrestrial agriculture and hospitals, for the generation
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and worldwide dissemination of antimicrobial resistance. The One Health paradigm (3,
14) linking environmental, piscine, and human health makes interventions to prevent
detrimental connections ever more urgent. This is particularly important in the face of
the rapid growth of intensive aquaculture accompanied by the passage of massive
amounts of antimicrobials into the freshwater and marine environments and the global
marketing of aquacultured products containing bacteria with newly captured genes
from the aquatic resistome (3, 6, 14).
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