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ABSTRACT Ceftobiprole is a fifth-generation cephalosporin with activity against
methicillin-resistant Staphylococcus aureus (MRSA). One-year surveillance at the Re-
gional Hospital of Ancona (Italy) disclosed a 12% ceftobiprole resistance rate (12/102
isolates; MIC, =4 mg/liter). Epidemiological characterization demonstrated that the
resistant isolates all belonged to different clones. Penicillin-binding protein (PBP)
analysis showed substitutions in all PBPs and a novel insertion in PBP2a. The mecB
and mecC genes were not detected. Ceftobiprole susceptibility screening is essential
to avoid therapeutic failure and the spread of ceftobiprole-resistant strains.
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ethicillin-resistant Staphylococcus aureus (MRSA) is a pathogen with a wide dif-

fusion in Europe (1), as well as in Italy, accounting for about 30% of all invasive
S. aureus strains described in Italy to date (2). Resistance to B-lactamases is often due
to the mecA gene, which encodes the low-affinity penicillin-binding protein 2a (PBP2a).
Ceftobiprole, a fifth-generation broad-spectrum cephalosporin, shows activity against
Gram-positive and Gram-negative bacteria and is also active against MRSA (3); in
particular, it has demonstrated high affinity not only for the common PBPs but also for
PBP2a (4). The antibiotic which has recently been approved has been shown to display
relative stability against B-lactamases and a low propensity to develop resistance (3), as
confirmed by the low rates of resistant staphylococcal isolates found in surveillance
studies (5-8). Nonetheless, some papers have described ceftobiprole resistance among
MRSA strains (5, 6, 9-11). This resistance is probably due to mutations in pbp genes,
especially mecA or pbp4 (9-12). During a recent MRSA survey, we decided to test
ceftobiprole against 102 strains isolated from February 2017 to February 2018 from a
variety of specimens collected at Ospedali Riuniti in Ancona, Italy. MIC determination by
broth microdilution (13) showed that 88% of MRSA strains (n = 90) were susceptible to
ceftobiprole, with MICs ranging from 0.03 to 2 mg/liter. The resistance rate was 12% (12
isolates; MIC, =4 mg/liter), which is considerably higher than the rates (1.7 to 3.5%)
detected in surveillance studies in Europe (5-6). Similar resistance rates (15%) have
been found only in an African surveillance study (11). The 12 ceftobiprole-resistant
MRSA strains were recovered from wounds (n = 4) and pulmonary secretions (n = 8)
of patients admitted to different departments, except for 3 strains, which were col-
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lected from general medicine patients. The MIC;, and MIC,, of the 102 isolates were
1 mg/liter and 4 mg/liter, respectively. The resistant isolates were further characterized
for pbp gene mutations and to determine the epidemiological relationships among
them (Table 1). According to spa typing (14) and multilocus sequence typing (MLST)
(15), 8 isolates shared the same spa type (t041) and MLST (sequence type 228 [ST228],
clonal complex 5 [CC5]) and were classified as “South German” or “Italian” clones, i.e.,
nosocomial strains that are widespread in central and southern Europe (16). Smal-
pulsed-field gel electrophoresis (Smal-PFGE) analysis (17) demonstrated that the 8
strains showed 4 different PFGE patterns (B, D, E, and F), with three identical strains
(pattern F2) and two closely related isolates (patterns F1 and F3) belonging to pulso-
type F (Fig. 1). These correlations suggested the possibility of an intrahospital outbreak
of a ceftobiprole-resistant clone. The remaining 4 isolates showed different PFGE
pulsotypes (A, C, G, and H, respectively) and molecular types, as follows: MRSA 350990
was assigned to a novel spa type (t18014) and to ST22 (CC22), MRSA 354432 was
assigned to spa type t1476 and ST8 (CC8), MRSA 420822 was assigned to spa type t5948
and the new ST4873 (CC59), and MRSA 422665 was assigned to spa type t002 and ST5
(CC5) (Table 1). CC22, CC8, and CC5 are associated with nosocomial infections (18-19),
whereas CC59 is associated with community-acquired infections (20). PBP sequences of
the resistant isolates were obtained (21-22) and compared with the susceptible strain
S. aureus Mu50. The PBP mutations explained the epidemiological context in the
following ways. First, spa type t041 and ST228 strains harbored the N146K mutation in
PBP2a. This mutation, which has been reported in association with two other substi-
tutions, as N146K-N204K-G246E (11), is found in the non-penicillin-binding domain
(non-PBD), which mediates resistance through interactions with other proteins (23).
Three of these 4 strains, MRSA 351138, 365325, and 366780, also bore the C197Y
mutation in PBP2. Mutations in PBP1 (S194N) and PBP4 (N337D) were also detected in
MRSA 365325. Second, MRSA 350990 (spa type t18014, ST22) exhibited mutations in all
PBPs, with S225R in PBP2a; S629T in PBP1; C197Y, L256V, P285A, and T439V in PBP2;
R504K and K584F in PBP3; and D98E, S189T, and E398A in PBP4. Despite the numerous
mutations, the ceftobiprole MIC was only slightly above the breakpoint, suggesting that
they do not all affect resistance. Third, MRSA 354432 (spa type t1476, ST8) lacked the
mecA, mecB, and mecC genes and showed mutations in all the PBPs tested (D118N in
PBP1, C197Y in PBP2, P233L and S438T in PBP3, and S189T in PBP4), which are probably
responsible for cefoxitin resistance; in contrast, ceftobiprole resistance may be due to
substitutions in PBP4, which seems to play a key role in ceftobiprole-resistant strains
lacking PBP2a (24). Fourth, MRSA 420822 (spa type t5948, ST4873) harbored a wild-type
mecA gene and carried several mutations in the other pbp genes: 3 mutations in PBP1
(A329V, E499D, and G515S), 4 mutations in PBP2 (C197Y, P285A, Q358H, and T439V), a
mutation in PBP3 (A330S), and 2 mutations in PBP4 (S189T and V210I). Notably, this
community-associated strain had an elevated MIC (32 mg/liter), which to the best of our
knowledge is the highest ceftobiprole MIC reported so far in clinical strains, despite its
wild-type PBP2a. Moreover, it showed the highest number of PBP mutations, which
may be responsible for the high MIC, even though the involvement of other resistance
mechanisms cannot be excluded (15). Fifth, MRSA 422665 (spa type t002, ST5) showed
a 5-amino-acid insertion (VQHED) in the non-PBD at 259 to 260 in PBP2a, as well as a
mutation in PBP2 (V607M). The insertion has the potential to affect interactions with
other proteins (23), inducing ceftobiprole resistance, but it does not affect B-lactamase
resistance. This is the first report of an amino acid insertion in PBP2a in a ceftobiprole-
resistant strain. None of the strains carried the mecB or mecC gene. The present
surveillance study, although limited to isolates recovered from a single center, showed
a high ceftobiprole resistance rate and PBP mutations that were not confined to amino
acid substitutions. Notably, since ceftobiprole became available at Ospedali Riuniti only
in early 2017, selective pressure can be excluded. This suggests that mutations con-
ferring ceftobiprole resistance can be induced not only by selective pressure but also
arise independently. The present findings highlight the need to perform ceftobiprole
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FIG 1 Smal-PFGE pattern and dendrogram of the ceftobiprole-resistant MRSA strains. Profiles were analyzed with BioNumerics software
version 7.0 (Applied Maths Scientific Software Development, Sint-Martens-Latem, Belgium). The dendrogram was built by applying the
Dice similarity coefficient, with 1.5% optimization and 2.0% tolerance. Clustering was obtained using the unweighted pair group method
with arithmetic mean. Opt, optimization; Tol, tolerance; H, minimum height; S, minimum surface.

screening before treatment to avoid therapeutic failure and the spread of resistant
strains.

Data availability. The nucleotide sequences of mutated PBPs were deposited in
GenBank under accession numbers MH798847 to MH798870.
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