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ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) infection has in-
creased in recent years among cystic fibrosis (CF) patients. Linezolid (LZD) is one of
the antistaphylococcal antibiotics widely used in this context. Although LZD resis-
tance is rare, it has been described as often associated with long-term treatments.
Thirteen MRSA strains isolated over 5 years from one CF patient were studied for
LZD resistance emergence and subjected to whole-genome sequencing (WGS). Resis-
tance emerged after three 15-day LZD therapeutic regimens over 4 months. It was
associated with the mutation of G to T at position 2576 (G2576T) in all 5 rrl copies,
along with a very high MIC (�256 mg/liter) and a strong increase in the generation
time. Resistant strains isolated during the ensuing LZD therapeutic regimens and un-
til 13 months after LZD stopped harbored only 3 or 4 mutated rrl copies, associated
with lower MICs (8 to 32 mg/liter) and low to moderate generation time increases.
Despite these differences, whole-genome sequencing allowed us to determine that
all isolates, including the susceptible one isolated before LZD treatment, belonged
to the same lineage. In conclusion, LZD resistance can emerge rapidly in CF patients
and persist without linezolid selective pressure in colonizing MRSA strains belonging
to the same lineage.
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With 70.6% of patients colonized/infected and a median age at the first infection
of 3.6 years, Staphylococcus aureus is one of the major and earliest bacteria

detected in infants and children with cystic fibrosis (CF) (1). Despite antibiotic inter-
vention, S. aureus colonization or chronic infection persists in the lung for many years.
Longitudinal studies have shown that in the majority of cases, patients are chronically
colonized/infected with the same clone (2–4). With age, a decreasing incidence of S.
aureus has been shown to coincide with an increased incidence of Pseudomonas
aeruginosa colonization in CF patients (1). However, S. aureus is still present in 50% of
patients with P. aeruginosa infection (5). CF lung colonization with methicillin-resistant
S. aureus (MRSA) has increased in recent years, with MRSA being detected in 26% of the
CF patients in the United States in 2015 (1). Several studies have reported that MRSA
infection is associated with an increased rate of lung function decline and worse clinical
outcomes (6, 7). The airways of CF patients provide a niche for bacteria in a hostile
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environment where the challenges include host immune response, antibiotics, inter-
species competition, hypoxia, and starvation, which trigger various forms of S. aureus
adaptations (8). These adaptations include the emergence of small-colony variants
(SCVs), hypermutator phenotypes, multidrug resistance, and increased ability to form
biofilm (4, 9, 10).

Linezolid (LZD) is widely used in CF patients for the treatment of MRSA infections
(11). It is the first member of the oxazolidinone class of antibiotics, which has been
available in France since 2002. LZD disrupts the beginning of the protein synthesis by
binding to domain V of the 23S rRNA in the 50S subunit of the bacterial ribosome,
specifically in the peptidyl transferase center (PTC) at site A (12). Clinical LZD-resistant
S. aureus (LRSA) is still rarely isolated globally (�1%) (13). However, resistance in S.
aureus emerged in CF patients several years ago, often associated with long-term
treatments. The mutations implicated are mostly alterations in the 23S rRNA, especially
the mutation G2576U (Escherichia coli numbering) (14). Alterations in ribosomal pro-
teins L3 and L4, as well as the cfr gene, were also reported (15–20). Suboptimal dosing
has been demonstrated to play an important role in resistance emergence due to the
variation of the pharmacokinetic profile of LZD among children with CF, which requires
dosing adjustment. LZD resistance has also emerged in patients without LZD exposure,
which is probably due to transmission of LRSA between CF patients (20).

Our objective was to explore the dynamic of LZD resistance in MRSA isolates
recovered over a long period of time from one CF patient and, in particular, to describe
the isolates’ genetic evolution and relatedness.

RESULTS
LZD treatment, MRSA isolates, and emergence of LZD resistance. One CF

patient was followed up at the CF unit of Limoges teaching hospital. Chronic MRSA
colonization was diagnosed at 3 years of age. Thirteen frozen MRSA strains (LimS, which
was LZD susceptible, and LimR1 to R12, which were LZD resistant) isolated from
sputum samples over a 5-year period (October 2002 to December 2007) were included.
The timeline of LZD treatments and the concomitant MRSA isolates are presented in
Fig. 1. An initial therapeutic regimen of LZD (600 mg twice daily) was introduced in
August 2003 over a 15-day period. After this one, successive therapeutic regimens of
LZD (600 mg twice daily) were used alternately with intravenous glycopeptides until
November 2006. Thirteen MRSA strains isolated either before (LimS), during (LimR1 to
-R5), or after LZD treatment (LimR6 to -R12) were studied (Fig. 1). LZD resistance was
detected in December 2003 after three 15-day LZD therapeutic regimens over 4 months
(LimR1). Resistance was determined to be associated with the mutation of G to T at
position 2576 (G2576T) in the 23S rRNA gene (rrl) by Sanger sequencing. All isolates
harbored 5 rRNA operons (rrn), and the mutation was observed in 3 to 5 copies of rrl.
Moreover, rplC and rplD genes were not mutated and the cfr gene was absent as

FIG 1 Timeline of MRSA strain isolation over the 5-year period, along with the dates of the 15-day periods of the 600-mg twice-daily (b.i.d.) LZD therapeutic
regimen (black arrows). A total of 13 MRSA isolates were included in the study. The name of the MRSA isolate susceptible to LZD is highlighted in gray, and
those resistant to LZD are framed in black. Images of isolates cultured on Colombia blood agar plates are presented for 3 isolates, with S. aureus reference strain
ATCC 29213 shown for comparison.
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determined by PCR amplification. LZD resistance levels were different during persis-
tence, with MICs between 8 and �256 mg/liter. Those MIC variations were correlated
with the number of mutated copies of the rrl gene (Table 1; Table S1 in the supple-
mental material). The LZD resistance was still unchanged 1 year after the last LZD
therapeutic regimen, with MICs of 8 to 32 mg/liter, and was associated with mutations
in 4 rrl copies.

Multilocus sequence type (MLST) and spa type analysis classified 10 isolates as
sequence type 72 (ST72) and spa type t148 (Table S1). No classification could be
obtained for the remaining 3 isolates (LimR6, -R8, and -R11) due to point mutations
leading to changes in alleles for MLST or in repeats for spa type. Consequently, new ST
and spa types were submitted in the corresponding databases (Table S1). Nevertheless,
LimR6, which belongs to the new ST4898, also belongs to spa type t148, and con-
versely, LimR8 and -R11, with new spa types, belong to ST72. Accordingly, these data
suggested that all isolates belong to the same lineage.

Whole-genome comparison. Among the 13 isolates, 7 (LimS, LimR1, LimR3, LimR6,
LimR8, LimR9, and LimR12) were selected according to LZD resistance and isolation
timeline for whole-genome sequencing (WGS). All had a genomic content compatible
with S. aureus species with draft genomes size of 2.74 Mb and a mean GC content of
32.72%. Genomic content comparison of LimS, LimR1, and LimR12 with the FORC_012
MRSA strain (the closest ST72 strain in the database) is represented in Fig. 2a. The
virulomes of all isolates were identical, similar to those of other ST72 strains (FORC_012
and 2148) with the absence of the Panton-Valentine leukocidin (PVL) and TSST-1-
coding genes (Table S2). All Lim isolates contained a small plasmid of 3,332 bp, similar
to pC55 (GenBank accession number AY048756.1), carrying 2 genes responsible for
cadmium resistance (cadB and cadX, coding, respectively, a cadmium resistance protein
and an efflux system) (Fig. 2b). Another plasmid (2,473 pb), identical to p19321-P01
(GenBank accession number CP002148.1) and coding for the ermC gene, was detected
in all isolates except LimR6 (Fig. 2c).

Antimicrobial resistance pattern and resistome. All Lim isolates shared the same
antimicrobial resistance pattern and were resistant to methicillin, kanamycin, tobramy-
cin, ciprofloxacin, rifampin, and fusidic acid. Almost all were also resistant to erythro-
mycin and clindamycin (except LimR6 and LimR7) (Fig. 3a). Comparison of genomic
resistance markers, obtained by WGS, correlated well with the antimicrobial suscepti-
bility profiles and showed similar resistance genes or point mutations (Fig. 3b). Resis-
tance to methicillin was conferred by a mecA gene in a staphylococcal cassette
chromosome mec element (SCCmec) of type IV. The joining region J3 of the SCCmec
element additionally encodes aminoglycosides (aaD gene) and bleomycin resistance on
a pUB110 region. A constitutive macrolide-lincosamide-streptogramin B (MLSB) pheno-
type was present in all but 2 strains (LimR6 and -R7) due to the ermC gene on the
p19321-P01-like plasmid. LimR6 susceptibility to erythromycin and clindamycin corre-
lated with the loss of this plasmid. Resistance to fluoroquinolones, associated with a

TABLE 1 Characterization of LZD resistance mechanisms and correlation with generation times

Isolate
LZD MIC
(mg/liter)a

LZD resistance mechanismb

Minimum generation
time (mean � SD)

23S rRNA gene
(no. of mutated
rrl alleles/total no. of rrl alleles)

L3 protein
(rplC gene)

L4 protein
(rplD gene) cfr gene

LimS 0.75 WT WT WT — 49.9 � 0.7
LimR1 �256 G2576T (5/5) WT WT — 260.7 � 38.5c

LimR3 8 G2576T (3/5) WT WT — 54.9 � 1.9c

LimR6 8 G2576T (4/5) WT WT — 158.0 � 11.4
LimR8 32 G2576T (4/5) WT WT — 158.9 � 16.4
LimR9 24 G2576T (4/5) WT V142A — 65.5 � 4.2c

LimR12 16 G2576T (4/5) WT WT — 67.8 � 4.8c

aLZD resistance is defined by a MIC of �4 mg/liter by EUCAST and CLSI for S. aureus.
bDetermined with WGS data. WT, wild type; —, absent.
cP � 0.05, Student’s test in comparison with the results for the first isolate LimS.
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mean MIC of 2 mg/liter for ciprofloxacin, was linked to 2 different point mutations
(E84G and S80F) previously reported in parC (21, 22). High-level resistance (MIC �

32mg/liter) was observed for rifampin associated with the point mutation S486L in rpoB
(23). Finally, the H457Q mutation in fusA was responsible for low-level resistance to
fusidic acid, as already described (24).

Phylogenetic relatedness and SNP analysis. Phylogenetic relatedness was first
evaluated with whole-genome MLST (wgMLST) analysis on 3,897 loci (core and acces-
sory genes). It confirms a clonal relationship between the isolates (Fig. 4), with pairwise
distances (MLST loci of wgMLST) of 21 to 46 different alleles between LimS, -R1, -R3, -R9,
and -R12. ST72 isolates FORC_012 and 2148 were more distant, with 82 and 156
different loci, respectively, compared to those of LimS. On the other hand, LimR6 and
-R8 were genetically divergent, with 662 and 311 different alleles, respectively, com-
pared with LimR9 (the closest Lim isolate). To further assess phylogenetic links, whole-
genome single-nucleotide polymorphism (wgSNP) analysis was performed and indi-
cated that the isolates had a common ancestor. Comparison with FORC_012 indicated
a total of 91 common strain-specific SNPs among the 7 isolates, indicating clonal
diversification. Comparison with LimS (the first isolate) showed that pairwise distances

FIG 2 Genome features of the chromosome (a) and the 2 plasmids (b and c) identified in Lim isolates. (a) Comparison by BLAST of the coding sequences (CDS)
of the FORC_012 (blue arrows of the 2 outer rings) and LimS (red), LimR1 (green), and LimR12 (purple) genomes (corresponding to the 3rd, 4th, and 5th rings,
respectively, from outside to inside) (CGview server [56]). GC content is represented on the plot inside the ring. The major difference between the FORC_012
genome and those of Lim isolates is the number of rRNA operons (gray dotted-line arrows), with 6 rrl genes for FORC_012 conversely to 5 for Lim isolates,
corresponding to the loss of the 3rd operon. The other difference is the presence of a supplementary prophage in the FORC_012 genome. (b and c) Genes are
labeled on the coding sequences for the 2 small cryptic plasmids of isolate LimS.
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varied between 28 and 58 SNPs over 5 years. Moreover, 21 and 36 SNPs were shared
among the first 6 LZD-resistant isolates (LimR1, -R3, -R6, -R8, -R9, and -R12) and the last
4 isolates (LimR6, -R8, -R9, and -R12), respectively. Pairwise distances were not identical
throughout the 5 years, and the mutation rate was more elevated between LimS and
LimR1, as well as between LimR9 and -R12. LimR6 and -R8 showed more unique SNPs
than the remaining 5 isolates (Fig. 5). A hypermutator phenotype was suspected. A
premature termination of the mutL gene, part of the pathway for DNA proofreading
mismatch repair, was observed in the last 4 isolates (LimR6, -R8, -R9, and -R12). This was

FIG 3 Comparison of phenotypic antimicrobial susceptibility patterns and resistomes inferred from WGS
data through the bioMérieux EpiSeq analysis pipeline. (a) Antimicrobial susceptibilities of the 13 isolates
included in the study. Isolate names and susceptibility results (R, resistance; S, susceptibility) are displayed
in black for sequenced isolates and gray for nonsequenced isolates. (b) Resistome associated with each
antimicrobial drug shown in panel a (except for LZD, which is detailed in Table 1) for the 7 sequenced
isolates. At the top are the antibiotic resistance genes. �, present; �, absent. The enzyme encoded by the
aaD gene is ANT(4=)-Ia. Antibiotic resistance associated with single point mutations in the drug target is
indicated by the observed amino acid change conferring resistance. PEN, penicillin; MET, methicillin; TOB,
tobramycin; KAN, kanamycin; GEN, gentamicin; ERY, erythromycin; CLI, clindamycin; SXT, trimethoprim-
sulfamethoxazole; CIP, ciprofloxacin; TET, tetracycline; FA, fusidic acid; RIF, rifampin; VAN, vancomycin; LZD,
linezolid.

FIG 4 Results of phylogenetic analysis of the 7 MRSA isolates analyzed by wgMLST. A maximum parsimony tree (Bionumerics) with default parameters was used
for the analysis of all loci (wgMLST and MLST alleles). The root position in the tree was assigned to the deepest branch measured by average branch length.
S. aureus strains FORC_012 (ST72, t664), 2148 (ST72), N315 (ST5), and USA300-FPR3757 (ST8) were used for reference genomes (blue). Lim isolate branches are
depicted in purple. Numbers in the body of the table represent the pairwise wgMLST allelic differences between isolates.
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linked to a 4-bp deletion which resulted in the frameshift Tyr501stop. Additionally, in
isolates LimR1 and LimR8, a stop codon appeared in the recQ gene, involved in DNA
replication and repair, following a 1-bp deletion.

Mutations that could be associated with LZD resistance, linked to ribosomal mod-
ification, were also sought in LimR isolates compared to LimS. No potentially compen-
satory mutation was observed in 23S rRNA genes. The mutation Lys716Glu in the
C-terminal domain, for ribosomal fixation of the relA/spoT enzyme, could be a conse-
quence of the ribosomal modification, as well as the mutation Gly57Glu observed in the
SSU ribosomal protein S10p.

Phenotype. As all isolates shared a common ancestor, the phenotypical conse-
quences of LZD resistance acquisition were investigated. The first isolate, LimS, pre-
sented SCV features, with pinpoint-size colonies without beta hemolysis and absence
of pigmentation observed after 24 h of growth on a blood agar plate at 37°C in ambient
atmosphere (Fig. 1). However, no auxotrophy for thymidine, hemin, menadione, or CO2

dependency was observed and, concordantly, no previously described mutations in
corresponding genes were present. LZD-resistant isolates presented even smaller
colonies than LimS, with LimR6 and -R8 being the smallest even after 48 h of growth.
However, they contained various SNPs that could be responsible for this phenotype
and for the high generation time increase. The generation times of all other LZD-
resistant isolates correlate well with the number of rrl copies with the G2576T mutation,
as already described for the G2576T mutation in vitro (Table 1) (25).

DISCUSSION

We studied the dynamics of LZD resistance among related MRSA isolates over a
5-year period in one CF patient who had been colonized for 15 years. LZD was used for
the first time in 2003 when the patient was 18 to treat multidrug-resistant S. aureus

FIG 5 Evolution of the pairwise distances (SNPs) in comparison with the LZD-susceptible Lim isolate, LimS, based on SNP analysis. A minimum spanning
tree (BioNumerics version 7.6) with default parameters (priority rule1, maximum number of N locus variants [N � 1]; weight, 10,000) was used. Numbers
on the tree branches indicate SNP distances between genomes (circles). Genome codes refer to Lim strain numbers, which are chronologically ordered
as shown in Fig. 1.
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infection. Unfortunately, LZD resistance emerged rapidly after three 15-day therapeutic
regimens. LZD resistance emergence in CF patients has been mainly associated with
more LZD therapeutic regimens, longer duration of treatment, and transmission of a
resistant isolate from another patient (16, 18). In the study by Endimiani et al., over 10%
of patients developed resistance after prolonged treatment (18). However, as in our
patient, rapid acquisition of resistance has also been described. It has been suggested
that reduced bioavailability of LZD in CF could be responsible (17, 20). However, in
contrast with other reports, resistance emerged immediately and with a high level
(MIC � 256 mg/liter) in our patient (17). Resistance was conferred by the G2576T
mutation in domain V of the 23S rRNA gene, which is the most frequently described
mutation in Staphylococcus clinical strains (26). The high resistance level was linked to
the mutation of all rrl copies. All isolates were shown to have 5 copies of the ribosomal
operon, which is more frequent in hospital strains, favoring easier antibiotic pressure
adaptation, while community strains often have 6 copies (27). Thus, the presence of
only 5 rrn copies could have facilitated the mutation of all copies. Concordantly, so far,
no isolate with the G2576T mutation in 6 rrl copies has been described. Moreover, very
few clinical S. aureus strains with mutation in all 5 copies have been mentioned (28). We
looked for other events that could have facilitated the mutation of all rrn copies. The
DNA helicase RecQ is involved in DNA replication and repair. It has been hypothesized
that a mutation in this gene could contribute to rapid spread of domain V mutations
after acquisition of the first mutation by increasing the frequency of short sequence
recombination and, thus, potentially facilitating recombination among rrn loci (29).
Isolate LimR1 has a truncated recQ gene, so we hypothesize that recQ deletion could
have facilitated the mutation of all of the rrn copies. The G2576T mutation in 5 copies
is associated with a high fitness cost in our isolate, as already described in vitro (25). This
high increase in generation time could also explain the disappearance of this isolate
over time. The ensuing isolates had 3 or 4 mutated copies, as generally described in
clinical strains. Those isolates could have emerged from another subpopulation, as the
presence of variants of a same S. aureus clone has been described in CF patients (30).
They persisted without LZD treatment for 1 year, as was described for this mutation in
vitro (17, 31, 32).

Further epidemiological comparison showed that all isolates belonged to ST72
and/or spa type t148. All strains carried a type IV SCCmec element commonly found in
community-acquired MRSA (CA MRSA), which correlates with the ST72 lineage, also
known as a CA MRSA (33). Contrary to the high rifampin resistance level observed in our
isolates, the mutation S486L has been previously described as conferring low-level
resistance and is not frequent in clinical strains because of its high fitness cost (23). Two
different mutations in parC were observed, E84G for LimS (first strain) and S80F for all
other isolates. The first has already been described but is infrequent, unlike the second
(22). Finally the loss of the constitutive MLSB phenotype observed in 2 strains, along
with the ermC gene, has already been described during acquisition of LZD resistance
(34).

The duration and dynamics of S. aureus persistence in the airways of individual CF
patients over extended periods have been conclusively attributed to one single clone
in 63% to 80% of patients by different typing methods (pulsed-field gel electrophoresis
[PFGE] and variable-number tandem repeat–multilocus variable-number tandem-
repeat analysis [VNTR-MLVA]) (2, 3). However, variation in the same lineage has been
observed over the years with the MLVA technique (2). WGS- and SNP-based methods
surpass all previous methods used for typing in terms of discriminatory power and were
used to precisely analyze our isolates’ relatedness (35). Moreover, wgMLST has recently
been reported as the method of choice for surveillance of food-borne bacterial patho-
gens by PulseNet International (36). In our study, wgMLST analysis confirmed the
clonality of all the isolates. Strain-specific SNPs indicated clonal diversification of our
isolates compared with other ST72 strains. The pairwise distance between isolates
varied over time between 28 and 58 SNPs (for LimS, -R1, -R3, -R9, and -R12). If changes
were accumulating according to a molecular clock (i.e., at a constant mutation rate of
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3.10�6 per site per year as described for S. aureus), we could expect about 8.4 mutations
per year (37). However, the mutation rates varied over time between 17.5 and 93
SNPs/year, with phylogeny showing LimR2 to be closer to other isolates than to the first
susceptible isolate (LimS). The explanation could be that at sampling times, there were
multiple strains in the population, as already proposed (38). Moreover, the maximum
SNP distance between 2 isolates of the same strain is still debated and will likely
depend on the organism and even the strain under investigation, as well as on the
setting. SNP analysis could be very useful for the follow-up of persistent infection in
patients over several years and the evolution of strains under different pressures
(39–41). However, the sampling of one S. aureus colony per sputum sample for SNP
analysis may be considered a limitation of our study. Indeed during long-term coloni-
zation, different evolutions of a same isolate may be found (42). In a recent study with
intra-CF patient SNP comparison, isolates with 74 SNPs or fewer were considered to be
the same strain (38), which is higher than the 40 SNPs considered in some outbreak
studies but could permit us to hypothesize that our isolates have the same ancestor
(43). In CF patients, the ability of S. aureus colonizing strains to present a high mutation
rate in response to environmental stress arises through mutations in mutator genes and
could lead to high levels of SNP differences (44). Accordingly, mutations in recQ (LimR1
and LimR6) and mutL (LimR6, -R8, -R9, and -R12) could have increased the mutation rate
and, thus, SNP differences. However, this cannot by itself explain the very high numbers
of unique SNPs of LimR6 and LimR8 compared to the sequences of LimR9 and -R12,
which harbored the same truncated mutL gene. Of note, this high mutation rate could
also explain the unexpected appearance of point mutations in 2 MLST alleles of LimR6,
leading to a new gmk allele and, consequently, to a new ST. The same applies to the
new spa type for LimR8 and LimR11. However, this adaptation, with minor changes in
spa type, has already been reported in CF patients (5, 45).

In conclusion, physicians should be aware that LZD resistance can emerge rapidly
and at a high level in CF patients and persist for a long time without linezolid selective
pressure in MRSA colonizing strains belonging to the same lineage. All in all, this also
reflects the strong bacterial adaptability over years to minimize fitness cost and keep
resistance at the required level.

MATERIALS AND METHODS
Bacterial growth conditions and antimicrobial susceptibility testing. Bacterial colonies were

grown on Columbia blood agar plates (bioMérieux, Marcy l’Étoile, France) for 24 to 48 h at 37°C in
ambient atmosphere. Antimicrobial susceptibility testing was performed using the agar disk diffusion
method, and MICs were determined by Etest (bioMérieux) on Mueller-Hinton medium (MH; Bio-Rad,
Hercules, CA) with or without blood at 5% and NAD (MHF; Bio-Rad) (46).

Whole-genome sequencing. DNA libraries were prepared using the Nextera XT DNA library prep-
aration kit (Illumina, San Diego, CA, USA) and Nextera XT index kit (Illumina). WGS was performed with
a MiSeq (Illumina) instrument to generate 200-bp paired-end reads. An average sequencing depth of
204.0 (106.2 to 258.8) was achieved. De novo assembly was performed with a SPAdes de novo assembler
on the BioNumerics (version 7.6) (Applied Maths, Sint-Martens-Latem, Belgium) cloud-based calculation
engine (47). Gene prediction and annotation of the contigs were done using BioNumerics. Molecular
resistance and virulence determinants were obtained from WGS data through the bioMérieux EpiSeq
knowledge base and with VirulenceFinder (https://cge.cbs.dtu.dk/services/VirulenceFinder/) for reference
strains (48).

Phylogenetic relatedness. MLST and spa typing were inferred from WGS through the bioMérieux
EpiSeq data analysis workflow for sequenced isolates. For other isolates and unknown ST or spa type
from WGS data, Sanger sequencing was performed for determination or verification, respectively. New
ST assignment was obtained by submission to the MLST online database (https://pubmlst.org/saureus/),
and for the new spa type, submission to the RIDOM web server (http://spaserver.ridom.de/) was
performed (49, 50).

To assess phylogenetic relatedness, whole-genome MLST (wgMLST) was performed on 3,897 loci
(core and accessory genes) with the BioNumerics version 7.6 plugin (47). Two independent algorithms
were used, an assembly-free k-mer-based method (k � 35) and a second, BLAST-based allele detection
algorithm on de novo assemblies. Only the second algorithm was applied to reference strains. The closest
ST72 strains, chosen among publicly available genomes by alignment of the largest contigs using BLAST,
were FORC_012 and 2148 (GenBank accession no. CP010998.1 and CP016856.1, respectively). Strains with
more distant genomes, MRSA N315 (ST5) and USA300-FPR3757 (ST8) (GenBank accession no.
NC_002745.2 and CP000255.1, respectively), were also used. To further determine variation among
isolates, whole-genome SNP analysis was performed. Two references were used for mapping with a
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Bowtie2 algorithm (BioNumerics). The de novo assembled and annotated genome of the first isolate
(LimS) was used to assess distances between isolates, and the FORC_012 strain was used to assess clonal
diversification. Strict SNP filtering was applied with the following conditions: extraction at positions
shared by all strains, at least one variant within the strain set detected, minimum total coverage of 5
reads, at least 1 supporting read in each direction, and minimum distance between retained SNP
positions of 12 bp. Clustering of the wgMLST and wgSNP results was performed with a maximum
parsimony tree and a minimum spanning tree, respectively, based on pairwise wgMLST allelic differences
between isolates using BioNumerics version 7.6.

Linezolid resistance determinants. Specific LZD resistance determinants (23S rRNA genes rrl, rplC,
rplD, and cfr) were searched by PCR and Sanger sequencing as previously described, confirmed from WGS
data, and compared with reference S. aureus strain N315 using BLAST (51–53). For mutations in 23S rRNA
genes, the mutated copy number was estimated by the coverage, with mutated reads divided by the
total coverage (alternate and reference allele) according to the rRNA gene copy number determined. The
latter was determined with a specific PCR as previously described (27).

Auxotrophy complementary testing and growth studies. Auxotrophy was assessed by disc
diffusion on MH agar using hemin disks (Oxoid, Waltham, MA, USA), 1.5 �g thymidine (Sigma-Aldrich, St.
Louis, MO), or 1.5 �g menadione (Sigma-Aldrich), as already described (54). Growth studies were
performed in triplicate by inoculating brain heart infusion (BHI) broth with an overnight BHI culture on
a microplate. The optical density (OD) at 620 nm was measured every hour for 14 h. The generation times
were calculated from the growth rates in the exponential growth phase as previously described (55).

Accession number(s). The sequencing raw data for each isolate were submitted to GenBank with
BioProject record number PRJNA434495.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC
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