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ABSTRACT Antimalarial treatment currently relies on an artemisinin derivative
and a longer-acting partner drug. With the emergence of resistance to the arte-
misinin derivatives and the potential pressure this exerts on the partner drugs,
the impact of resistance to each drug on efficacy needs to be investigated. An in
silico exploration of dihydroartemisinin-piperaquine and mefloquine-artesunate,
two artemisinin-based combination therapies that are commonly used in South-
east Asia, was performed. The percentage of treatment failures was simulated
from a within-host pharmacokinetic-pharmacodynamic (PKPD) model, assuming that
parasites developed increasing levels of (i) artemisinin derivative resistance or (ii)
concomitant resistance to both the artemisinin derivative and the partner drug. Be-
cause the exact nature of how resistant Plasmodium falciparum parasites respond to
treatment is unknown, we examined the impact on treatment failure rates of arte-
misinin resistance that (i) reduced the maximal killing rate, (ii) increased the concen-
tration of drug required for 50% killing, or (iii) shortened the window of parasite
stages that were susceptible to artemisinin derivatives until the drugs had no effect
on the ring stages. The loss of the ring-stage activity of the artemisinin derivative
caused the greatest increase in the treatment failure rate, and this result held irre-
spective of whether partner drug resistance was assumed to be present or not. To
capture the uncertainty regarding how artemisinin derivative and partner drug resis-
tance affects the assumed concentration-killing effect relationship, a variety of
changes to this relationship should be considered when using within-host PKPD
models to simulate clinical outcomes to guide treatment strategies for resistant in-
fections.
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Approximately 200 million clinical cases of malaria are treated globally each year (1).
The World Health Organization (WHO) currently recommends artemisinin-based

combination therapies (ACTs) as the first-line treatment for Plasmodium falciparum
malaria (2). ACTs consist of an artemisinin derivative, artesunate (ARS), artemether, or
dihydroartemisinin (DHA), coformulated with a partner drug, typically mefloquine (MQ)
(or amodiaquine), lumefantrine, or piperaquine (PQ), respectively. Artemisinin deriva-
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tives are the most effective antimalarial agents available, rapidly clearing most parasites
from the body. However, these drugs are quickly eliminated (within 12 h), necessitating
the coadministration of a long-acting partner drug to kill the remaining parasites.

Artemisinin resistance has emerged and spread within Southeast Asia, first in
western Cambodia and now throughout the Greater Mekong Subregion (3, 4). The
artemisinin resistance phenotype, with a delay in parasite clearance, has been found to
be associated with mutations in the P. falciparum Kelch protein on chromosome 13
(K13 mutation) (5). It has been proposed that these mutations are linked to a loss of
ring-stage antimalarial activity (6–9). As a consequence of artemisinin resistance, a
greater number of parasites survive the early stage of treatment, exerting pressure on
the partner drug and ultimately leading to partner drug resistance and a decline in the
efficacy of ACTs (10, 11).

Faced with increasing resistance to both artemisinin derivatives and the partner
drugs, it is imperative that we explore the possible clinical consequences of resistance.
Pharmacokinetic-pharmacodynamic (PKPD) models characterize the relationship be-
tween the antimalarial drug concentrations in the blood (pharmacokinetic [PK]) and the
changes in the number of parasites (pharmacodynamic [PD]) within an individual host
over time (12). These models provide the ideal framework to investigate how parasi-
tological outcomes change as parasites become more (or completely) resistant to the
artemisinin derivatives and/or the partner drugs.

Artemisinin resistance and partner drug resistance have previously been investi-
gated in a simulation PKPD modeling framework (13, 14). Winter and Hastings (13)
found that increasing the 50% effective concentration (EC50) of the artemisinin deriv-
ative places greater pressure on the partner drug and, if resistance to the partner drug
is already present (defined as an increase in the EC50), greatly affects the clinical efficacy
of ACTs. In the study by Zaloumis et al. (14), similar patterns were found; the proportion
clinically cured for each of the ACTs examined was highly sensitive to the EC50 and
maximal killing rate (kmax) of the partner drug.

Saralamba et al. (8) and Hoshen et al. (15) developed within-host PKPD models for
ARS that include the aging of parasites within red blood cells, allowing the drug to act
on different stages of the erythrocytic parasite life cycle, i.e., rings (parasites aged 1 to
26 h), trophozoites (parasites aged 27 to 38 h), or schizonts (parasites aged 39 to 48 h).
Zaloumis et al. (14) expanded on the model described by Saralamba et al. (8) to
accommodate the PK and PD of both the artemisinin derivative and the partner drug,
to simulate outcomes for individuals receiving ACTs. Hodel et al. (16) compared a
continuous-time model that did not accommodate the different stages of the parasite
life cycle to a discrete-time model that did, and they found that the numbers of
parasites predicted from each model deviated over time, which could have an impact
on the predicted therapeutic outcome for short-half-life drugs with stage-specific killing
(i.e., artemisinin derivatives).

To date, studies have assessed the impact of artemisinin resistance only when it is
modeled as a change in EC50 or kmax and the broad-stage activity on parasites aged 6
to 44 h (17) is maintained; studies have not considered that artemisinin resistance is
likely to change the parasite stages that are susceptible to the drug, i.e., it may reduce
the broad-stage activity or, equivalently, shorten the killing window of artemisinin from
6 to 44 h to 12 to 44 h, as an example. In this study, we used the model described by
Zaloumis et al. (14) to compare the impact (percentages of treatment failures) on the
efficacy of DHA-PQ and ARS-MQ when artemisinin resistance is stage specific. First, we
examined the impact on percentages of treatment failures of artemisinin resistance that
(i) reduced the kmax, (ii) increased the EC50, or (iii) shortened the window of parasite
stages that were susceptible to artemisinin derivatives until they had no effect on the
ring stages. In addition, we explored the impact of artemisinin resistance on treatment
failure changes in the presence of partner drug resistance. Our modeling provides
insight into how simulated clinical outcomes compare between artemisinin derivative
resistance that does not alter the killing window and stage-specific artemisinin deriv-
ative resistance that does alter the killing window.
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RESULTS

We begin by examining how the percentage of treatment failures for the artemisinin
combination therapies DHA-PQ and ARS-MQ varied with (i) artemisinin derivative
resistance (Fig. 1) and (ii) concomitant artemisinin derivative and partner drug resis-
tance (Fig. 2). In Fig. 1 and 2, changes in the parasite sensitivity to the artemisinin
derivative are represented by increasing the EC50 from 1 to 128 ng/ml, decreasing the
fold reduction (natural log scale) in parasites per hour of treatment (kmax) from 0.47 to
0.27 h�1, and shortening the artemisinin derivative killing window from parasites aged
6 to 44 h to parasites aged 26 to 44 h, so that the derivative had no effect on ring-stage
parasites. For the simulations exploring concomitant resistance (Fig. 2), partner drug
resistance is represented by increasing the EC50 of PQ from 25 ng/ml to 60 ng/ml and
that of MQ from 280 ng/ml to 770 ng/ml. The contours (z axis) in Fig. 1 and 2 are the
percentages of 1,000 hypothetical patients who experienced treatment failure during a
63-day follow-up period, i.e., simulated parasitemia either never fell below or reap-
peared above the microscopic limit of detection (50 parasites/�l of blood) during
63 days of follow-up monitoring. The parameters of the within-host PKPD model are
defined in Table 1, and further details regarding the construction of the contour plots
in Fig. 1 and 2 are provided in Materials and Methods.

Artemisinin derivative resistance. For DHA-PQ and ARS-MQ, the percentage of
treatment failures stayed below 3% and 6%, respectively, for all combinations of
artemisinin derivative resistance investigated (i.e., increasing EC50, decreasing kmax, and
shortening the killing window to action against trophozoites only). The percentage of
treatment failures for ARS-MQ increased more rapidly as artemisinin resistance in-

FIG 1 Contour plots showing percentages of treatment failures (contour lines and color scale) for
DHA-PQ (a to c) and ARS-MQ (d to f), resulting from increasing the EC50 of the artemisinin derivative and
shortening its killing window (a and d); increasing the EC50 of the artemisinin derivative and decreasing
its kmax (b and e); or decreasing the kmax of the artemisinin derivative and shortening its killing window
(c and f). DHA profiles were simulated for ARS, since DHA is the primary active metabolite of ARS and ARS
is considered the prodrug.
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creased, compared with DHA-PQ (note the larger spacing between contour lines in Fig.
1a to c than in Fig. 1d to f), most likely due to MQ having a lower parasite reduction
ratio (PRR) than PQ (see Fig. S1 in the supplemental material).

For both ACTs, the highest percentage of treatment failures occurred when short-
ening of the artemisinin derivative killing window was combined with an increase in
the EC50 (see the orange region in Fig. 1a for DHA-PQ and the yellow region in Fig. 1d
for ARS-MQ). The percentages of treatment failures at the highest degree of artemisinin
resistance explored in each contour plot did not vary considerably among the combi-
nations of artemisinin derivative resistance examined (Table 2).

Concomitant resistance. Figure 2 shows how the percentages of treatment failures
varied as the EC50 increased, the kmax decreased, and killing window was shortened for
the artemisinin derivatives DHA and ARS and the EC50 increased for the partner drugs
PQ and MQ. For both ACTs, the contour plots indicate that, in the presence of partner
drug resistance, shortening the killing window for the artemisinin derivative caused a

FIG 2 Contour plots showing percentages of treatment failures (contour lines and color scale) for
DHA-PQ (a to c) and ARS-MQ (d to f), resulting from increasing the EC50 of the partner drug (y axis in all
plots) and shortening the killing window of the artemisinin derivative (a and d); decreasing the kmax of
the artemisinin derivative (b and e); or increasing the EC50 of the artemisinin derivative (c and f). DHA
profiles were simulated for ARS, since DHA is the primary active metabolite of ARS and ARS is considered
the prodrug.

TABLE 1 Parameter definitions for the within-host PKPD model

Parameter Description

IPL Initial parasite load of the patient on admission
�IPL Mean of age distribution of the initial parasite load (hours)
�IPL Standard deviation of age distribution of the initial parasite load (hours)
PMF Parasite multiplication factor (per 48-h cycle)
kmax Maximal killing rate of the drug (hour�1)
� Slope of the in vivo concentration-effect curve
EC50 In vivo concentration at which the killing rate is 50% of the maximum (nanograms per milliliter)
Killing window Ages in the parasite life cycle within the red blood cell that the drug can kill (hours)
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more rapid increase in the percentage of treatment failures than did decreasing the
kmax or increasing the EC50 of the artemisinin derivative (note the smaller spacing
between contour lines in Fig. 2a versus Fig. 2b and c for DHA-PQ and Fig. 2d versus Fig.
2e and f for ARS-MQ). The percentage of treatment failures increased faster with
increasing EC50 than with decreasing kmax in the presence of partner drug resistance.
The contours decline rapidly with lower artemisinin derivative EC50 values, levelling off
when the EC50 reaches 20 to 30 ng/ml (Fig. 2c and f). In contrast, the decline with the
artemisinin derivative kmax is relatively constant over the range of kmax values examined
(Fig. 2b and e).

The percentages of treatment failures at the highest degree of artemisinin derivative
and partner drug resistance explored in each contour plot varied by approximately 5%
(Table 2). ARS-MQ maintained a lower percentage of treatment failures than did
DHA-PQ over the ranges and combinations of artemisinin derivative and partner drug
resistance explored for each ACT (Table 2). The PK profile of PQ may make the DHA-PQ
regimen more susceptible to artemisinin derivative resistance as it becomes less
effective, i.e., the EC50 increases (Fig. S2).

Figures S3 and S4 are duplicates of Fig. 1 except with the EC50 values for PQ and MQ
increased by 50% or 100%. Figures S3 and S4 indicate that, if partner drug resistance
was already present, then the percentage of treatment failures increased even when
there was no increase or a small increase in artemisinin derivative resistance (aqua
regions in Fig. S3a to c and S4a to c disappear in Fig. S3d to i and Fig. S4d to i, where
the EC50 of the partner drug was increased by 50% or 100%). The percentage of
treatment failures also increased more rapidly as the partner drug efficacy decreased
(the spacing between contour lines becomes increasingly smaller going from Fig. S3a
to c and Fig. S4a to c to Fig. S3d to f and Fig. S4d to f and then to Fig. S3g to i and Fig.
S4g to i).

DISCUSSION

Our simulation study suggests that, in regions in which partner drug resistance has
not yet emerged, the percentage of treatment failures is largely insensitive to artemis-
inin resistance. Furthermore, our study suggests that the form in which artemisinin
resistance is modeled (reduction in ring-stage activity, decrease in maximal killing
effect, or increase in the concentration required to kill 50% of parasites) is of minor
importance in the absence of partner drug resistance. However, if there is evidence of
concomitant resistance to both drugs in an ACT emerging in a region, then the
hypothesized forms of resistance are important. The percentage of treatment failures
increases rapidly, with the most rapid increase being when partner drug resistance
occurs with ring-stage artemisinin resistance. These findings concur with DHA-PQ
failure rates across Cambodia in 2012 to 2013. DHA-PQ failure rates of 11%, 34%, and
77% in Ratanakiri, Preah Vihear, and Pursat, respectively, correspond to increasing
prevalence of the molecular markers for artemisinin resistance (K13 genotype, 2%, 16%,

TABLE 2 Highest percentage of treatment failures for each combination of artemisinin derivative resistance and concomitant resistance

Resistance mechanisms

% of treatment failuresa

DHA-PQ ARS-MQ

Artemisinin derivative resistance
Artemisinin derivative EC50 (DHA EC50 of �80 ng/ml and ARS EC50 of �110 ng/ml) and shortened killing window (26–44 h) 3 6
Artemisinin derivative EC50 (DHA EC50 of �40 ng/ml and ARS EC50 of �80 ng/ml) and kmax (�0.3 h�1) 2.5 5
Artemisinin derivative kmax (DHA kmax of �0.45 h�1 and ARS kmax of �0.30 h�1) and shortened killing window (26–44 h) 2.5 5.5

Concomitant resistance
Partner drug EC50 (PQ EC50 of �57 ng/ml and MQ EC50 of �750 ng/ml) and artemisinin derivative shortened killing window

(26–44 h)
45 40

Partner drug EC50 (PQ EC50 of �57 ng/ml and MQ EC50 of �750 ng/ml) and artemisinin derivative kmax

(DHA kmax of �0.30 and ARS kmax of �0.30 h�1)
35 30

Partner drug EC50 (PQ EC50 of �57 ng/ml and MQ EC50 of �750 ng/ml) and artemisinin derivative EC50

(DHA EC50 of �70 ng/ml and ARS EC50 of �60 ng/ml)
40 35

aARS, artesunate; DHA, dihydroartemisinin; MQ, mefloquine; PQ, piperaquine.
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and 46%, respectively) and PQ resistance (exo-E415G, 0%, 12%, and 59%; plasmepsin,
0%, 3%, and 64%, respectively) (18). PCR-adjusted ARS-MQ cure rates on the Thai-
Myanmar border declined from 100% in 2003 to 81.1% in 2013 as the proportion of P.
falciparum isolates with multiple pfmdr1 copies doubled from 32.4% to 64.7% and those
with K13 mutations increased from 6.7% to 83.4% (19).

A strength of this simulation study is that between-subject variability was included,
so that the hypothetical patients varied in terms of drug absorption and exposure, as
observed in antimalarial PK studies (20), and in terms of parasite load and proportions
of parasites that were rings, trophozoites, and schizonts at the time of treatment, as
observed in clinical studies (21). In detail, between-subject variability was added to the
following parameters: initial parasite load and parasite age distribution, to produce
variability in the severity and synchronicity of the infection prior to treatment; and PK
parameters. Furthermore, the estimates of between-subject variability for the initial
parasite load and the PK parameters were based on published values from clinical
efficacy and PK studies (22–24). Additional strengths are that the parameter distribu-
tions used to simulate the parasitemia profiles of the hypothetical patients were
derived from in vitro data and clinical studies and a discrete-time model was used to
simulate treatment outcomes for combination therapies comprising the short-half-life
and stage-specific artemisinin derivatives (8, 14, 16).

The within-host PKPD model does not account for host immunity and any interac-
tion between the PK and PD of the artemisinin derivative and the partner drug. In the
study by Ataide et al. (25), immunity was found to reduce the parasite clearance half-life
by only 30 min, suggesting that immunity would have little impact on our results. For
the ACTs investigated, there is evidence in the literature that the PK and PD interactions
between DHA and the partner drugs PQ and MQ are minimal (26), thereby justifying our
model assumption of no interactions between the drugs. The steeper increase in
percentage of treatment failures at low EC50 values for the artemisinin derivatives was
sensitive to the shape of the DHA PK curve at low concentrations. Because not much
is known about the shape of the curve near the quantification limit of DHA (around
2 ng/ml), the prediction of the percentage of treatment failures at low artemisinin
derivative EC50 values may not be reliable.

Within the past 5 years, significant advances in the understanding of the biochem-
ical pathways disrupted by K13 mutations and how artemisinin resistance alters the
parasite life cycle have been made (10, 11, 27, 28). However, only a limited number of
possible parasite resistance responses, e.g., increasing either the artemisinin derivative
or partner drug EC50, decreasing the maximal killing effect of the artemisinin derivative,
and shortening the killing window of the artemisinin derivative, were explored in this
study. Future work aims to investigate more complex potential resistance mechanisms
using a recently developed PKPD model that accounts for drug accumulation effects
(29). This model has been validated only with in vitro experimental data designed to
elucidate the artemisinin drug action (6, 7), and more information is required to inform
some of the parameters for the in vivo setting.

Coexistent resistance of the artemisinin derivatives and the partner drugs PQ and
MQ predicted rapid increases in the percentage of treatment failures, agreeing with
observed increases in DHA-PQ failure rates in Ratanakiri, Preah Vihear, and Pursat,
Cambodia, and declines in ARS-MQ cure rates at the Thai-Myanmar border. There is in
vitro evidence that changes in the ring-stage activity are associated with artemisinin
resistance (30); however, we found only marginal differences in the increase in per-
centage of treatment failures among the three mechanisms of artemisinin resistance
investigated (with minimally worse outcomes for complete artemisinin resistance in the
ring stage of the life cycle). The precise mechanism of in vivo artemisinin resistance
remains unknown, although a population transcriptomic study suggested one possible
molecular pathway (31, 32). To date, model-based (in silico) studies have explored only
a limited number of possible mechanisms of artemisinin resistance, i.e., changes in the
assumed concentration-killing effect relationship. Accordingly, we recommend consid-
ering a range of artemisinin resistance mechanisms (possibly focusing more on stage-
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specific responses) when using within-host PKPD models to inform dosing strategies to
expand the life span of the current suite of ACTs.

MATERIALS AND METHODS
We used a published within-host PKPD model for P. falciparum malaria (14) to generate the

parasitological outcomes, following treatment with DHA-PQ or ARS-MQ, displayed in the contour plots
of Fig. 1 and 2. The following describes the x and y axis selection (referred to as grid selection) for the
contour plots in Fig. 1 and 2 and details how the contours (z axis) were generated for each (x,y)
coordinate. Three parameters of the within-host PKPD model (EC50, kmax, and killing window) were varied
to represent increasing levels of (i) artemisinin resistance and (ii) concomitant artemisinin and partner
drug resistance. All three mechanisms were explored to see how a stage-specific artemisinin resistance
mechanism (i.e., shortening the killing window) would compare to how resistance had been modeled
previously in silico (i.e., as a broad-stage effect by varying kmax and EC50) (13, 14) and to investigate how
the impacts on therapeutic efficacy may vary in vivo.

Grid (x and y axis) selection. The x and y axis values used to produce Fig. 1 and 2 are given in Table
3. The lower limit for the EC50 values specified in Table 3 for DHA and PQ (5 ng/ml and 25 ng/ml,
respectively) are based on 50% inhibitory concentrations (IC50) from ex vivo experiments with fresh P.
falciparum isolates collected from Oddar Meancheay Province, Cambodia, in 2013 (33). The IC50 values
reported were 2.0 ng/ml for DHA and 21.0 ng/ml for PQ, and those values were multiplied by a free drug
scalar, derived from plasma protein binding data reported by Zaloumis et al. (14) (scalar for DHA, 2.7;
scalar for PQ, 1.22), to derive the lower limits of 5 ng/ml and 25 ng/ml reported in Table 3 for DHA and
PQ, respectively. The upper EC50 for DHA (128 ng/ml) is approximately 12% of the maximal concentration
(Cmax) (Cmax � 1,064 ng/ml) of the population average PK profile simulated based on the PK parameter
estimates in Table 4 for DHA/ARS. Roughly doubling the EC50 between 5 and 128 ng/ml produces the
EC50 values in Table 3 for DHA. For PQ, the upper EC50 of 60 ng/ml resulted in a median percentage of
clinically cured cases of approximately 70 to 80% in the report by Zaloumis et al. (14), and 16 equally
spaced values between 25 ng/ml and 60 ng/ml were selected. The kmax values for DHA were selected
based on the PRR for DHA of 105.28 (3). The upper limit of 0.47 h�1 is equivalent to a 50-fold increase in
the PRR (105.28 � 50), and the lower limit of 0.27 h�1 is equivalent to a 50-fold decrease in the PRR
(105.28/50) (see Table 5 for the equation describing the relationship between kmax and PRR). Eleven
equally spaced values between 0.47 and 0.27 h�1 were selected. The killing window for DHA was varied
from 6 to 44 h to 26 to 44 h of the intraerythrocytic parasite life cycle by increasing the lower limit of
the window in 2-h increments, which resulted in 11 killing windows to be evaluated. Because DHA is the
active metabolite of ARS, the grid values described above for DHA EC50, DHA kmax, and shortening of the
DHA killing window were used for ARS. The lower limit for the PQ EC50 is approximately 13% of the Cmax

(Cmax � 188 ng/ml) from the population average PK profile simulated based on the PK parameter
estimates in Table 4. Accordingly, the lower limit for the MQ EC50 of 280 ng/ml is approximately 13% of
the Cmax (Cmax � 2174 ng/ml) from the population average PK profile. Sixteen equally spaced values
between 280 ng/ml and 770 ng/ml were selected.

TABLE 3 Grid selection for each of the contour plots in Fig. 1 and 2

Parameter (fixed/varied) Value(s) Figure(s)

DHA/ARS grid points
EC50 (ng/ml)

Varied 5, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, or 128 1a, b, d, and e, y axis; 2c and f, x axis
Fixed 5 1c and f; 2a, b, d, and e

kmax (h�1)
Varied 0.47, 0.45, 0.43, 0.41, 0.39, 0.37, 0.35, 0.33, 0.31, 0.29, or 0.27 1b and e, x axis; 1c and f, y axis; 2b and

e, x axis
Fixed 0.47 1a and d; 2a, c, d, and f

Killing window (h)
Varied From 6–44 to 26–44, increasing the lower limit of the window by 2 1a, c, d, and f, x axis; 2a and d, x axis
Fixed 6–44 1b and e; 2b, c, e, and f

PQ grid points
EC50 (ng/ml)

Varied 25, 27, 30, 32, 34, 37, 39, 41, 44, 46, 48, 51, 53, 55, 58, or 60 2a to c, y axis
Fixed 25 1a to c

Killing window (h), fixed 12–36 1a to c; 2a to c

MQ grid points
EC50 (ng/ml)

Varied 280, 313, 345, 378, 411, 443, 476, 509, 541, 574, 607, 639, 672,
705, 737, or 770

2d to f, y axis

Fixed 280 1d to f
Killing window (h), fixed 18–40 1d to f; 2d to f
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Contour (z axis) calculation. The contours (z axis) in Fig. 1 and 2 were derived from the proportions
of hypothetical patients who experienced treatment failure, as simulated with the within-host PKPD
model (14). For each x and y axis combination in Table 3 (e.g., for Fig. 1a, the first grid point is DHA EC50

of 5 ng/ml [y axis] and DHA killing window of 6 to 44 h [x axis]), the proportion of hypothetical patients
who experienced treatment failure was calculated as follows.

In step 1, simulate circulating parasitemia profiles for 1,000 hypothetical patients and for 63 days of
follow-up monitoring by (i) setting the parameters labeled “fixed” in Table 3 to the values specified for
all 1,000 hypothetical patients and each of the 176 (16 � 11) combinations of DHA EC50 and DHA killing
window values to be evaluated, (ii) generating 1,000 PK and PD parameter datasets by using Latin
hypercube sampling (LHS) (34) of the parameter distributions specified in Table 5 and setting the EC50

and killing window values to the current combination or grid point (e.g., set the DHA EC50 to 5 ng/ml and
the killing window to 6 to 44 h for Fig. 1a) for all 1,000 PK and PD parameter datasets, and (iii) simulating
1,000 PK profiles based on the LHS-sampled PK parameters and ACT dosing regimens in Table 6 (see Fig.
S2 in the supplemental material for a plot of the simulated PK profiles) and simulating 1,000 circulating
parasitemia profiles for 63 days of follow-up monitoring from the within-host PKPD model based on the
LHS-sampled PD parameters and simulated PK profiles.

In step 2, count the number of hypothetical patients who experienced treatment failure within
63 days of follow-up monitoring. Hypothetical patients are assumed to have experienced treatment
failure if their circulating parasitemia profiles do not fall below or reappear above the microscopic limit
of detection (50 parasites/�l of blood) during the 63 days of follow-up monitoring. In step 3, calculate the
proportion of treatment failures by dividing the number obtained in step 2 by the number of hypo-
thetical patients (n � 1,000).

LHS of the PK and PD parameters listed in Table 5 is performed only for the first grid point or (x,y)
coordinate; these 1,000 PK and PD parameter data sets are then used for all remaining combinations (or
grid points). All simulations and plotting were performed in R version 3.3.2. The proportion of hypo-
thetical patients who experienced treatment failure for each combination or grid point was simulated
using user-written R code. Contour plots of the simulated output were produced using the levelplot
function from the lattice package, with panel.2dsmoother set to the loess method.

TABLE 5 Distributions selected for LHS of the PK parameters in Table 4 and the PD parameters in Table 1

Parameter(s) Distributiona Additional details

PK parametersb lnN(�IPL,�IPL) �IPL is the natural log-transformed PK parameter estimate in Table 4 and �IPL is the corresponding
percent BSV estimate divided by 100

IPL lnN(10.03,1.13) Multiplied by the average blood volume of an adult (�5 � 106 �l)
�IPL DU(4,16)
�IPL DU(2,8)
PMF TRI(8,12,10)
DHA/ARS � lnN(1.31,0.65)
PQ � lnN(1.35,0.66)
MQ � lnN(0.97,0.54)
PQ kmax TRI(0.33,0.65,0.49) PRR � 104.6, KW � 25 h
MQ kmax TRI(0.11,0.46,0.28) PRR � 102.25, KW � 23 h
aDrug-independent parameters; 10.03 � ln(22,746), where 22,746 parasites per �l of blood is the initial parasite load. DU, discrete-uniform [DU(a,b), a � b; a and b are
positive integers]; TRI, triangular [TRI(a,b,c), a � c � b; a, b, and c are real numbers]; lnN, log-normal [lnN(�IPL,�IPL); �IPL and �IPL are positive real numbers]. The mode
of the triangular distribution for kmax (c) was calculated from the following expression: kmax � [(1/KW) � ln(PRR)] � [(1/KW) � ln(PMF)], where PRR is the parasite
reduction ratio for the drug in the corresponding row, KW is the length of the killing window (in hours) for each drug in the corresponding row, and PMF in this
expression equals 10 parasites/48 h. The lower and upper limits of the triangular distribution for kmax (a and b) are calculated by evaluating the latter expression for
kmax with PRR values decreased or increased, respectively, by 50-fold (KW remains unchanged).

bAll parameters listed in Table 4. ARS, artesunate; DHA, dihydroartemisinin; MQ, mefloquine; PQ, piperaquine.

TABLE 4 Population PK parameter values for each drug

PK parametera ARS/DHAb MQ PQ

ka (h�1) (BSV [%]) 0.82 (26.5) 0.29 (26) 0.717 (168)
CL/F (liters/kg/h) (BSV [%]) 1.01 (22.4) 0.03 (33) 1.38 (42)
V/F (liters/kg) (BSV [%]) 0.83 (50) 10.2 (51)
Vc/F (liters/kg) (BSV [%]) 180.42 (101)
Q/F (liters/kg/h) (BSV [%]) 2.73 (85)
Vp/F (liters/kg) (BSV [%]) 500 (50)
aThese parameter values were used in the LHS of the distribution for the PK parameters given in Table 5.
Between-subject variability (BSV) is presented as the standard deviation multiplied by 100 (log-normal error
model). Parameter values were taken from the literature for ARS/DHA (22), MQ (23), and PQ (24). ka,
absorption rate constant; CL/F, clearance; V/F, volume of distribution; Vc/F, volume of the central
compartment; Q/F, intercompartmental clearance; Vp/F, volume of the peripheral compartment; F,
bioavailability.

bARS, artesunate; DHA, dihydroartemisinin; MQ, mefloquine; PQ, piperaquine. DHA profiles were simulated
for ARS, since DHA is the primary active metabolite of ARS and ARS is considered the prodrug.
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