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Abstract. Accurate tracking and localization of ultrasound (US) images are used in various computer-assisted
interventions. US calibration is a preoperative procedure to recover the transformation bridging the tracking sen-
sor and the US image coordinate systems. Although many calibration phantom designs have been proposed,
a limitation that hinders the resulted calibration accuracy is US elevational beam thickness. Previous studies
have proposed an active-echo (AE)-based calibration concept to overcome this limitation by utilizing dynamic
active US feedback from a single PZT element-based phantom, which assists in placing the phantom within the
US elevational plane. However, the process of searching elevational midplane is time-consuming and requires
dedicated hardware to enable “AE” functionality. Extending this active phantom, we present a US calibration
concept and associated mathematical framework enabling fast and accurate US calibration using multiple
“active” points. The proposed US calibration can simplify the calibration procedure by minimizing the number
of times midplane search is performed and shortening calibration time. This concept is demonstrated with a
configuration mechanically tracking a US probe using a robot arm. We validated the concept through simulation
and experiment, and achieved submillimeter calibration accuracy. This result indicates that the multiple active-
point phantom has potential to provide superior calibration performance for applications requiring high tracking
accuracy. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.4.045001]
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1 Introduction
Ultrasound (US) imaging has been widely used as a diagnostic
imaging modality as well as a guidance tool for surgical inter-
ventions. Tracking US images adds substantial value to various
applications, and it has been an active area of research to use this
tracking information to assist image-guided interventions,1,2 to
construct three-dimensional (3-D) US volumes,3 and to improve
imaging field-of-view and image quality.4,5 To accurately track
the US image, many tracking systems such as mechanical,
optical, and electromagnetic trackers have been proposed and
can be rigidly attached to the US probe. For most of them,
a preoperative task, known as US calibration, is required to
compute the unknown transformation bridging the tracker frame
and the US image frame.6 Once calibration is complete, the
computed transformation and associated tracking information
can be used to locate the US image position and link a set of
US images together. The performance of US tracking-based
applications heavily depends on the accuracy of both the
tracking system and US calibration.

US calibrations are generally performed using special
calibration phantoms.6,7 Many US calibration phantom designs
have been proposed, and these phantoms can be placed
abstractly into two categories: point-based phantoms and struc-
tural phantoms. Point-based phantoms consist of a single point
or multiple points in a three-dimensional (3-D) space and can be
formed using a stylus8 or a cross wire.9,10 For a one-dimensional
(1-D) array US probe, points seen in a US image slice are

assumed to be in the US image plane, and its elevational com-
ponent in a 3-D space is set to zero. Structures such as line- or
wall-based phantoms, on the other hand, have their own pre-
determined structures, and the segmented feature(s) from a
US image are registered back to the model structure to recover
the US image pose with respect to the phantom.11 Point-based
phantoms in general can provide superior accuracy compared
with structural phantoms by avoiding the intermediate registra-
tion process but take a longer time for data collection because
of the requirement to align the US midplane to the point.
Additionally, calibration using point-based phantoms is difficult
to automate due to the midplane alignment process. Structural
phantoms are more flexible and easier to automate, because
there is a larger set of valid poses for image acquisition.

Another strong distinction in these US calibration methods
can be seen from a mathematical perspective. The methods
available to compute the unknown transformation are restricted
by the information accessible from the calibration phantom;
for example, point-based phantoms are only capable of provid-
ing positional information of a point target, whereas structural
phantoms can provide the full pose, both orientation and
position, of the phantom. Information about the full pose from
structural phantoms can be used to form an equation that has
a closed-form solution. Therefore, by not requiring optimiza-
tion, a computationally efficient solution is available and we
will further elaborate in Sec. 2.1.

The goal of this work is to present a calibration concept
and an associated algorithm to enable a fast and accurate US
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calibration. A point-based phantom is used as the base design to
take advantage of its superiority in the elevational dimension
position detection accuracy as compared with structural phan-
toms. Even with this improvement, the main source of error
in US calibration using point-based phantoms remains its locali-
zation inaccuracy in the elevation dimension due to the US beam
thickness. To improve conventional point-based phantoms such
as the cross-wire phantom, Cheng et al. and Guo et al.12–14 have
proposed an active-echo (AE) phantom approach to precisely
find the midplane of the US beam. The AE phantom is made
of a single piezoelectric (PZT) element, which receives a US
signal from the probe, then responds by transmitting a US.
The strength of the corresponding response echo received by
the probe is correlated with the distance and angle of the US
imaging plane to the PZT element. The maximum received
response echo indicates optimal alignment of the US probe
with respect to the PZT element with �300 micron accuracy.15

However, repeating this midplane search for all imaging poses is
time-consuming and this functionality requires a specialized
on-board signal processing system to drive “receive and
transmit” operations. We propose a calibration concept using
multiple active-point (MAP) sources and active transmission
of the US signal from these point sources. This can drastically
speed up the calibration by minimizing the number of times that
midplane detection must be performed. Compared with the AE
phantom, the active phantom only requires a synchronized trans-
mission board so the hardware is simplified. Also, multiple point
acquisitions allow computation of full image poses enabling a
closed-form solution that is not possible in single point-based
phantoms. The proposed calibration concept can be applied
to any US probe including dual-array transrectal US (TRUS)
probes as well as classical monoarray probes. As proof of
concept, we utilized two arrays on a TRUS probe to demonstrate
the calibration performance of both monoarray and dual-array
transducers.

This paper is structured as follows: we first introduce
the theory behind US calibration and the proposed calibration
method and algorithm. Then, we present the simulation and
experimental setup to analyze the performance of the method.

After that, the numerical simulation and experimental results are
presented. Finally, we discuss this method’s limitations and its
potential applications.

2 Theory

2.1 Solving Ultrasound Calibration Problem

US calibration is the process of solving for the rigid-body
transformation, X, spatially relating the US image coordinate
system to the tracking sensor coordinate system. Various
calibration phantom designs have been proposed with their
corresponding formulations, for which BXp and AX ¼ XB
are the two most common ones, where A, X, B ∈ SEð3Þ,
p ∈ R3 and SE(3) denotes the special Euclidean group in
3-D composed of rigid-body homogenous transformations.
The details of each formulation are described in the following
paragraphs.

The BXp formulation is generally used for point-based phan-
toms [Fig. 1(a) shows an example of the coordinate systems
associated with a point-based phantom]. A single point or multi-
ple point-like fiducials are imaged with a tracking sensor or
marker-attached US probe multiple times from distinct poses,
varying in both orientations and positions. B is the sensor
reading and denotes the homogenous transformation from the
tracking base to the tracking sensor or marker. p is the location
of the point fiducial in the US image coordinates, segmented
from the US image. Though the full 3-D position can be
recovered when using dual-array probes, it sets the elevation
dimension to be zero when using monoarray probes, making
the assumption that the point is perfectly aligned at the midplane
or the center of the US beam. For all combinations of i and j

EQ-TARGET;temp:intralink-;e001;326;408BiX−1pi ¼ BjX−1pj; (1)

must be satisfied, assuming that the point phantom’s location
with respect to the tracking base frame is fixed and constant.

AX ¼ XB is another formulation for solving the sensor
calibration problem [Fig. 1(b) shows an example of the AX ¼
XB framework]. For all combinations of i and j,

Fig. 1 Illustration of coordinate systems on ultrasound calibration. (a) A single point target phantom, in
which BXp formulation is used. (b) The proposed MAP phantom, in which AX ¼ XB formulation is used.
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EQ-TARGET;temp:intralink-;e002;63;752AijX ¼ XBij (2)

stands, where Aij ¼ A−1
i Aj represents the relative rigid body

transformation between two image poses, Ai and Aj.
Similarly, Bij ¼ B−1

i Bj is the relative transformation between
two tracking poses, Bi and Bj. Subscript As such as Ai and
Aj are the transformations from the US image frame to the phan-
tom base frame for poses i and j, and subscript Bs are the
tracking transformations as introduced in the BXp formulation.
In contrast to the BXp formulation, the formulation AX ¼ XB
has a closed-form solution.16 Thus, it is not possible to avoid
solving an optimization problem in the BXp formulation,
increasing the computation time.16–20 In addition, probabilistic
approaches that do not require a priori knowledge of the tem-
poral correspondence between sensor measurements have also
been proposed.21–23

The BXp formulation can typically compute a better X than
the AX ¼ XB formulation due to its lower elevational dimension
error when collecting data points. Acquiring the transformation
A in AX ¼ XB requires a phantom with structure(s) such as a
line(s) or wall(s). While it is possible to avoid the time-consum-
ing midplane search process required in point-based phantoms,
these phantoms suffer from inaccurate feature segmentation due
to the US elevational beam thickness and the insonification
angle. Therefore, a calibration concept inheriting advantages
from both types of phantoms is in need.

2.2 Ultrasound Calibration Using a Multiple
Active-Point Phantom

An active-point target is defined as a point fiducial that can
actively interact with the US receiver by transmitting acoustic
waves. In general, calibration phantoms are passive, and their
appearance in a US image is based on the acoustic wave trans-
mitted and subsequently received by the US probe. Guo at al.12

proposed a realization of an active-point target by placing a pie-
zoelectric element on a needle tip.14 The PZT element transmits
acoustic signals with a large capture range and can be received
by the US probe even if the target is positioned out of plane.
Moreover, the active point provides background-free signals
as the active point acts as the lone acoustic source, and mini-
mizes the imaging artifacts such as reverberation. As the US
line trigger is used to synchronize the acoustic signal transmis-
sion by the active point with the US probe data collection, the
geometrical distance from the probe to the active point can be
estimated based on the time-of-flight of the transmitted wave.
This active-point phantom has been used to improve the mid-
plane search process. In this work, we propose to distribute
multiple active points in a 3-D space. Traditionally, only the
BXp formulation is feasible with point-based phantoms because
rotational information of the point is undefined. A phantom with
multiple active points can use these active points to define a
coordinate frame, thus gaining the ability to recover both rota-
tion and translation components, and enabling the AX ¼ XB
formulation.

The concept of having multiple active points in a phantom is
shown in Fig. 1(b). When calibrating a US probe with a two-
dimensional (2-D) array such as a matrix-array probe or a
dual-array transrectal probe, the 3-D locations of the point
targets on the phantom as seen in the US images are segmented,
and the transformation A is recovered through a point cloud
registration between the phantom model frame and the US
image frame, as in Ref. 24:

EQ-TARGET;temp:intralink-;e003;326;752A ¼ arg min
A∈SE3

X
i

kApUS;i − pMAP;ik2; (3)

where pUS is the point position defined in the US image frame,
and pMAP is the position defined in the phantom model frame.

Considering the case of monoarray probes, the signals from
active-point targets appear in the channel data as 2-D informa-
tion. When the x-, y-, and z-axes are defined as the lateral, axial,
and elevational dimensions from the US image coordinate
frame, respectively, the position of the active-point target can
be determined as

EQ-TARGET;temp:intralink-;e004;326;631pUS ¼
" x
y
z

#
¼
� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 − e2
p

e

�
; (4)

where e is the unknown elevational component (Fig. 2). Here,D
is the distance from the target to the receiver based on the ear-
liest time of arrival signal in the received channel data. When
pUS is used to solve for A and the unknown e for each pose,
Eq. (3) returns A�, an A with a one degree-of-freedom (DOF)
unknown rotation, which is defined as

EQ-TARGET;temp:intralink-;e005;326;510A ¼ A� · ΔA; (5)

EQ-TARGET;temp:intralink-;e006;326;478ΔA ¼
�
ΔR 0

0 1

�
; axis-angleðΔRÞ ¼

" r
0

0

#
; (6)

where A is the ground truth, and the recovered A� contains an
unknown one DOF rotation with magnitude r in the lateral axis
of the US image coordinate system. We define the A� as the
partial A. The true pose A cannot be uniquely determined with-
out knowing e, because e is variable for every pose. Based on
Eq. (2), the AX ¼ XB formulation is

EQ-TARGET;temp:intralink-;e007;326;362ðA−1
i AjÞX ¼ XBij; (7)

and combining this with Eq. (5) gives

Fig. 2 US image coordinate and associated position of the active-
point target.
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EQ-TARGET;temp:intralink-;e008;63;752ðΔA−1
i A�−1

i A�
jΔAjÞX ¼ XBij: (8)

Equation (8) has eight unknown parameters: six unknowns in
X and one each in ΔAi and ΔAj. Thereby, the solution of
Eq. (8) is X� with error, which is defined as

EQ-TARGET;temp:intralink-;e009;63;695X ¼ ΔXX�; (9)

where ΔX is a one DOF rotation [proof is shown in
Appendix A (Sec. 7)].

Although X cannot be uniquely solved when A has an
unknown one DOF rotation, it is possible to recover these
unknown rotations within all As using the Euclidean-Group
invariants if at least one A is fully known. From screw theory,
the homogenous transformation can be written as

EQ-TARGET;temp:intralink-;e010;63;587H ¼
�
eθN ðI3 − eθNÞpþ dn
0T 1

�
; (10)

where eθN is the matrix exponential on θN, In is an n × n
identity matrix, and θ is the angle of rotation. In addition,

EQ-TARGET;temp:intralink-;sec2.2;63;520N ¼
 

0 −n3 n2
n3 0 −n1
−n2 n1 0

!
;

where n ¼ ½n1; n2; n3�T ∈ R3 denotes the unit vector represent-
ing the axis of rotation, and p · n ¼ 0. fθ; d; n; pg are known as
the Plücker coordinates of the screw motion. Two invariants
θ and d are defined as follows:

EQ-TARGET;temp:intralink-;e011;63;421θ ¼ arccos

�
trðRÞ − 1

2

�
; (11)

EQ-TARGET;temp:intralink-;e012;63;378d ¼ t · n; (12)

where R and t are the rotation and translation vectors of the
matrix. When the relationship AX ¼ XB is kept, two invariants
in matrix A and B are related as

EQ-TARGET;temp:intralink-;e013;63;319θA ¼ θB; and dA ¼ dB: (13)

As A and B here are relative poses resulting from a combi-
nation of two poses, if A in one pose is fully known, then the
other pose A in the pair can also be recovered using Eq. (13).

In the MAP phantom, the all As can be fully recovered
as long as at least one of the point targets is within the
US plane for one of the imaging poses. By taking this one
known A, the remaining unknown As do not require an in-
plane point and can be recovered using the invariants θ and
d described in Eqs. (11) and (12) by solving Eq. (14):

EQ-TARGET;temp:intralink-;e014;63;189

min
ΔA

XM
i¼1

½kfθðΔA−1
i A�i;iþ1ΔAiþ1Þ − fθðBi;iþ1Þk2

þ kfdðΔA−1
i A�i;iþ1ΔAiþ1Þ − fdðBi;iþ1Þk2�;

s:t: ΔAk ¼ Φk; (14)

where Φk is the known rotation components when aligning
a point to the US midplane for the poses specific pose k.
Two functions fθðHÞ and fdðHÞ are defined to calculate

θ and d of a homogeneous transformation. Once all As are
known, X can be recovered by solving the AX ¼ XB problem.

3 Materials and Methods

3.1 Calibration Workflow

The algorithmic steps of US calibration using the MAP phantom
are shown in Fig. 3. In its basic configuration, the phantom con-
sists of three or more points, and the relative 3-D spatial location
of these points is known prior to usage. These active points are
placed sparsely as shown in Fig. 1(b), and the signals transmit-
ted from all points are received by the US transducer using the
channel data acquisition system. The tracking device is rigidly
attached to the probe, and the tracking sensor information is
temporally synchronized to the US data acquisition. These
US and tracker readings are used to generate As and Bs, respec-
tively, and to reconstruct X. When the 3-D locations of the
points are accessible, the full transformation of A is recovered
using Eq. (3), and X is computed by solving the AX ¼ XB
formulation.

When a 1-D array receiver is used, the elevational component
cannot be determined from the recorded two-dimensional (2-D)
US data. The lateral and axial components of the active point
are segmented from the earliest time of arrival. The lateral
position is determined by the element number and the pitch,
and the axial position is calculated from converting time to
distance based on

EQ-TARGET;temp:intralink-;e015;326;452D ¼ τ · SoS; (15)

where τ denotes the temporal length from the probe to the active
point, and SoS is the speed of sound in the medium. The
obtained 2-D information and the predetermined point distribu-
tion on the phantom are used to recover partial As [Eq. (5)] using
Eq. (3). When one of the active points is located in-plane, the
elevational component is assumed to be zero. Thus, this property
can be used to recover a full A as the elevational component
of pUS being zero adds an additional constraint to Eq. (3).
Although this approach uses only a single data point by
segmenting the earliest time of flight as the axial component,
an alternative approach using the entire waveform to recover
A is introduced in Appendix B (Sec. 8).

From the given partial As including at least one full As and
Bs obtained from the tracker, the full As of remaining poses are
recovered using the invariants. Equation (14) derives the one
DOF unknown component in the partial As so that the full A
is AiΔAi. Once the corresponding As and Bs are recovered,

Fig. 3 Diagram illustrating ultrasound calibration procedure using
MAP phantom.
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the unknown transformation X is solved using classical AX ¼
XB solvers.17,18

3.2 Simulation Setup

We conducted a geometrical simulation to evaluate the calibra-
tion performance of the proposed method under the presence of
different error sources. For the BXp simulation, a single point
target was set as the phantom, and a linear array transducer with
128 elements and a 0.3-mm pitch was used as the receiver. To
simulate midplane alignment where the US beam is across the
point target, the elevational component of the point position was
set to zero. For the AX ¼ XB simulation, a phantom consisting
of multiple points was generated, and the other setup parameters
were kept the same as the BXp simulation. In the base configu-
ration, four points were placed in a plane at 5-mm intervals.
To evaluate the calibration accuracy under difference point
configurations, the number of points (4, 8, 12) and the phantom
size scale (1, 2, 3 times) were varied (Fig. 4). A total of 125 US
probe poses were used, and the corresponding point position and
tracking information were stored. From these poses, 60 of them
were randomly chosen to be used for calibration, and another
60 from the remaining set of poses were randomly chosen for

evaluation. The example simulation code with the proposed
algorithm is available online (https://github.com/hzhang61/
us_calibration).

3.3 Experimental Implementation

In this paper, we present an example configuration to realize the
MAP phantom concept using a single PZT element as the active
element and a robot arm as the tracker and the translation stage
to virtually create multiple active points. The active element is
made of disc-shaped 1-mm diameter PZT element, and it has a
center frequency of 10 MHz [Fig. 5(a)]. A driving pulser was
used to generate pulses with a minimum duration of 12.5 ns in
the range between −150 and 150 V.12 A transrectal probe
(BPC8-4/10 & BPL9-5/55 Transrectal Bi-plane, Ultrasonix
Corp. Richmond, Canada) with dual arrays is used as the US
probe, and the linear array portion (BPL9-5/55) is used for
the mono (1-D) array calibration [Fig. 5(b)]. The curvilinear
part of the probe (BPC8-4/10) is used to obtain another set
of position information, which is used to localize the 3-D loca-
tion of the active element.25 The channel data were recorded
with a DAQ device (SonixDAQ, Ultrasonix Corp. Richmond,
Canada), and the data acquisition timing was synchronized

Fig. 4 Simulated phantom design. Four points separated by 5-mm distance was regarded as the base,
the size scale of phantom (1, 2, 3 times), and the number of points (4, 8, 12) were varied. The unit was
mm.
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by the line trigger from the US machine. In this experimental
evaluation, we used a robot arm, the UR5 (Universal Robot)
as a mechanical tracker. Instead of placing multiple active ele-
ments, we moved the robot arm in a translational motion from
the robot base frame to emulate multiple point sources (Fig. 6).
To collect a varied set of poses, the robot arm was moved to
125 different poses, where each rotation angle about each of
the three axes was incremented by 5 deg with a total of five
steps, to produce 125 unique poses. The translational compo-
nent for each pose was then determined accordingly to let
the probe stay within the range of the active element signals.
The actual poses tracked are presented in the results section.
For each of these poses, the robot arm applies five translational

motions defined from the robot base coordinate system to the
active element to emulate a multiple active elements phantom.
To maintain compatibility with the data collected from the 125
robot poses, the data collected from these five translational
motions are treated as if they were from a single fixed robot
pose with the active element being the one that is moving. This
virtually creates a MAP phantom with five points to be used
for US calibration. The unknown X was recovered through
AX ¼ XB using a closed-form solution.17,18

3.4 Evaluation Methods

Calibration can be evaluated based on accuracy and precision.
Accuracy is a direct metric presenting the distance error com-
paring the recovered point location and the true location for
the same target, which is defined as

EQ-TARGET;temp:intralink-;e016;326;579σAccu ¼
���� 1

N

XN
i¼1

ðBiXpi − cÞ
����
2

; (16)

where c is the ground-truth target point from the tracking base
frame. Precision is a metric defined as

EQ-TARGET;temp:intralink-;e017;326;508σRP ¼
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðBiXpi − BXpÞ2
vuut ����

2

; : (17)

where BXp is the mean of BiXpi for all i. Ideally, if no error is
present, the true X would cause all of the BiXpi to equal and
converge to a single point. However, when error is present,
BiXpi for all i forms a point cloud instead of a single point,
and the size of the point cloud is correlated to the precision
of X.

Fig. 5 Pictures of the experimental setup. (a) Active-point phantom
and (b) transrectal probe mounted on the robot arm.

Fig. 6 The experimental design (a) and the scanning field in the transrectal probe (b, c). (a) Ultrasound
calibration was performed to the US probe held by a robot arm. An active-point target was used as the
single point fiducial, and multiple active points were virtually created by applying pure-translation with the
robot arm. (b) Lateral-axial view (with respect to linear array) of the transrectal US probe. (c) Elevation-
axial view (with respect to linear array) of the transrectal probe. Two planes cover the save area that was
regarded as the effective capture range, where 3-D position of a point target is accessible for reference.
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Although accuracy is a more reliable metric to evaluate X,
experimental analysis is often based on precision because the
ground-truth point location c is inaccessible. Instead, the sim-
ulation evaluates both metrics to compare their relevance.

4 Results

4.1 Geometrical Simulation

We conducted the geometrical simulation to review the effect of
experimental errors on US calibration, to compare the BXp and
the AX ¼ XB mathematical frameworks using the point and
the MAP phantoms, and to validate the MAP phantom using
a 1-D array.

First, the error tolerance of the conventional BXp formu-
lation was evaluated. When a point target is scanned by a 1-D
array US probe, we assume that there are two types of errors, the
out-of-plane error and the point segmentation error. The out-of-
plane error and the segmentation error were simulated as error
biases added in the elevational axis and the image plane axes of
the US image, respectively. In both cases, the parameter that
was changed is the magnitude of the standard deviation (S.D.)
when sampling the error value from a normal distribution, and
the accuracy and precision of the calibration result, X, were
computed 20 times under each condition.

The mean and standard deviation of this study on error
tolerance is shown in Fig. 7. The out-of-plane error caused
the calibration error to increase linearly for small segmentation
errors with 4 mm of out-of-plane error resulting in around 1-mm
accuracy and precision. Segmentation error had a more signifi-
cant effect on the calibration error compared with the out-of-
plane error, especially when the out-of-plane error was small.
When the out-of-plane error is large, the effects due to the
segmentation error are relatively low. The calibration accuracy
and precision metrics show similar trends and error values. This
supports the use of precision to evaluate the experimental
results. Note that experimentally, the precision will also include
the tracking error in B, which was not considered in this sim-
ulation to focus on the effect on the phantom p.

Next, the AX ¼ BX formulation based on the MAP phan-
tom was evaluated (Fig. 8). Same with the BXp formulation
evaluation, a 1-D array US probe was used. The phantom
design consists of four points separated by 5 mm (Fig. 4).
To account for calibration performance under different phan-
tom conditions, the separation of the points in the phantom was
magnified by a phantom size scale factor (1, 2, and 3 times),

and the number of points was also varied (4, 8, and 12 points).
For each of the phantom conditions, segmentation error and
out-of-plane errors were added independently, in which the
magnitude of 0.5 and 1 mm was applied for each case. To sat-
isfy the required condition using the MAP phantom, the 3-D
location of the point in the first pose was known while partial
As were used for the rest of poses, with the out-of-plane
information being randomized to simulate the experimental
scenario. Once simulation data were created, the unknown
component of the As for all poses was recovered using the
invariants θ and d first, then the X was reconstructed by solving
the AX ¼ XB equation. This simulation computation was
repeated 20 times, and the mean case and its standard deviation
are shown in Fig. 8.

As the results in Fig. 8 show, all phantom conditions
met submillimeter accuracy when the segmentation error was
0.5 mm. When the segmentation error was 1 mm, achieving
submillimeter accuracy required either the phantom size to be
15 mm × 15 mm or the number of points to be 12. The effect
of the out-of-plane error was smaller than the segmentation
error and was independent from the phantom configuration.
When more than 12 points were used with a phantom size of
>15 mm on the MAP phantom, the accuracy of the AX ¼ XB
formulation was superior to the BXp formulation.

4.2 Experimental Results

To confirm the robot poses during the experiment, the position
and vectorized orientations of the robot end-effector were shown
in Fig. 9. The US data of the active points were recorded using
both of the arrays on the transrectal probe. Two nonparallel
arrays give a unique 3-D localization of the active points,
and this information was used for both BXp and AX ¼ XB
calibrations. The experimental results are shown in Table 1.
From a total of five active-point targets, four of them were
used in the BXp calibration formulation, and the unknown
transformation X was computed from each active-point target.
The internal precision c indicates the reconstruction precision
computed on the points used for calibration. The external pre-
cision c is the reconstruction precision when the fifth indepen-
dent point is used for evaluation. In the AX ¼ XB calibration,
four points were used to calibrate X, and the reconstruction
precision computed based on the translation component of
the recovered As is shown as the internal precision c. The same
fifth independent point used in the BXp analysis was used to
compute the external precision c. The results show that the

Fig. 7 (a) Accuracy and (b) precision of BXp-based calibration for corresponding segmentation and
elevational errors.
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BXp formulation could recover an X that minimized the internal
precision c well, whereas the external precision c was not as
good as the AX ¼ XB formulation. This indicates that the
BXp formulation recovers an X optimized to the areas near
the points used for calibration, whereas it does not provide
as good of an estimate for the areas that are far from these points.
On the contrary, the AX ¼ XB formulation could keep low
reconstruction precisions even on the independent evaluation
point by incorporating both the position and the orientation
of the phantom.

For mono 1-D array calibration, only the linear array portion
of the transrectal probe was used for calibration. The intermedi-
ate step of recovering A is shown in Fig. 10. The error magni-
tude presents the rotational difference between the recovered
As using the monoarray and the As from the ground-truth data

using two arrays. The relative matrix between these two As was
calculated, and then the vectorized rotational component is
shown in an Euler angle representation. Before recovering the
one DOF unknown rotation using the invariants, the rotational
error is distributed in the rotation around the x axis as expected
[Fig. 10(a)]. After the invariant-based compensation, the error
was substantially improved [Fig. 10(b)].

Using the recovered A, the computed reconstruction preci-
sion using the AX ¼ XB formulation was 1 mmwith the internal
precision c and 0.93 mm for the external precision c. Although
the result was slightly worse compared with the AX ¼ XB
calibration using a US probe with two arrays, the calibration
precision with the mono array was still in the submillimeter
range of despite having much more limited information in
comparison with the dual-array case.

Fig. 9 (a) Translation and (b) vectorized orientation of robot tracking information for all poses.

Fig. 8 Calibration error of the AX ¼ XB when different number of points and sizes of an MAP phantom
were used. (a–b) The accuracy (a) and precision (b) are shown when the segmentation error was added.
(c–d) The accuracy (c) and precision (d) are shown when the out-of-plane error was added.
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5 Discussion
In the proposed calibration method using the AX ¼ XB formu-
lation, the phantom size is crucial to the resulting calibration
accuracy. From our simulation study, a bigger phantom provides
a more reliable A, which can eventually be used to solve for a
more precise X. Therefore, a larger size of the phantom design
should be considered when fabricating an MAP phantom. The
phantom parameters such as the number of points and the size
scale of the phantom can be easily adjusted if the phantom is
constructed by multiple virtual points created by the translation
of the tracking base frame as presented in the experiments
shown in this work. The ability to adjust and customize
the phantom design is an advantage over conventional point-
based phantoms, where the target and imaging poses are heavily
constrained such that the single point must be aligned with the
US probe in its midplane.

Comparing and evaluating different US calibration
approaches is not a simple task because the performance can
be affected by so many factors including the US imaging envi-
ronment, tracking devices, and calibration phantom designs.7,26

Among various methods used in prior literature, we used
accuracy and precision as the metrics to show the calibration
performance in simulation. Though accuracy is desired as it
reflects the calibration error directly, obtaining the true accuracy

is challenging or may even be impossible, because the process
of defining the true reference position may introduce other
additional errors. On the contrary, the precision metric is
based on the same experimental setting as the actual calibra-
tion, and subjective evaluation is possible because the datasets
used for calibration and evaluation are independent. Our
simulation results present a similar numerical outcome with
both metrics, and it indicates that precision could be a good
indicator of calibration performance when the true accuracy
is inaccessible.

To provide a direct comparison with previously proposed
approaches, the calibration results using the conventional
BXp method is shown in Table 1.14 The same robot arm and
geometry of the US probe (linear array, 0.3-mm pitch) as the
proposed method was used. Two calibration phantoms, a
cross wire and the AE phantom, were used for reconstruction
and evaluation, and cross-validation was performed between
these two phantoms. When the cross-wire phantom points
were used for solving for X and the AE points were used for
evaluation, the reconstruction prevision had a value of 1.72 mm.
When the AE points were used for solving for X, and
the cross-wire phantom points were used for evaluation, the
reconstruction precision was 1.00 mm. This result reconfirms
that the proposed method can produce the equivalent or
improved calibration performance while substantially reducing
the number of midplane detection processes necessary thus
decreasing the data acquisition time during US calibration.

Nevertheless, there are some shortcomings that should be
noted. The fabrication of a MAP phantom requires a special
hardware setup including multiple active US elements. The
most direct way of fabrication is to build a phantom consisting
of multiple active elements with known geometric relationships.
Alternatively, realization of the MAP phantom concept requires
at least one active element transmission system with transla-
tional motion applied to the phantom using a 2-D translational
stage or a robot arm as demonstrated in this paper. For US
researchers or researchers conducting image-guided interven-
tion research, having access to a single element transducer is
not difficult, and it can be purchased from commercial vendors.
In addition to the phantom fabrication, another requirement is
that the US machine must have access to a line trigger to ini-
tiate the active US element. In addition, to accurately estimate
the time of flight of the US signal, access to raw US radio fre-
quency (RF) data is preferred. Usually, US machines designed
for interventional applications can meet these requirements due
to the need for synchronization with other medical tools and
devices.

When US calibration is required in a procedure, the user
can choose from calibration phantoms with a wide range of
options based on their application and available equipment.
For applications in which a coarse calibration with error on
the order of several millimeters is acceptable, the phantom
position estimation error due to the US beam thickness is
negligible, and structural phantoms are suitable due to its rapid
calibration time without requiring the midplane detection step
as such required in point-based phantoms. For applications
that are highly sensitive to accuracy and require submillimeter
errors, then calibration methods using point-based phantoms
such as the AE system that can minimize the error from
the US beam thickness are preferred. The MAP phantom can
perform calibrations with the advantages from both types of
phantoms.

Table 1 The experimental results.

Calibration

Internal
precision
c (mm)

External
precision
c (mm)

Dual array
(biplane)

BXp Point #1 0.77 2.55

BXp Point #2 0.68 1.56

BXp Point #3 0.79 3.59

BXp Point #4 0.66 2.60

AXXB 0.60 0.67

Mono (1-D) array AXXB 0.93 0.98

Control (BXp)14 CW/AE 1.72 —

AE/CW 1.00 —

Fig. 10 The error magnitude of A comparing As from 1-D array and
from 2-D array as the ground truth. The rotational error before (a) and
after (b) recovering the unknown rotation is shown. If rotational com-
ponents between them are identical, all axis should be zero.
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6 Conclusions
We proposed a US calibration concept utilizing an MAP phan-
tom, which combines high submillimeter calibration accuracy
with a quick calibration process. The proposed concept was
derived in theory and was demonstrated through simulation
and experiment. For future work, the proposed MAP phantom
can be simplified and integrated into a compact package that is
readily available for calibration. The presented method still
requires one midplane detection step that acts as the reference
for the rest of the out-of-plane search procedures. This calibra-
tion uses only the time-of-flight information, and we envision
incorporating intensity information to completely avoid mid-
plane detection.

7 Appendix A: Recovering A Using
Multiple Active-Point Phantom Involves
One DOF Deficiency

Equations (6)–(9) can be rewritten as

EQ-TARGET;temp:intralink-;e018;63;543ΔAT
i A

ij�ΔAjΔXX� ¼ ΔXX�Bij: (18)

Rearranging Eq. (18) gives

EQ-TARGET;temp:intralink-;e019;63;500ðΔAiΔXÞ−1Aij�ðΔAjΔXÞX� ¼ X�Bij: (19)

By defining ΔA�
i ¼ ΔAiΔX and ΔA�

j ¼ ΔAjΔX:

EQ-TARGET;temp:intralink-;e020;63;457ΔA�−1
i Aij�ΔA�−1

j X� ¼ X�Bij: (20)

This is another correct formulation bounding A and B.
Equation (18) is a case of Eqs. (19) and (20) when ΔX is

identity matrix. When we have n poses, Eq. (19) contains nþ
6 unknown, in which n unknown in unknown rotation ΔA, and
one DOF known is ΔX, and five DOF in X�. However, as
Eq. (20), we only can solve for nþ 5 DOF because unknown
rotation ΔA and ΔX share the same rotation axis, and these will
be solved as one DOFΔA�. Therefore, we miss the last one DOF
to solve all nþ 6 unknowns.

8 Appendix B: Alternative Approach for
Recovering A Using Multiple Active-Point
Phantom

Here, we will discuss the way of computing A from the channel
data. The difference compared with previous approach is that
instead of using the earliest arrival data, using the entire wave
form could provide more information to localize the point seg-
mentation. The time-of-flight map of the segmented waveform
will be obtained. Next, using phantom point location and
the corresponding distance (computed from time-of-flight), the
position of US array element position from phantom coordinate
can be calculated through trilateration.

Each US array element pUS can be computed as

EQ-TARGET;temp:intralink-;e021;63;164pUS ¼ min
pUS∈R3

XN
1

kpi
ph − pph

USk − di; (21)

where N is the number of phantom points and pph is the point
position from the phantom frame.

The transformation of the US array from phantom coordinate
to US image coordinate is computed through point cloud

registration. Note that the recovered A is not fully true because
the US array model is a line, and one DOF rotation is undefined:

EQ-TARGET;temp:intralink-;e022;326;730pph
US ¼ AUS�pUS: (22)

As from different poses can be computed through previous
steps, but we need to know one fully defined A to solve X. When
one of the poses is forcing the probe to capture the midplane of
the active point, the unknown one DOF can be recovered as

EQ-TARGET;temp:intralink-;e023;326;653pUS ¼ −ðR�
AΔRAÞ−1tA; (23)

where the elevational dimension of pph is zero.
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