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Abstract

Different genes and proteins evolve at very different rates. To identify the factors that explain these differences is an

important aspect of research in molecular evolution. One such factor is the role a protein plays in a large molecular

network. Here, we analyze the evolutionary rates of enzyme-coding genes in the genome-scale metabolic network of

Escherichia coli to find the evolutionary constraints imposed by the structure and function of this complex metabolic

system. Central and highly connected enzymes appear to evolve more slowly than less connected enzymes, but we find

that they do so as a by-product of their high abundance, and not because of their position in the metabolic network. In

contrast, enzymes catalyzing reactions with high metabolic flux—high substrate to product conversion rates—evolve

slowly even after we account for their abundance. Moreover, enzymes catalyzing reactions that are difficult to by-pass

through alternative pathways, such that they are essential in many different genetic backgrounds, also evolve more

slowly. Our analyses show that an enzyme’s role in the function of a metabolic network affects its evolution more than

its place in the network’s structure. They highlight the value of a system-level perspective for studies of molecular

evolution.
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Introduction

Different proteins evolve at very different rates (Zuckerkandl

and Pauling 1965; Li et al. 1985; Alvarez-Ponce 2014). Half a

century after this observation seeded the field of molecular

evolution (Zuckerkandl and Pauling 1965), the reasons are still

a subject of active research, and even more so since the

genome-era made sequence and functional data about pro-

teins abundantly available. Much of the variation in evolution-

ary rates stems from variation in selective constraints on

proteins, and several factors influence these constraints (for

recent reviews, see Alvarez-Ponce 2014; Zhang and Yang

2015). The most important is the amount of a protein that

is expressed, and the breadth of its expression across cells or

tissues in multicellular organisms (Duret and Mouchiroud

2000; P�al et al. 2001; Drummond et al. 2005). Highly and

broadly expressed genes are under strong purifying selection,

and therefore evolve slowly. Other factors influence evolu-

tionary rates more weakly. They include protein length

(Subramanian and Kumar 2004; Bloom et al. 2006;

Ingvarsson 2006; Liao et al. 2006; Kryuchkova and

Robinson-Rechavi 2014), essentiality (Hurst and Smith 1999;

Jordan et al. 2002; Rocha and Danchin 2004), multifunction-

ality (Wilson et al. 1977; He and Zhang 2006; Salath�e et al.

2006; Podder et al. 2009), subcellular localization (Liao et al.

2010), or being a chaperone client (Bogumil and Dagan 2010;

Williams and Fares 2010; Aguilar-Rodr�ıguez et al. 2016;

Kadibalban et al. 2016). To gain deeper insights into the

determinants of protein evolution, one must go beyond a

gene-centered approach and embrace a systems-oriented

view of protein evolution.

Inside a cell, proteins often form large and complex net-

works of interacting molecules. The position of a protein
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within such a network, as well as its role in the network’s

function, can affect the protein’s evolution. In other words,

the structure and function of a molecular network can impose

selective constraints on its member proteins (Cork and

Purugganan 2004). For example, proteins at the center of a

protein–protein interaction network evolve more slowly (they

are more constrained) than those at the periphery (Fraser et al.

2002; Jordan et al. 2003; Hahn and Kern 2005; Lemos et al.

2005; Alvarez-Ponce 2012; Alvarez-Ponce and Fares 2012). In

contrast, in the yeast transcriptional regulation network, more

central transcription factors evolve faster than less central

ones (Jovelin and Phillips 2009). As these two types of cellular

networks have similar topological properties (Barabasi et al.

2004), this difference in selective constraints over the network

structure must ultimately be caused by different network

functions. Nonetheless, despite being significant and consis-

tent across many different organisms, the effects of network

topology on protein evolution are weak. It could be caused by

confounding factors such as expression level, and it can be

affected by biased and low-quality data (Bloom and Adami

2003; Batada et al. 2006).

Metabolic networks constitute another important class of

cellular network. They are well-studied in model organisms

such as Escherichia coli (Feist et al. 2007), and comprise hun-

dreds to thousands of chemical reactions, most of them cat-

alyzed by enzymes encoded in genes. In a metabolic network,

chemical reactions are organized in a highly reticulate manner

to perform two main functions: Energy production and bio-

synthesis. Specifically, using energy and chemical elements

from environmental nutrients, metabolic networks synthetize

essential small molecules (i.e., amino acids, ribonucleotides,

deoxynucleotides, lipids, and enzyme cofactors). The chemical

reactions a metabolic network catalyzes are encoded in a

metabolic genotype—a genome’s set of enzyme-encoding

genes. The network’s phenotype can be defined as the set

of molecules it can synthesize, and the rate at which it does so

(Matias Rodrigues and Wagner 2009). Thanks to computa-

tional approaches such as flux balance analysis (FBA) (Orth

et al. 2010; Bordbar et al. 2014), the relationship between

metabolic genotypes and phenotypes can be studied compu-

tationally, which also allows us to study how selection for a

given metabolic phenotype can constrain metabolic enzyme

evolution. This type of analysis is currently not possible in other

types of molecular networks, such as protein–protein interac-

tion networks.

Previous work in eukaryotes has revealed that more central

and more highly connected enzymes in metabolic networks,

that is, those sharing metabolites with many other enzymes,

evolve more slowly (Vitkup et al. 2006; Lu et al. 2007;

Greenberg et al. 2008; Hudson and Conant 2011;

Montanucci et al. 2011). Additionally, enzymes catalyzing

reactions with a high metabolic flux—the rate at which a

reaction transforms substrates into products—tend to evolve

slowly (Vitkup et al. 2006; Colombo et al. 2014), and

enzymatic domains with a greater influence on the dynamics

of a metabolic pathway also tend to be more selectively con-

strained (Mannakee and Gutenkunst 2016). In this contribu-

tion, we study how the structure and function of a bacterial

metabolic network affects the evolution of metabolic genes

through point mutations. To our knowledge, this is the first

time that such a study is performed using the whole-genome

metabolic reconstruction of E. coli (Feist et al. 2007), which is

arguably the best-known metabolic network of any living or-

ganism. Specifically, we study how quantities such as enzyme

connectivity and metabolic flux affect evolutionary rate. To do

so, we account for possible flux variation with Markov chain

Monte Carlo (MCMC) sampling, a method that has not been

used before in this type of evolutionary analysis. Additionally,

we also study for the first time the influence of factors such as

reaction superessentiality (Samal et al. 2010), which quantifies

how easily a reaction can be bypassed in a metabolic network

by other reactions or pathways, and the number of different

chemical reactions that an enzyme catalyzes (enzyme multi-

functionality). In performing these analyses, we comprehen-

sively characterize metabolic determinants of enzyme

evolution in E. coli.

Materials and Methods

Metabolic Network

To investigate how the topology of a metabolic network

affects the evolution of metabolic genes, we constructed a

reaction graph representation of the E. coli metabolic network

model iAF1260 (Feist et al. 2007), which includes 2,382 reac-

tions and 1,972 metabolites. In a reaction graph, nodes rep-

resent reactions, which are connected by an edge if they

share at least one metabolite as either a substrate or a product

(Monta~nez et al. 2010). When constructing this reaction

graph, we did not consider the following currency metabo-

lites, which are the most highly connected metabolites: H,

H2O, ATP, orthophosphate, ADP, pyrophosphate, NAD,

NADH, AMP, NADP, NADPH, CO2, and CoA (Vitkup et al.

2006). The inclusion of such metabolites, which participate

in many different reactions, would create many reactions that

are adjacent in the graph but not otherwise functionally re-

lated. Such reactions would come to dominate the structure

of the network, and obscure patterns of connections between

functionally related reactions. Our results are qualitatively in-

sensitive to the exact number of metabolites removed. The

reaction graph thus created comprises 2,382 nodes and

18,953 edges. Its diameter, that is, the longest of the shortest

paths between any two nodes, is 15. It has a characteristic

path length, that is, the average shortest distance between

any pair of nodes, of 4.55. The clustering coefficient, that is,

the fraction of a node’s neighbors that are also neighbors

themselves, of this graph is 0.54, and its assortativity by de-

gree, that is, the propensity for nodes with a similar number of
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neighbors to share an edge, is 0.17. In this graph, we com-

puted the connectivity (or degree) of every reaction, which is

its number of edges. In other words, the connectivity of a

reaction is the number of other reactions that share at least

one metabolite with the focal reaction. To determine the cen-

trality of a reaction, we computed its betweenness centrality

(Freeman 1977; Newman 2010), which is the number of

shortest paths between any two nodes that pass through

this reaction, using the Python package “igraph.”

Mathematically, the betweenness centrality xi of node i is de-

fined as
P

st ni
st , where ni

st is 1 if node i lies on the shortest

path between nodes s and t, and 0 otherwise (or if s and t are

in different components of the network) (Newman 2010).

To study how different properties of a metabolic reaction

may affect the evolution of the enzyme-coding gene whose

product catalyzes the reaction, it is preferable to work mostly

with reactions that show a one-to-one relationship to

enzyme-encoding genes. Therefore, we exclude from our

evolutionary analyses reactions catalyzed by large macromo-

lecular complexes that are encoded by multiple genes.

Following Vitkup et al. (2006), for enzymes that catalyze

more than one reaction, we use the reaction carrying the

largest metabolic flux (the rate at which metabolites are con-

verted into products) because it is the reaction imposing a

higher evolutionary constraint. In addition, also following

Vitkup et al. (2006), wherever different enzymes (isoenzymes)

catalyze the same chemical reaction, we use the enzyme with

the lowest rate of sequence evolution. The resulting data set

comprises 659 enzyme-coding genes associated with the

same number of metabolic reactions.

Metabolic Fluxes

We determined the distribution of fluxes that is allowable

during growth on glucose for each reaction in the E. coli

metabolic model iAF1260 (Feist et al. 2007) using MCMC

sampling (Schellenberger and Palsson 2009). We used the

artificially centered hit-and-run algorithm (ACHR) (Kaufman

and Smith 1998) with minor modification as described by

Bordbar et al. (2010) and Lewis, Schramm, et al. (2010).

We implemented the ACHR algorithm with the

ACHRSampler in COBRA Toolbox v.2.0.5 (Schellenberger,

Que, et al. 2011), using the MATLAB (The MathWorks,

Natick, MA) environment R2012b. We used a minimal (com-

putational) medium in which glucose was the only carbon

source, and set the uptake rate of glucose to the value of

8 millimoles per gram dry cell weight per hour. Following

Nam et al. (2012), in order to restrict the sampling to the

space of flux values relevant to in vivo E. coli growth on glu-

cose, we established a lower bound to the biomass objective

function of 90% of the optimal growth rate predicted by FBA

(Orth et al. 2010). The mixed fraction is a metric introduced by

Bordbar et al. (2010) to measure the uniformity of the sample

from the space of allowed fluxes. We obtained a mixed

fraction of 0.5096, which suggests that the space was nearly

uniformly sampled (Bordbar et al. 2010). We removed reac-

tions with a median flux value >15 millimoles per gram dry

cell weight per hour from further analysis to ensure the ex-

clusion of reactions involved in futile cycles (Beard et al. 2002;

Schellenberger, Lewis, et al. 2011).

Reaction Superessentiality, Reaction’s Genome
Occurrence, and Enzyme Multifunctionality

We obtained superessentiality indices of metabolic reactions

for growth on glucose (SIglu) and for growth on 54 different

sole carbon sources (SI54) from Barve et al. (2012). We

obtained data about a reaction’s genome occurrence from

the same study. A reaction’s genome occurrence is defined

as the fraction of 1,093 prokaryotic species containing a gene

encoding an enzyme known to catalyze the reaction.

We followed the classification of E. coli K-12 enzymes in

generalists and specialists of Nam et al. (2012). Enzymes that

only catalyze a specific chemical reaction were classified as

specialists, while enzymes that catalyze more than one reac-

tion were classified as generalists.

Evolutionary Rates

We obtained the values of dN/dS, dN, and dS in this analysis

from the study by Alvarez-Ponce et al. (2016). In that study,

orthologs in E. coli and S. enterica genomes were identified as

reciprocal best hits (Tatusov et al. 1997) using the protein–

protein Basic Local Alignment Search Tool (i.e., BLASTP with

an E-value cut-off of 10�10). Each pair of orthologous proteins

was aligned using ProbCons 1.2 (Do et al. 2005). The resulting

alignments were back-translated into codon-based nucleotide

alignments, and the ratio dN/dS was estimated using the pro-

gram codeml from the package PAML 4.7 (one-ratio model

M0) (Yang 2007). We removed dN/dS values >10 from our

analyses.

Gene Expression and Protein Abundance

We obtained gene expression data for E. coli K-12 MG1655

grown in rich medium (LB) at 37�C from Chen and Zhang

(2013), who quantified gene expression levels as numbers of

RNA-seq reads per gene, normalized by gene length. We re-

trieved protein abundance data of E. coli K-12 MG1655 from

the integrated data set of PaxDb 3.0 (Wang et al. 2012).

Statistical Analyses

We used R for all statistical analyses and plots. We performed

the partial correlation analyses using the function “pcor.test”

from the R package “ppcor.” We carried out the principal

component regression analysis using the package “pls.” We

performed a base-10 logarithmic transformation of continu-

ous variables when such transformations lead to a higher per-

cent of the variance in evolutionary rates explained by the
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model (R2). If data for a continuous variable included values

equal to zero, we added a small constant of 0.001 to all values

to allow its logarithmic transformation. We scaled the inde-

pendent variables to zero mean and unit variance.

Results

The Effect of Metabolic Network Topology on Enzyme
Evolution

To study how network structure affects enzyme evolution, we

constructed a reaction graph representation of the whole-

genome E. coli metabolic network, in which the nodes rep-

resent reactions. Two reactions are connected by an edge if

they share at least one metabolite (Materials and Methods). In

such a graph, the connectivity of a reaction corresponds to

the number of other reactions that produce or consume the

reaction’s substrates or products. The connectivity of an en-

zyme is equivalent to the connectivity of the reaction cata-

lyzed by the enzyme. The centrality of an enzyme can be

measured as the number of shortest pathways passing

through the reaction node associated with the enzyme (be-

tweenness centrality).

In a metabolic network, highly connected enzymes tend to

occupy a central position in the network (as determined by

their betweenness centrality, Materials and Methods), while

less connected enzymes are more peripheral (fig. 1A;

Spearman’s q ¼ 0.524, P< 2.2� 10�16, n¼ 635). In other

words, enzymes in central metabolic processes, such as

central carbon metabolism, tend to be highly connected,

while enzymes in peripheral pathways tend to be less

connected.

One might expect that more highly connected enzymes in

a metabolic network are more constrained in their rate of

evolution than less connected enzymes. The reason is that

the reaction products of highly connected enzymes are sub-

strates of many different reactions, such that any mutation

disturbing product formation is bound to be more deleterious

in a highly connected enzyme. However, a previous study on

E. coli metabolism found no correlation between enzyme con-

nectivity in core intermediary metabolism and evolutionary

rate, determined as the rate of amino acid replacements,

for 108 pairs of E. coli–Haemophilus influenzae orthologs

(Hahn et al. 2004). In contrast, a later study found that highly

connected enzymes in the metabolic network of

Saccharomyces cerevisiae do evolve more slowly (Vitkup

et al. 2006). We suspected that the original negative result

in E. coli could be caused by small statistical power resulting

from the many fewer enzymes analyzed by Hahn et al. (2004)

(n¼ 108) than by Vitkup et al. (2006) (n¼ 671). We therefore

repeated the E. coli analysis using the much larger whole-

genome metabolic reconstruction. We estimated the evolu-

tionary rate of an enzyme as the ratio of nonsynonymous

substitutions to synonymous substitutions per nucleotide

site (dN/dS) in the gene coding for the enzyme. We used values

of dN/dS obtained by comparing genes in E. coli to orthologs in

the closely related genome of Salmonella enterica (Alvarez-

Ponce et al. 2016). A small value of dN/dS indicates a lower

FIG. 1.—Highly central and connected enzymes in a metabolic network do not evolve slowly. (A) The relationship between enzyme connectivity and

centrality in the Escherichia coli metabolic network (Spearman’s q ¼ 0.524, P<2.2�10�16, n¼635). The centrality measure of a reaction is its between-

ness centrality determined from the reaction graph (Materials and Methods). (B) The relationship between enzyme connectivity and evolutionary rate

measured as dN/dS (Spearman’s q¼�0.088, P¼0.028, n¼635). In both panels, a dashed line shows the best linear fit to the data and is provided as a visual

guide. Note the double-logarithmic scale.
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evolutionary rate due to higher constraints on enzyme evolu-

tion. Figure 1B shows the relationship between enzyme con-

nectivity and the rate of evolution (Spearman’s q ¼ �0.088,

P¼ 0.028, n¼ 635; table 1). The negative correlation is very

small but significant.

One potentially important confounding factor in the

association between enzyme connectivity and evolution-

ary constraint is enzyme expression. Highly connected

enzymes tend to be highly abundant (Spearman’s q ¼
0.163, P¼ 9.5� 10�5, n¼ 565), and in general, abun-

dant proteins tend to evolve more slowly (P�al et al.

2001; Drummond et al. 2005). This association between

expression level and evolutionary rate also holds for

enzymes. Specifically, we observe that high enzyme ex-

pression is associated with slow evolution (low dN/dS) re-

gardless of whether expression is measured on the mRNA

level (Spearman’s q ¼ �0.340, P¼ 9.4� 10�15, n¼ 491;

table 1) or on the protein level (Spearman’s q ¼ �0.488,

P< 2.2� 10�16, n¼ 565; table 1). Since expression of

enzyme-coding genes is correlated between the mRNA

and protein level (Spearman’s q ¼ 0.432,

P< 2.2� 10�16, n¼ 433), we focus our analysis below

on the protein level (Wang et al. 2012), but note that

all reported results also hold for the mRNA level. When

controlling for enzyme abundance in a partial correlation

analysis between enzyme connectivity and evolutionary

rate, the correlation loses statistical significance

(Spearman’s q ¼ 0.009, P¼ 0.830, n¼ 565; table 2). In

other words, while highly connected enzymes evolve at

slightly lower rates than less connected enzymes, this as-

sociation is a byproduct of the relationship between evo-

lutionary rate and enzyme abundance.

Similarly to enzyme connectivity, one might expect that

more central enzymes should be more constrained in their

evolution, but this relationship is also not consistent across

studies. Some studies in eukaryotic species have found a sig-

nificant association (Lu et al. 2007; Hudson and Conant

2011), while others have not (Greenberg et al. 2008;

Montanucci et al. 2011; Colombo et al. 2014). We find a

very weak positive association that is not significant

(Spearman’s q ¼ 0.074, P¼ 0.061, n¼ 635; table 1), and

that is also not significant after controlling for enzyme

abundance in a partial correlation analysis (Spearman’s q ¼
0.082, P¼ 0.051, n¼ 565; table 2). Thus, there is no clear

association between enzyme centrality and evolutionary rate.

Enzymes Catalyzing Reactions with High Metabolic Flux
Evolve Slowly

A reaction’s metabolic flux refers to the rate at which the

reaction converts substrates into products. One might expect

that enzymes catalyzing high flux reactions may evolve more

slowly. The reason is that such enzymes tend to supply prod-

ucts to a large number of reactions and pathways, such that

the effects of flux-diminishing mutations may be more dele-

terious than in low-flux enzymes (Vitkup et al. 2006). To study

the relationship between metabolic flux and the rate of en-

zyme evolution, we applied flux balance analysis (FBA) to the

metabolism of E. coli (Feist et al. 2007). FBA is a linear pro-

gramming method that maximizes the rate of biomass pro-

duction in a given nutritional environment, simultaneously

balancing all the metabolic fluxes under a steady state as-

sumption and a set of flux constraints (Orth et al. 2010).

FBA has been extensively used to predict the phenotype of

a metabolism from its genotype, that is, to predict the ability

of a metabolism to synthetize biomass in a given chemical

environment from the genes encoding the metabolism’s

enzymes (Matias Rodrigues and Wagner 2009; He et al.

2010; Barve et al. 2012; Barve and Wagner 2013;

Harcombe et al. 2013; Bordbar et al. 2014; Hosseini et al.

2015; Plata et al. 2015). FBA predictions are in good agree-

ment with experimental data for model organisms such as

E. coli (Edwards and Palsson 2000b; Edwards et al. 2001;

Ibarra et al. 2002; Segre et al. 2002; Fong and Palsson

2004; Feist et al. 2007; Lewis, Hixson, et al. 2010).

We applied FBA to the E. coli metabolic network iAF1260

(Feist et al. 2007), maximizing aerobic growth on glucose in

an environment where glucose is the only carbon source.

Analyzing the association between metabolic flux and evolu-

tionary rate is complicated by the fact many distributions of

fluxes through individual enzymes can produce the same

maximal biomass synthesis rate. For example, if two different

reactions can produce the same biomass molecule at the

same maximal rate, one of the two reactions could carry

Table 1

Correlations of Various Quantities with dN/dS

Quantity Spearman’s q P Value

Enzyme connectivity �0.088 2.8 � 10�2

Betweenness centrality 0.074 6.1 � 10�2

Metabolic flux �0.299 1.1 � 10�13

SIglu �0.313 6.4 � 10�14

SI54 �0.274 6.7 � 10�11

Gene expression �0.340 9.4 � 10�15

Protein abundance �0.488 < 2.2 � 10�16

Table 2

Partial Correlations of Various Quantities with dN/dS

Quantity j Controlled Quantity Spearman’s q P Value

Enzyme connectivity j Protein abundance 0.009 8.3 � 10�1

Betweenness centrality j Protein abundance 0.082 5.1� 10�2

Metabolic flux j Protein abundance �0.164 1.5 � 10�4

SIglu j Protein abundance �0.198 6.9 � 10�6

SIglu j Metabolic flux �0.197 3.4 � 10�6

SI54 j Protein abundance �0.187 2.1 � 10�5

SI54 j Metabolic flux �0.190 7.4 � 10�6
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the maximal flux, while the other carries no flux, or both

reactions could be active, such that the sum of their individual

fluxes produces the metabolite at the maximal rate. In other

words, a metabolic network can solve the problem of synthe-

sizing biomass in multiple equivalent ways. To account for this

flux variation, we used MCMC sampling to uniformly sample

the space of all possible flux values (Schellenberger and

Palsson 2009). We then computed a distribution of flux values

for each of the reactions in the E. coli metabolic network, and

used the median of this distribution as the reaction flux. To

our knowledge, this is the first time that the complete flux

distribution, as determined by MCMC sampling, is taken into

consideration in studying the relationship between metabolic

flux and enzyme evolution.

Figure 2 shows that enzymes catalyzing high-flux reactions

evolve more slowly (Spearman’s q ¼ �0.299,

P¼ 1.1� 10�13, n¼ 592; table 1). Importantly, this associa-

tion does not disappear if we account for enzyme abundance:

While high-flux enzymes tend to be highly abundant

(Spearman’s q ¼ 0.370, P< 2.2� 10�16, n¼ 529), they still

evolve more slowly in a partial correlation analysis that con-

trols for enzyme abundance (Spearman’s q ¼ �0.164,

P¼ 1.5� 10�4, n¼ 529; table 2). This observation agrees

with a previous finding that high-flux yeast metabolic

enzymes are subject to more constrained evolution (Vitkup

et al. 2006). A similar association has been found with

experimental flux measurements in the human erythrocyte

core metabolism (Colombo et al. 2014).

Highly Superessential Enzymes Evolve Slowly

A central function of a metabolic network is to synthetize the

small-molecule precursors of biomass (amino acids, nucleoti-

des, and cofactors) that are indispensable for cell growth and

survival. In a given chemical environment, a metabolic reac-

tion is essential if its product is needed for viability, that is, for

biomass synthesis, and if its removal (“knock-out”) eliminates

this ability. Otherwise, the reaction is nonessential. Reaction

essentiality depends not only on the environment but also on

a network’s genotype, that is, on the genes encoding the

enzymes of the network. For example, certain genes are

only essential in some strains of Saccharomyces cerevisiae

(Dowell et al. 2010). One reason for such variation in essen-

tiality is that different organisms can synthesize the same bio-

mass molecules via alternative metabolic pathways that

comprise different biochemical reactions and enzymes, which

are encoded by different genes (Edwards and Palsson 1999,

2000a, 2000b; Barve et al. 2012).

While it is easy to manipulate an organism’s environment

experimentally to study how reaction essentiality depends on

the environment, current technologies limit our ability to sys-

tematically alter metabolic genotypes to study how essential-

ity varies with metabolic genotypes, that is, with the presence

or absence of genes encoding alternative metabolic path-

ways. This limitation calls for computational approaches.

One such approach is suited to study comprehensively how

the presence or absence of enzyme-coding genes affects the

essentiality of other enzyme-coding genes (Barve et al. 2012).

It builds on the ability of FBA to efficiently predict a metabolic

network’s phenotype—whether the network can produce

biomass in a given environment—from its genotype. Briefly,

the approach samples the “universe” of >5,000 biochemical

reactions known to occur in at least one species, to generate

viable metabolic networks with a given phenotype, but an

otherwise random complement of reactions (Matias

Rodrigues and Wagner 2009). By analyzing large ensembles

of such random viable networks, one can determine how

difficult it is to bypass a reaction through an alternative met-

abolic pathway, by computing a reaction’s superessentiality

index (SI) (Barve et al. 2012). The SI of a reaction, which

ranges from zero to one, is the fraction of random viable

networks in which the reaction is essential for viability. In

any given environment, reactions with a SI close to zero are

easily bypassed, and nonessential for viability in most metab-

olisms, whereas reactions with the highest SI of one are al-

ways essential and cannot be bypassed according to current

biochemical knowledge.

It is possible that highly superessential reactions (large SI,

not easily by-passed) evolve at lower rates, because they may

be subject to stronger purifying selection caused by their

FIG. 2.—Enzymes catalyzing reactions with high metabolic flux evolve

more slowly. The relationship between metabolic flux and enzyme evolu-

tionary rate measured as dN/dS (Spearman’s q¼�0.299, P¼1.1�10�13,

n¼592). The dashed line shows the best linear fit to the data and is

provided as a visual guide. Flux values <10�5 are set to zero. Note the

logarithmic scale on both axes.
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greater importance for viability in different genetic back-

grounds. This could be especially the case in bacteria, where

gene content can evolve very fast via lateral gene transfer, so

that a given enzyme may become part of many different

metabolic networks during its evolutionary history. To find

out whether this is the case, we used superessentiality indices

of E. coli metabolic reactions computed for 1) an aerobic min-

imal environment with glucose as the only carbon source

(SIglu) and 2) 54 minimal environments that contain different

unique carbon sources (SI54) (Barve et al. 2012). Enzymes cat-

alyzing highly superessential enzymes tend to be present in

most prokaryotic genomes while enzymes catalyzing less

superessential enzymes are less common (Barve et al. 2012).

There is a positive association between the SIglu of a metabolic

reaction and the fraction of prokaryotic genomes that carry a

gene coding for an enzyme known to catalyze the reaction

(Spearman’s q ¼ 0.444, P< 2.2� 10�16, n¼ 548). This as-

sociation is also found for SI54 (Spearman’s q ¼ 0.356,

P< 2.2� 10�16, n¼ 548).

Figure 3A shows that E. coli reactions with high SIglu evolve

more slowly (Spearman’s q ¼ �0.313, P¼ 6.4� 10�14,

n¼ 548; table 1). It is possible that this association could be

explained by enzyme abundance, because superessential

enzymes tend to be highly abundant (Spearman’s q ¼
0.287, P¼ 3.7� 10�11, n¼ 510). However, the association

between SIglu and dN/dS persists in a partial correlation analysis

that controls for protein abundance (Spearman’s q¼�0.198,

P¼ 6.9� 10�6, n¼ 510; table 2). In other words, enzymes

that are difficult to bypass in a glucose minimal environment

evolve slowly, and do so independently of their abundance.

Like SIglu, SI54 quantifies how difficult it is to bypass a met-

abolic reaction, but does so for 54 different environments,

each containing one of 54 nutrients as its sole carbon source.

A reaction or enzyme has a high SI54 if its removal abolishes

viability in at least one of the 54 different environments for a

large fraction of random networks viable in these 54 environ-

ments. Enzymes with a high SI54 also evolve slowly (fig. 3B;

Spearman’s q ¼ �0.274, P¼ 6.7� 10�11, n¼ 548; table 1).

While these enzymes also tend to be highly abundant

(Spearman’s q ¼ 0.193, P¼ 1.2� 10�5, n¼ 510), the asso-

ciation persists when we control for enzyme abundance in a

partial correlation analysis (Spearman’s q ¼ �0.187,

P¼ 2.1� 10�5, n¼ 510; table 2).

Reactions highly superessential in a glucose-minimal envi-

ronment tend to carry a high metabolic flux in this environ-

ment (Spearman’s q ¼ 0.500, P< 2.2� 10�16, n¼ 548).

Metabolic flux is thus an additional potentially confounding

factor for the observed relationship between SIglu and evolu-

tionary rate. However, a partial correlation analysis shows that

enzymes with high SIglu still evolve more slowly after control-

ling for metabolic flux (Spearman’s q ¼ �0.197, P¼ 3.4�
10�6, n¼ 548; table 2). Similarly, the effect of SI54 on enzyme

evolution still holds after controlling for metabolic flux

(Spearman’s q ¼ �0.190, P¼ 7.4� 10�6, n¼ 548; table 2).

The Multifunctionality of an Enzyme Does Not Affect Its
Rate of Evolution

Metabolic enzymes can be classified as either specialists or

generalists (Nam et al. 2012). A specialist enzyme catalyzes

FIG. 3.—Enzymes with high superessentiality evolve more slowly. (A) Scatter-plot showing the negative association between enzyme superessentiality in

glucose (SIglu) and evolutionary rate measured as dN/dS (Spearman’s q ¼ �0.313, P¼6.4�10�14, n¼548). (B) Scatter-plot showing the association

between enzyme superessentiality in 54 different carbon sources (SI54) and dN/dS (Spearman’s q ¼ �0.274, P¼6.7�10�11, n¼548). In both panels, a

dashed line shows the best linear fit to the data and is provided as a visual guide. Note the logarithmic scale of the y axes.

Aguilar-Rodr�ıguez and Wagner GBE

3082 Genome Biol. Evol. 10(11):3076–3088 doi:10.1093/gbe/evy234 Advance Access publication October 23, 2018



one specific chemical reaction, while a generalist enzyme cat-

alyzes more than one reaction. One might expect that gen-

eralist enzymes evolve more slowly than specialist enzymes,

since mutations in the genes encoding them may affect more

than one metabolic pathway or function. This would at least

be predicted by existing work on mutations that are pleiotro-

pic, that is, they affect multiple different phenotypes (Stern

and Orgogozo 2008). For example, theoretical considerations

(Baatz and Wagner 1997; Orr 2000; Otto 2004), and empir-

ical evidence in yeast suggest that highly pleiotropic mutations

tend to be more deleterious than less pleiotropic mutations

(Cooper et al. 2007).

For metabolic enzymes in E. coli, we find that generalist

enzymes have a lower average evolutionary rate (1.241;

n¼ 216) than specialist enzymes (1.308; n¼ 424), but the

difference between these two enzyme categories is not sig-

nificant (Wilcoxon rank-sum test, P¼ 0.804). Thus, there is no

connection between multifunctionality or pleiotropy on the

one hand, and evolutionary rate on the other hand, at least

for E. coli metabolic enzymes.

Principal Component Regression Analysis

Finally, we performed a principal component regression,

which is an established method to study the relative contribu-

tions of different determinants of protein evolutionary rates

(Drummond et al. 2006). Principal component regression

computes new variables, called principal components, which

are linear combinations of the original predictor variables, and

then regresses the response variable against them. We per-

formed principal component regression using protein abun-

dance, enzyme connectivity, betweenness centrality,

metabolic flux, SIglu, SI54, and enzyme multifunctionality as

potential predictor variables. Table 3 shows the numerical

data from the analysis, while figure 4 shows these data

graphically.

We found four significant principal components. The com-

ponent explaining the largest fraction of the variance in dN/dS

(�13%) was mostly determined (>60%) by roughly equal

contributions from both superessentiality indices (SIglu and

SI54). Metabolic flux determined �20% of the variance in

dN/dS explained by this component. Protein abundance con-

tributed �70% of the variance explained by a principal com-

ponent explaining�9% of the variance in the rate of enzyme

evolution. Network structure (enzyme connectivity and be-

tweenness centrality) was the main contributor (�78%) to

a principal component explaining �4% of the variance in

dN/dS. Finally, enzyme multifunctionality mostly determined

(78%) a component explaining just �2% of the variance in

evolutionary rate.

While protein abundance explained the largest fraction of

the total variance in the rate of evolution (7.2%), the two

superessentiality indices together explained �9% of the var-

iance (table 4). Network topology explained �5%, metabolic

flux explained�3%, and enzyme multifunctionality explained

�2% of the total variance in dN/dS. In summary the main

determinant of the rate of enzyme evolution is superessen-

tiality in combination with protein abundance, followed by

metabolic network structure. Enzyme multifunctionality has

a very minor effect on enzyme evolution.

Discussion

Natural selection on the function of a molecular network

constrains how the network’s genes evolve. Conversely,

changes in network genes affect the function of the whole

network. In other words, the evolution of a network’s parts

affects the evolution of the whole network, and vice versa.

Table 3

Results from the Principal Component Regression Analysis

Principal Components

1 2 3 4 5 6 7 All

Percentage of explained variance in

dN/dS 12.55*** 3.52*** 1.77*** 8.51*** 0.21 0.01 0.28 26.85

Percent contributions of each variable

Protein abundance 7.3 2.3 5.9 71.9 3.5 8.8 0.1

Enzyme connectivity 3.0 42.2 1.9 10.9 0.0 41.8 0.2

Betweenness centrality 6.4 36.2 8.8 2.2 2.9 42.1 1.4

Superessentiality index, SIglu 32.4 5.0 0.0 2.7 2.5 4.6 52.7

Superessentiality index, SI54 29.6 3.6 0.8 6.2 15.1 1.3 43.3

Metabolic flux 21.2 0.2 5.0 0.4 69.7 1.3 2.3

Enzyme multifunctionality 0.1 10.4 77.5 5.7 6.2 0.0 0.0

NOTE.—We indicate in bold the contributions of a variable to a principal component when >20%.

Significance levels:

*P< 0.05, **P<0.001, ***P<10�5.
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These two types of influence are entangled, because changes

in network function that result from changes in network

genes can themselves impose new evolutionary constraints

on network genes. Here, we study how the structure and

function of a large metabolic network (the whole) influences

the evolution of its constituent enzymes (the parts). In doing

so, we perform a comprehensive exploration of the metabolic

determinants of enzyme evolution. Our analysis is part of a

research tradition aiming to understand the molecular evolu-

tion of living systems by relating the evolutionary rates of

genes with their function and position in a biological network

(Fraser et al. 2002; Hahn et al. 2004; Vitkup et al. 2006;

Alvarez-Ponce 2012, 2014; Alvarez-Ponce and Fares 2012;

Zhang and Yang 2015). An advantage of using metabolic

systems in such studies is that the relationship between the

functions of the enzymes and the network is especially well

understood (Papp et al. 2011; Wagner 2012; Bordbar et al.

2014).

First, we show that the position of an enzyme in the E. coli

metabolic network does not affect its rate of evolution.

Previous studies have found significant but very modest cor-

relations between some topological network parameters

and evolutionary rates in other metabolic networks and

pathways (Vitkup et al. 2006; Lu et al. 2007; Greenberg

et al. 2008; Hudson and Conant 2011). However, in the E.

coli metabolic network, central and highly connected

enzymes do not evolve at different rates when we control

for their abundance. This corroborates previous findings in

small-scale metabolic systems of mammals (Hudson and

Conant 2011; Colombo et al. 2014) and E. coli (Hahn

et al. 2004). Other studies in yeast (Vitkup et al. 2006) and

Drosophila (Greenberg et al. 2008) have found that the con-

nectivity of an enzyme influences its rate of evolution.

However, even where significant, this association is very

weak. Such a weak or absent association is not unreason-

able, considering the “bow-tie” architecture of a metabolic

network (Csete and Doyle 2004; Friedlander et al. 2015),

where numerous input pathways of nutrient conversion

feed into a highly interconnected central core metabolism,

which feeds many output biosynthetic pathways. Some

of these biosynthetic pathways are linear sequences of

reactions that produce essential and complex biomass

molecules, such as amino acids or enzyme cofactors. A

loss-of-function mutation of an enzyme in one such linear

and peripheral pathway would be lethal (Wagner 2005),

even though the enzyme is not highly connected. In other

words, mutations in both central and peripheral enzymes

can be deleterious, albeit for different reasons.

Metabolic flux control measures how perturbations to an

enzyme’s activity affect the steady-state global flux of a path-

way (Kacser and Burns 1973), and it can also explain some

variation on enzyme evolutionary rates. Flux control is not

uniformly distributed in metabolic networks. Upstream

enzymes in linear metabolic pathways and enzymes in bifur-

cation points of branched pathways tend to have higher flux

control (Flowers et al. 2007; Wright and Rausher 2010;

Rausher 2013). Over short evolutionary time scales, these

enzymes are subjected to higher selective constraints, as

well as positive selection (Eanes 2011; Dallolio et al. 2012;

Olson-Manning et al. 2013; Hermansen et al. 2015). These

observations show how selection on pathway function can

constrain the evolution of individual enzymes. However, these

evolutionary pressures are not stable because flux control can

change considerably over longer evolutionary periods

(Orlenko, Hermansen, et al. 2016; Orlenko, Teufel, et al.

2016; Orlenko et al. 2017). Unfortunately, the absence of

metabolic-flux control measures for genome-scale metabolic

Table 4

Percentage of total Variance in dN/dS Explained by Each Variable in the

Principal Component Regression Analysis

Protein abundance 7.238

Enzyme connectivity 2.825

Betweenness centrality 2.432

Superessentiality index, SIglu 4.623

Superessentiality index, SI54 4.540

Metabolic flux 2.934

Enzyme multifunctionality 2.253

FIG. 4.—Principal component regression on the rate of enzyme evo-

lution (dN/dS). For each principal component, the height of the bar repre-

sents the percent of variance in dN/dS explained by the component. The

relative contribution of each variable to a principal component is repre-

sented with different colors. This analysis was performed with 485 genes

for which information for all variables is available. Table 3 contains the

numerical data used to draw this figure.
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networks prevented us to explore their impact on enzyme

evolution in this study.

In agreement with previous studies in other organisms

(Vitkup et al. 2006; Colombo et al. 2014), we find that

enzyme-specific metabolic flux—the rate at which a reaction

converts substrates into products—affects enzyme evolution

by itself. We find that enzymes catalyzing reactions with high

flux tolerate fewer amino acid substitutions than enzymes

catalyzing reactions with lower fluxes. In other words, the

function of a metabolic network, that is, biomass production,

constrains the evolution of network genes through amino

acid substitutions in a nonuniform way: Enzymes with high

flux experience greater constraints than enzymes with low

flux, since they are more important for network function.

In any one metabolic network, a loss of function mutation

in a given enzyme may be lethal (in a specific environment),

because it abolishes the network’s ability to produce biomass.

In other metabolic networks with the same phenotype but a

different metabolic genotype—a different complement of

enzyme-coding genes—the enzyme may not be essential, be-

cause alternative reactions or pathways can assume its role.

The extent to which an enzyme or reaction is easy or difficult

to bypass is a function of metabolic biochemistry, and can be

quantified through a reaction’s superessentiality index (Barve

et al. 2012). Highly superessential reactions (enzymes) are

difficult to bypass and their loss would be lethal in many dif-

ferent genetic backgrounds, while the loss of lowly superes-

sential enzymes would be lethal in only a few backgrounds.

We find that highly superessential enzymes evolve more

slowly. Relevant for this observation is that the metabolic

genotypes of bacteria can evolve very rapidly. That is, bacterial

enzymes can rapidly get lost via gene deletion or loss-of-

function mutations, and new enzymes may be acquired via

horizontal gene transfer (Ochman et al. 2000). For example,

closely related E. coli strains may differ in >20% of their

genomes, and in hundred or more metabolic genes, a dif-

ference that is partly due to horizontal gene transfer and

gene deletions (Ochman and Jones 2000; Wagner 2009).

On evolutionary time scales, bacterial metabolic enzymes

can thus find themselves operating in different genotypic

backgrounds, such that differences in superessentiality mat-

ter for their rate of evolution, as our data show.

Superessentiality might influence the rate of evolution less

in organisms whose metabolic genotypes change more

slowly.

Finally, we also tested if generalist enzymes, which catalyze

many reactions, are subjected to higher selective constraints

than enzymes just catalyzing a single chemical reaction, as

theoretical expectations would predict (Baatz and Wagner

1997; Orr 2000; Otto 2004). Previous studies have found

that multifunctional genes in yeast evolve slowly (He and

Zhang 2006; Salath�e et al. 2006), corroborating theoretical

expectations (Waxman 1998), although the magnitude of this

effect is very modest. In mammals, multifunctional proteins

also tend to be constrained, and the more functions a protein

is involved in, the lower is its rate of evolution (Podder et al.

2009). However, generalist (multifunctional) enzymes do not

evolve more slowly, indicating that pleiotropy is not constrain-

ing enzyme evolution, at least in E. coli.

We note that myriad other, nonmetabolic factors may

influence the evolution of enzyme-coding genes. These in-

clude protein structure (Plotkin et al. 2012), chaperone tar-

geting (Bogumil and Dagan 2010; Williams and Fares 2010;

Bogumil et al. 2012; Pechmann and Frydman 2014;

Aguilar-Rodr�ıguez et al. 2016; Kadibalban et al. 2016),

and many others, but the dominant factor is usually gene

expression level (Alvarez-Ponce 2014; Zhang and Yang

2015). It is thus remarkable that the associations between

evolutionary rate and metabolic flux or superessentiality are

moderately high, comparable in strength to that between

evolutionary rate and mRNA expression level, and only be-

low the association between evolutionary rate and protein

abundance.

In conclusion, our analysis of the rates of evolution of

enzyme-coding genes in the E. coli metabolic network shows

how a gene’s role in the function of a larger network can

affect its evolution. In doing so, we show how a systems-level

perspective can help understand the factors that contribute to

protein evolution.
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