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Abstract

The underlying mechanisms for how maternal perinatal obesity and intrauterine environment 

influence fetal development are not well understood and thus require further understanding. In this 

paper, energy balance concepts are used to develop a comprehensive dynamical systems model for 

fetal growth that illustrates how maternal factors (energy intake and physical activity) influence 

fetal weight and related components (fat mass, fat-free mass, and placental volume) over time. The 

model is estimated from intensive measurements of fetal weight and placental volume obtained as 

part of Healthy Mom Zone (HMZ), a novel intervention for managing gestational weight gain in 

obese/overweight women. The overall result of the modeling procedure is a parsimonious system 

of equations that reliably predicts fetal weight gain and birth weight based on a sensible number of 

assessments. This model can inform clinical care recommendations as well as how adaptive 

interventions, such as HMZ, can influence fetal growth and birth outcomes.

Keywords

System Identification; Optimization; Biomedical Modeling

1. Introduction

High infant birth weight is associated with subsequent childhood and adult-onset obesity, 

type 2 diabetes, cardiovascular disease, and some forms of cancer [1–8]. High maternal body 

mass index (BMI) and excessive gestational weight gain (GWG) are independent predictors 

of higher infant fat mass and, in turn, large for gestational age birth weight [9]. High BMI 
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and GWG are also associated with complications such as intrauterine growth restriction, 

cesarean delivery, and preterm birth [1, 10, 11]. Nearly 70% of pregnant women in the 

United States failed to adhere to the Institute of Medicine guidelines for appropriate GWG, 

with 50% or more women exceeding guidelines [12]. Given the increased risk for high infant 

birth weight among women who are obese or have excessive GWG, research is warranted to 

better understand the underlying mechanisms of fetal growth, and effcient interventions are 

needed to regulate maternal and fetal weight [13].

Our prior work has described a conceptual framework for managing GWG in over-weight/

obese women [14] and for regulating infant birth weight [15]; this framework relies on 

methods from control systems engineering to develop decision policies that optimize the 

adaptation for participant response. The implementation of such a framework calls for 

developing advanced control systems which rely on dynamical models that are able to 

predict individualized responses to different intervention components and subsequently 

predict GWG, the intrauterine growth profile, and infant birth weight [15–17]. In particular, 

one important end use of a dynamical systems model of intrauterine fetal growth is as the 

internal model in a model-based controller that accomplishes an optimized, adaptive 

intervention [18–20].

Energy balance for modeling weight and body composition change has been examined 

extensively, including among pregnant women [16, 21]. Modeling intrauterine growth has 

received some prior examination [22]; however, further modeling efforts are needed to better 

understand how prenatal status ‘programs’ fetal growth [23, 24]. To address this gap, we use 

intensive longitudinal data from Healthy Mom Zone (HMZ) [14], an ongoing trial, which is 

an individually-tailored, adaptive intervention to manage weight gain in overweight and 

obese pregnant women. While the model developed in this paper extends from prior work 

[22, 25], it grounds a more complete theoretical understanding for how external maternal 

factors (e.g., daily energy intake and physical activity) influence fetal growth profiles. The 

following are number of particular advancements made in this work:

• A single-output energy balance model. Building from the model in [22], the 

proposed energy balance model in this work features a single, easy-to-measure 

output (total fetal weight). In addition to grounding a better theoretical 

understanding of external factors and pre-existing conditions directly influence 

intrauterine fetal weight growth, this reformulation highlights less expensive and 

invasive requirements for estimating individualized model parameters; 

measurements of total fetal weight can be far more reliable than measurements of 

body composition (more so in the first trimester [26]).

• Application of the Second Law of Thermodynamics. The fetal energy balance 

model in this work provides a succinct, well-established accounting for the 

impact of entropy on fetal growth. Despite that the idea of entropy of new tissue 

formation has originated in Christiansen et al. [25], the work in [25] features an 

obesity model and the formulation cannot be directly re-purposed for quantifying 

fetal growth dynamics. Part of the contribution in this work is to merge efforts 

from Christiansen et al. and Thomas et al.: to produce a more rigorous and 

complete reformulation of fetal growth.
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• Use of HMZ study data. Utilizing data from the HMZ study [14], the developed 

fetal model presents a method for quantifying the impact of daily changes of 

physical activity on fetal growth. Moreover, using intensive, longitudinal 

participant data from HMZ, it is possible to estimate and validate the general 

first-principles fetal model structure developed in this work, as well as estimate a 

logistic profile of fetal fat mass accretion whose structure is supported by the 

literature.

• An improved placental volume model. As is discussed in Section 2.3, in this 

work, the curvature of the proposed placental volume model is more 

independently parameterized, which gives a more intuitive and easier model to 

estimate. This model also implicitly enforces the initial condition at conception; 

hence, for model estimation and simulation, the proposed model does not require 

a placental volume measurement for establishing an initial condition.

In this paper, we present parameter estimation and model validation results drawn from four 

representative HMZ participants. The final fetal energy balance model parameters are 

estimated by solving a nonlinear least squares optimization problem; the set of estimated 

model parameters is then used to generate simulations for model validation.

This paper is organized as follows: Section 2 presents the underlying modeling assumptions 

and describes the derivation of the proposed fetal energy balance model. Section 3 features 

the optimization problem that accomplishes model parameter estimation from ultrasound 

measurements, followed by a presentation of the metrics and criteria used for model 

validation. Section 4 summarizes conclusions and future work.

2. Fetal Energy Balance Model

We begin by outlining important assumptions and simplifications leading to the final 

proposed fetal energy balance model. Next, building on insights from prior researchers [22, 

25], we establish a first-principles energy balance model of fetal growth. Following the first 

law of thermodynamics, this fetal energy balance model applies the conservation of energy 

principle. Further, the presented derivation explicitly accounts for the energy loss due to new 

fetal tissue formation, as dictated by the second law of thermodynamics from which it 

follows that the conversion of energy requires energy. Finally, explicitly defined logistic 

growth functions are established to estimate the rate of fetal fat mass deposition and the 

placental volume.

2.1. Model Development

2.1.1. Initial Assumptions—The following initial assumptions and simplifications lead 

to the proposed fetal model (equation (21)):

1) Fetal body mass is divided into two main components: fat and fat-free tissues.

2) Fetal energy expenditure due to diet-induced thermogenesis is negligible.

3) Fetal physical activity in the womb is negligible.
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4) The rate of fetal fat-mass deposition is only regulated by the total fetal body 

mass [25].

5) The contribution of daily maternal diet to fetal nutrition substantially exceeds 

additional nutrient supply originating from maternal body components.

6) Fetal energy imbalances are always positive and follow from the diet of a 

healthy, well-nourished mother.

7) The proportion of fetal body fat that contributes to expenditure is equal to that of 

fetal fat-free tissues.

Following the derivation of the fetal model in Sections 2.1.2 and 2.1.3, a discussion of the 

rationale for assumptions 6) and 7) is provided.
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Nomenclature

Constants

λFM f
Energy stored per unit fetal fat mass

[kcal/kg]

λFFM f
Energy stored per unit fetal fat-free mass

[kcal/kg]

Parameters

eFM f
, eFFM f

Efficiencies of conversion of excess energy to new fat and fat-free tissues, 
respectively [1]

α Proportionality constant [d/kcal/ml]

γ Conversion coefficient [ml−1]

μ Daily energy expenditure per unit fetal body mass [kcal/kg/d]

Variables

t Gestational age [days]

Cf(t) Daily energy accumulation in the fetus [kcal]

If(t) Daily fetal energy intake resulting from maternal energy intake [kcal/d]

Ee f
t Total fetal energy expenditure

[kcal/d]

EM f
t Energy required to maintain the fetus life

[kcal/d]

Ec f
Energy required for the conversion of excess energy into new fetal tissue

[kcal/d]

FMf(t) Fetal fat mass [kg]

FFMf(t) Fetal fat-free mass [kg]

Wf(t) Total fetal weight [kg]

fr(Wf) Rate of fetal fat mass deposition [1]

Wm(t) Total maternal weight [kg]

Ef(t) Total energy to build the fetal tissue up to day t [kcal]

EFM f
t Total energy to build the fetal fat tissue up to day t

[kcal]

EFFM f
t Total energy to build the fetal fat-free tissue up to day t

[kcal]

m(t) Maternal energy intake [kcal/d]

PA(t) Maternal physical activity [kcal/d]

P(t) Placental volume [ml]

g(t) Glycemic impact of intake [1]

Kf(t) Fetal gain coefficient from intake [kg-d/kcal/ml]

τf(Wf) Time constant of fetal weight growth [d]

ef(Wf) Overall efficiency of energy conversion [1]

2.1.2. Energy Balance Equation—The basis for determining fetal growth is a daily 

energy balance based on the First Law of Thermodynamics that takes into account the 

metabolizable energy intake If (provided by the mother) and fetal energy expenditure Ee f
t

to define a rate of accumulation of the total fetal energy Cf(t). Considering the fetus as the 

system of interest, we have
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Rate of Energy
Accumulation = Energy

Intake Per Day − Energy
Expenditure Per Day

dC f t
dt = I f t − Ee f t

(1)

with

Ee f t = EM f t + Ec f t (2)

accounting for fetal energy expenditure towards maintaining and sustaining life (EM f
) and 

the energy required for the conversion of excess energy into new tissue (Ec f
).

Considering a two-compartment energy balance model (i.e., total body mass divided into fat 

and fat-free mass components), the positive rate of change of the total combustible fetal 

energy content, dCf/dt, can also be calculated by accounting for changes of fetal body 

components [22], giving

dC f t
dt = λFM f

dFM f t
dt + λFFM f

dFFM f t
dt (3)

which, in turn, when combined with (1), yields

λFM f

dFM f t
dt + λFFM f

dFFM f t
dt = I f t − Ee f t (4)

with FMf(t) and FFMf(t) denoting the total fetal fat and fat-free masses, respectively; λFM f

and λFFM f
 are the energy densities of the fetal fat and fat-free components, respectively (i.e., 

energy content per unit fat/fat-free mass). As depicted in equation (4), both λFM f
 and λFFM f

are assumed time-invariant.

Equation (4) presents the basic fetal energy balance result following directly from the first 

law of thermodynamics, as similarly highlighted in the Thomas et al. (2008) model [22]. 

However, equation (4) involves terms that need to be further defined, are difficult to measure 

experimentally, or expensive to track in an intervention setting. More specifically, in this 

work, profiles describing the evolution of the fetal body composition (FM and FFM), portion 

of maternal energy intake contributing to fetal nutrition, and the influence of maternal 

physical activity are all terms that are explored and expanded further from (4). Moreover, the 

expenditure term, Ee f
t , requires estimates for the efficiency of energy conversion into new 
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fetal fat and fat-free tissues (energy loss due to entropy); these efficiencies are difficult and 

expensive to measure experimentally. Furthermore, given current imaging technologies that 

build from well-studied sonographic methods to estimate total fetal weight, it is 

advantageous to reformulate the basic fetal energy balance equation shown as (4) in terms of 

the total fetal body mass (also referred to as total fetal weight, Wf(t)). In the following 

section, the primary aim is to establish a parsimonious fetal energy balance model that 

proves to overcome these challenges.

2.1.3. Effciency of Energy Conversion & Energy Balance Reformulation—The 

goal of this section is to formulate equation (4) in terms of total fetal weight. To achieve this 

outcome, we built from concepts used to develop human obesity models by Christiansen et 
al. (2005) [25]. The time-varying rate of fetal fat mass deposition (with respect to total fetal 

weight) is defined as follows:

f r W f =def lim
ΔW f 0

ΔFM f
ΔW f

=
dFM f
dW f

(5)

which leads to the following expressions for the rate of change of FMf and FFMf in terms of 

total fetal weight Wf,

dFM f
d f =

dFM f
dW f

dW f
dt ≜ f r W f

dW f
dt (6a)

dFFM f
dt ≜ d

dt W f − FM f = 1 − f r W f
dW f

dt (6b)

With an explicitly defined fr(Wf), the components FMf(t) and FFMf(t) become explicit 

functions of the total fetal weight, Wf(t). Using equations (3) and (6), we now have

dC f
dt = λFM f

f r W f + λFFM f
1 − f r W f

dW f
dt (7)

Second, we also define the efficiencies of new fetal tissue formation arising from the second 

law of thermodynamics as follows [27]:

efficiency of fat mass deposition = eFM f
=def λFM f

dFM f
dEFM f

(8a)
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efficiency of fat‐free mass deposition = eFFM f
=def λFM f

dFFM f
dEFFM f

(8b)

where dE f ≜ dEFM f
+ dEFFM f

 captures the total energy required to increase the total fetal 

body energy content by dCf. The efficiencies in (8) provide a useful parametric 

representation for the energy loss due to new fetal fat and fat-free tissue formation, 

respectively. Thus, from equations (6) and (8) we have

dE f
dt ≜

dEFM f
dt +

dEFFM f
dt =

λFM f
eFM f

dFM f
dt +

λFFM f
eFFM f

dFFM f
dt

=
λFM f

f r W f

eFM f

+
λFFM f

1 − f r W f

eFFM f

dW f
dt

(9)

As first realized by [25], the dynamic rate of change of Ef can be calculated by establishing 

the available energy for new fetal tissue deposition; i.e., the difference between the fetal 

energy intake and the energy expenditure required for sustaining and maintaining life of 

existing fetal tissues, thus

dE f
dt ≜ I f − EM f

(10)

Combining (9) and (10) gives

dW f
dt =

dW f
dE f

dE f
d f =

I f − EM f

λFM f
f r W f /eFM f

+ λFFM f
1 − f r W f /eFFM f

(11)

which, when substituted into (7), gives

dC f
dt =

λFM f
f r W f + λFFM f

1 − f r W f

λFM f
f r W f /eFM f

+ λFFM f
1 − f r W f /eFFM f

e f W f

I f − EM f
(12)

Where now the ratio between dCf/dt and (If − EM f) represents the overall time-varying 
thermodynamic efficiency of energy conversion into new fetal tissue, 0 ≤ ef(Wf) ≤ 1; this 

was first similarly established by [25], however, with a constant fr assumed. Inserting 
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equation (2) into equation (1) and contrasting with (12) provides an accounting method for 

the energy loss due to new tissue formation

Ec f t = 1 − e f W f I f t − EM f
t (13)

with ef(Wf) per equation (12).

To establish the If(t) term in (12), it is known that the fetal energy intake through the 

placenta (whose volume is denoted by P(t)) originates mainly from two nutritional sources: 

maternal diet, m(t), and maternal body components (e.g., muscles, fats, bones, etc.) [28], 

hence giving

I f t = γ t f t m t + αW t Wm t P t (14)

where Wm(t) is daily total maternal weight; αW(t) is a function that captures the daily 

fraction of maternal body mass directly contributing to fetal nutrition ([=] kcal/kg/d). g(t) 
denotes the daily glycemic impact of intake (ranges from 0 to 1); γ(t) is a conversion 

coefficient that is associated with maternal physical activity, as postulated in equation (22) 

(and discussed later in the paper). However, for the case of a healthy, non-fasting and well-

nourished mother, it may be accepted to assume that the basic nutritional needs for fetal 

growth can be met by daily maternal diet alone [29, 30]. Hence, it is assumed that g(t)m(t) 
≫ αW(t)Wm(t) ∀t, giving (identical to [22])

I f t = γ t m t g t P t (15)

The fetal energy expenditure term in (12) (EM f
t ) can be considered, for simplicity, as a 

direct proportion of total fetal body mass [22]:

EM f
t = μ FM f t + FFM f t ≜ μW f t (16)

where μ is the daily energy expenditure per unit fetal body mass. Hence, from (7) and (12) 

we have

λFM f
f r W f /eFM f

+ λFFM f
1 − f r W f /eFFM f

dW f t
dt = I f t − EM f

t (17)

Applying equations (15) and (16) gives
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λFM f
f r W f /eFM f

+ λFFM f
1 − f r W f /eFFM f

dW f t
dt = γ t m t g t P t − μW f t (18)

Furthermore, dividing equation (18) by μ and defining

K f t = γ t g t
μ (19)

τ f W f =
λFM f f r W f /eFM f

+ λFFM f
1 − f r W f /eFFM f

μ (20)

yields a final fetal energy balance equation in terms of the total fetal weight:

τ f W f
dW f t

dt + W f t = K f t m t P t (21)

Equation (21) features an intrauterine fetal weight growth model that conforms with the 

description of a first-order quasi Linear Parameter-Varying (quasi-LPV) system whose 

scheduling variable is the output, i.e., the total fetal weight, Wf(t). In equation (21), the 

growth parameter τf is the time constant [31] which characterizes the speed of response. The 

parameters γ(t) and g(t) appearing in equation (19) are discussed in the explanation of 

equations (22) and (30), respectively.

In addition to achieving the goal of reformulating equation (4) in terms of a single, 

measurable output variable (i.e., the total fetal weight), equation (21) features an intuitive, 

well-understood first-order dynamical systems model structure that is more amenable to 

system identification and control. A further outcome following from the development of (21) 

is that estimates for eFM f
 and eFFM f

 can be determined directly from ultrasound 

measurements.

Following the development of the model in equation (21) we make the following remarks:

• Given that the exact mechanism governing the influence of maternal physical 

activity on fetal weight is yet to become su ciently understood, we follow 

Thomas et al., 2008 [22] in assuming that maternal physical activity influences 

the placenta function, and thereby influences the fetus’ nutrition. This is further 

established in Clapp [32] from which it is known that the effect of maternal 

exercise on fetal growth depends on numerous factors such as type, frequency, 

intensity, and the time point in pregnancy when the exercise is performed. Hence, 

for simplicity, we assume that, over a baseline, maternal physical activity is 
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proportional to placental function, which is captured via the γ(t) parameter in 

(21); that is

γ t = αPA t + β (22)

where PA(t) denotes the daily maternal physical activity, α is the proportionality 

constant, and β is the established baseline. Following the literature review 

presented by [22], we further assume that α ≤ 0 and β ≥ γ > 0 ∀ t ≥ 0.

• It follows from assumption 6) that dWf/dt ≥ 0 during gestation; thus, from 

equation (21) we have

K f t = γ t g t
μ ≥

W f t
m t P t ∀t during gestation (23)

providing one important criterion for model validation. Additionally, the 

inequality in (23) can serve as an approximate (yet useful) diagnostic tool 

indicating rate of fetal growth (as will be discussed later in Figure A5).

• Kennaugh and Hay (1987) [33] reported estimates where μFM f
 and μFFM f

 need 

not be averaged into a single proportion of energy expenditure (energy 

requirement); in which case, contrary to assumption 7), if μFM f
≠ μFFM f

, it can 

be shown that equation (21) becomes

τ f′ W f
dW f t

dt + W f t = K f′ t m t P t +
μFFM − μFM f

μFFM f
∫

0

W f t

f r W f dW f

(24)

with

K f′ f = γ t g t
μFFM f

, τ f′ W f =
λFM f

f r W f /eFM f
+ λFFM f

1 − f r W f /eFFM f
μFFM f

where μFM f
 and μFFM f

 are the proportions of energy expenditure corresponding 

to maintaining and sustaining life of fetal fat and fat-free tissues, respectively. 

Nonetheless, given the desire for a parsimonious model, we continue to assume 

that μFM f
= μFFM f

= μ, where equation (21) applies.
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• The model parameters γ(t), eFM f
, and eFFM f

 are assumed to vary on an 

individual level. According to the formulation of (21), these parameters may 

capture between- and/or within-group differences (e.g., genetic variations [34], 

exercising vs. non-exercising [22]).

2.2. Rate of fetal fat mass deposition

From Section 2.1, the importance of understanding the rate of fetal fat deposition, fr(Wf), as 

a key variable to attaining a predictive fetal energy balance model is now clear. From data 

presented and analyzed in a fetal body composition study by Demerath et al. (2016) [35], 

good a priori knowledge is now available to establish the dependence of fr on Wf(t). 
Literature also strongly suggests that the accretion of fetal fat starts accumulating after 26–

30 weeks gestation [22, 36]; to this effect, the following piecewise modified logistic 

equation can be considered

FM f t = FM f W f t =

c f r

1 + e
−a f r

W f t − b f r

+ C t ≥ t0

0 t < t0

(25)

with identifiable parameters a f r
, b f r

, c f r
, and initial time, t0, estimated as described in 

Section 3; C is a constant. When FMf(W f 0
) = 0 at t0, we get

C = −
c f r

1 + e
−a f r

W f 0
− b f r

where W f 0
 is the initial weight at the initial time t0. From equations (5) and (25), fr is now a 

well-defined function; namely,

f r W f =
a f r

c f r

e
−a f r

W f t − b f r

1 + e
−a f r

W f t − b f r

2 t ≥ t0

0 t < t0

(26)

For simplicity, in this work we will assume that t0 = 0 (or W f 0
= 0). Finally, given a well-

defined fr (equal to (26) or otherwise), estimations of the fetal body components readily 

follow from equation (6); namely,
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FM f t = ∫
0

W f t

f r W f dW f (27)

FFM f t = W f t − ∫
0

W f t

f r W f dW f (28)

2.3. Placental Volume Growth Model

Following Thomas et al. (2008) [22, 37], we consider the placental volume P(t) as the most 

suitable variable to characterize placental growth. There is a substantial literature where 

placental development and growth profiles are presented and characterized throughout 

gestation for humans [38–40] and animals [41]. The placenta grows in three phases: first, a 

‘lag’ phase in which cells begin to form; second, an exponential growth phase where cells 

continue to form and rapidly divide; and finally, due to space restrictions, a deceleration in 

the growth rate is expected in the final weeks towards birth. These three growth phases are 

adequately captured with a logistic function [22]. Figure 1 features a standard logistic 

growth profile where these three phases are depicted.

Similar to equation (25), the ‘modified’ logistic function is considered

P t = cP
1

1 + e
−aP t − bP

− 1
1 + e

aPbP
∀ t ≥ 0 (29)

with P(0) = 0 and lim
aPbP ∞

lim
t ∞

P t = cP lim
aPbP ∞

e
aPbP

1 + e
aPbP

= cP, where aP, bP, and cP 

(cP is the ‘ultimate’ carrying capacity) are identifiable model parameters from the estimation 

procedure described in Section 3.2; it follows from Figure 1 that aP, bP, cP ≥ 0. The 

algebraic model in equation (29) differs from the placental volume in [22] in that its 

curvature features are more independently parameterized: the pa rameter aP assigns the rate 

of growth, bP assigns the inflection point, and cP assigns the ultimate carrying capacity or 

the scale of the profile (note cP = 1 in Figure 1 for illustration). In [22], the proposed model 

does not apply when the initial condition is P(0) = 0, and hence, requires an additional 

estimated ultrasound measurement of EPV. Moreover, the parameters (including the initial 

condition) of the model in [22] play simultaneous role in determining its final curvature 

features, which makes it less intuitive.

It has been reported that the size and growth rates of the placenta are associated with 

physical activity [22, 32] and additional genetic factors [42]. In the presence of more 

intensive ultrasound measurements, the carrying capacity parameter cP can be further 

investigated such that moderations of placenta size over time by physical activity or genetic 
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differences are more understood; this also applies to the growth rate aP and mid-point bP 

parameters. In our parameter estimation, we assume constant parameters aP , bP, and cP such 

that averaged, fixed-effects are captured.

3. Parameter Estimation and Model Validation

3.1. HMZ Estimation Data

The Healthy Mom Zone (HMZ) study [14] is an ongoing individual-tailored behavioral, 

adaptive intervention for managing weight in pregnant women with overweight and obesity. 

The target sample is 30 pregnant women who are randomized to either the intervention or 

control group from approximately 8 to 36 weeks gestation. Study measures including 

weight, physical activity, and energy intake. are obtained at baseline, throughout the course 

of the intervention (e.g., daily, weekly, or monthly), and at follow-up. The detailed 

intervention protocols that includes eligibility, recruitment, intervention description, 

dosages, and measurement schedule have been published elsewhere [14]. In addition, an 

ancillary project provides six ultrasound measures used to estimate fetal weight, placental 

volume, and fetal body composition. In this section, further discussion of each estimated 

measurement is presented; four representative completed participants (n = 4; three 

overweight, one obese; mean age=30.3 years, two intervention, two control) are considered.

3.1.1. Estimated Fetal Weight—An estimated fetal weight (EFW) can be drawn from 

ultrasounds when specific biomarkers are measured as displayed in the example Figure 2. 

Using these biomarkers, one of the best known and well-established correlations that can be 

applied is the Hadlock et al. (1984–91) [43] estimation. For our model estimation, we use a 

set of six EFW measurements in addition to birth weight, as is described in more detail in 

Section 3.2. The first EFW is used to establish the upper and lower bounds for the initial 

condition (t 0, W f 0
) used for solving equation (21). In this study, on average, the first 

ultrasound measurement was taken at 14 weeks gestation, followed by five additional 

measurements each every four weeks through 34 weeks gestation. Infant’s birth weight was 

measured immediately after delivery.

3.1.2. Estimated Placental Volume—As the case with EFW, up to six ultrasound 

measurements are used to obtain the estimated placental volume (EPV) measurements using 

the Azupura et al. (2010) approximation method, for which a number of simplifying 

assumptions have been made [37]. As detailed in Section 3.2.2, EPV measurements are 

incorporated in the estimation cost function with lower emphasis than EFW measurements. 

This is justified given the following:

1) Absence of EPV measurements at or near birth. The bias that can result from 

equally emphasizing EPV measurements with EFW in (32) given the missing 

value at birth is crucial since fitting to earlier measurements only will tend to 

produce an exponential growth profile that can be, misleadingly, well-captured 

with the modified logistic equation in (29).

2) The Azpurua et al. EPV estimation method using 2D ultrasound measurements 

(similar to Figure 2) provides a rather simplified approximation (assumes 
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spherical topology) that is mainly targeted for establishing EPV in the first and 

second trimesters of pregnancy for patients with normal BMI index (in this 

paper, participants are either overweight or obese); this approximation can 

become exceedingly inaccurate at advanced gestational ages due to remaining 

technical difficulties associated with existing ultrasound technology [37].

3) The EPV approximation method in Azpurua et al. does not estimate standard 

errors; only 10th, 50th, and 90th percentile trajectories are given.

3.1.3. Fetal Body Composition—Studying ultrasound reports similar to Figure 2 

(namely, anterior abdominal wall thickness and abdominal circumference) also produced at 

least two acceptable estimates per participant for the fetal % body fat using the correlation 

presented by Bernstein and Catalano (1991) [26]. While the number of estimates can be as 

many as available ultrasounds, it is known that this estimate becomes more reliable at 

advanced gestational ages, and therefore we only consider a subset of the ultrasound 

measurements for the estimation of fetal % body fat.

3.1.4. Glycemic Index—Glycemic index (GI) was estimated using food items and 

portion sizes reported in a smart phone application. For each food, carbohydrate content (g) 

of the reported portion size was determined using the USDA Food and Nutrient Database for 

Dietary Studies (FNDDS) 2013–2014 data set. Next, a GI value for each food was 

determined by matching foods to the database generated by Flood et al. [44]. For foods 

without an exact match, the GI value of the closest matching item was used. Estimated GI of 

each day was then calculated as the average GI of all foods consumed in a day, weighted by 

their contribution to total carbohydrate intake for that day, i.e.

g t =
∑
i = 1

n
food i GI × food i carbohydrate g

∑
i = 1

n
food i carbohydrate g

day t

(30)

In equation (21), the glycemic index, g(t), is understood as a key variable for estimating fetal 

energy intake. One can generally presume a time-varying profile of g(t) on a daily scale; 

however, given that the collected g(t) time series shows to be stationary with a low variance, 

one can assume a constant g value drawn from the average of all available average daily 

estimates, g. Table 1 lists the fractional average and standard deviation of estimated daily 

glycemic index values for the four participants presented in this paper.

3.1.5. Maternal Physical Activity—As noted in section 2.1.3, equation (22) 

characterizes the assumed simple, linear dependence of the fetal energy balance model in 

(21) on maternal physical activity. It is assumed that physical activity moderates the energy 

intake to the fetus by regulating the placental function (e.g., through blood flow [45]). In the 

HMZ study, intensive objective assessment of physical activity is carried out using wrist-

worn activity tracker. Missing and implausible physical activity measurements are imputed 
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with mean replacement. These data are also used to establish the estimated daily maternal 

energy intake in equation (31).

3.1.6. Maternal Energy Intake—The daily maternal energy intake variable, m(t), can 

be reliably estimated with the availability of daily maternal weights and estimated energy 

expenditure data; the latter are estimated by correlating with daily physical activity and 

estimated/measured resting metabolic rates. As presented in Guo et al. (2016) [17], back-

calculated maternal energy intake from measured daily maternal weights and physical 

activity measures is considered; namely

m t =
−Wm t + 2 + 8Wm t + 1 − 8Wm t − 1 + Wm t − 2

12TK1
−

K2
K1

PA t + RMR t (31)

where K1 and K2 are gains (coefficients) that map changes of daily energy intake and 

physical activity, respectively, into maternal weight gain/loss; T is the sampling time; PA(t) 
and RMR(t) are the maternal daily physical activity and resting metabolic rate, respectively. 

To reduce the significant variability in equation (31), it is necessary to smooth the weight 

measurement Wm(t). A 9-day moving average filter is considered for all participants, except 

for participant D where a 13-day moving average filter is considered.

3.2. Model Estimation Problem Formulation

In this section, we establish a problem formulation for the least squares objective from 

which, with the presence of su cient estimation and validation data, model parameters can be 

estimated and validated using nonlinear regression. Next, we describe in more detail how 

emphasis is split between different measured variables, and how the nonlinear optimization 

solver is initialized. Finally, in the results section, we present simulations of the estimated 

individual models and list the mean value and standard deviation associated with all model 

parameters.

3.2.1. Problem Formulation—The parameter estimation problem statement is 

formulated as a constrained optimization problem. The prediction error is minimized over 

estimation data using a non-linear least squares objective. For model estimation, using a total 

of N EFW measurements inferred from ultrasound reports (similar to the example 

sonographic images shown in Figure 2, including birth weight), M EPV measurements, and 

L estimated body composition data points, the approach considered is to solve

min
θ

εTQε

s . t . θlb < θ < θub
(32)

where

Freigoun et al. Page 16

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ε = ΔW f 1 ⋯ ΔW f N ΔP 1 ⋯ ΔP M ΔFM f 1 ⋯ ΔFM f L
T

Q =

λ1
⋱

λN + M + L

θ = α eFM f
eFFM f

aP bP cP a f r
b f r

c f r
W f 0

T

ΔW f t = EFW t − W f t , ΔP t = EPV t − P t , and ΔFM f t = FM f t − FM f t  with 

EFW(t), EPV(t), and FM f t  denoting the estimated ultrasound measurements of the fetal 

weight, placental volume, and fetal fat mass at day t, respectively; Q is a positive semi-

definite weighting matrix used to establish the desired emphasis for model estimation. Wf(t) 
is obtained from the numerical solution of the following fetal model

τ f W f
dW f t

dt + W f t = K f t m t P t , W f t 0 = W f 0
(33a)

with

τ f W f =
λFM f

f r W f /eFM f
+ λFFM f

1 − f r W f /eFFM f
μ (33b)

K f t = γ t g
μ , γ t = αPA t + β, α ≤ 0, β ≥ γ > 0 ∀ t ≥ 0 (33c)

P t = cP
1

1 + e
−aP t − bP

− 1
1 + e

aPbP
(33d)
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f r W f = a f r
c f r

e
−a f r

W f t − b f r

1 + e
−a f r

W f t − b f r

2 ∀ t ≥ 0 (33e)

with t 0 > 0 (initial time of simulation) and m(t) per equation (31). Lower and upper 

parameter bounds, θlb and θub, are known a priori. The physical activity parameter α is 

constrained as shown in equation (33c). In this paper, for purposes of simplicity, the value of 

the β parameter is fixed at 0.000234 ml−1, which is equal to the estimated nominal value of 

γ in [22]. Thermodynamic efficiencies eFM f
 and eFFM f

, by definition, range from 0 to 1. 

Also, given the strict growth of both P(t) and FMf(t) profiles, the parameters aP, bP, cP, a f r
, 

b f r
, and c f r

 are bounded below at 0, and are unbounded above.

The optimization is initialized using nominal parameter values/ranges drawn from literature. 

For example, Christiansen et al. [25, 34] reports values for thermodynamic efficiencies 

drawn from animal studies; Thomas et al. [22] gives an estimate for the conversion 

parameter, γ(t); Demerath et al. [35] provides fat and fat-free mass profiles from preterm 

infants that are used for initializing a f r
, b f r

 and c f r
 using standard regression; finally, also 

by similar means, EPV measurements calculated from our ultrasound data are used for 

initializing aP, bP, and cP. In the following section, we report in additional detail on the final 

set of parameter values used for solver initialization.

3.2.2. Relative Weights & Initialization—In this section, the specific relative weights 

(λi in the diagonal Q matrix in equation (32)) are presented for each participant. In addition, 

the specific initialization points (initial guesses) are also established in this section. It must 

be noted that given the limited amount of estimation data and the non-convexity of the 

optimization problem, the non-linear least squares solver becomes increasingly sensitive to 

relative weights and proper initialization as multiple local minima are expected. To avoid 

undesired solutions, solver features such as multistart can be used [46].

Judicious selection of λi values is important for establishing an effective estimation cost 

function for each of the HMZ participants evaluated with this method. In the selection of λi 

values, output emphasis, scaling, number of measurements, and measurement standard 

errors are all taken into consideration. While each data point can have its specific assigned 

λi weight, we group measurements per model state (i.e., EFW, EPV, fetal FM) with one 

relative weight as λEFW : λEPV : λFM f
. For participant A, the established ratios are 1 : 0.5 : 

1, whereas for participants B, C, and D the ratios are 1 : 0.3 : 1.

Table 2 lists established initialization points for the studied HMZ participants. In the 

selection of these initializations, approximations from the literature, actual measurement 
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values, and multiple iterations are all influencing factors. More specifically, initial guesses 

for eFM f
 and eFFM f

 were drawn from [25] followed by multiple iterations (multiple 

solutions); aP was drawn from [22]; bP, cP, a f r
, b f r

, and c f r
 were initialized from examining 

the actual measurements followed by multiple iterations; finally, the initialization of α was 

established after multiple iterations.

3.2.3. Estimation Results—In this section, for each of the examined HMZ participants, 

qualitative and quantitative model fit to data are presented from simulations when actual 

measured inputs are applied to the model. In addition to the intrauterine fetal weight 

(primary model state), other model states (i.e., placental volume, body composition) and the 

evolution of intermediate constructs over time (e.g., ef(t), τf(t), and Kf(t)) are also shown. 

Finally, estimated model parameters tabulated in Table 3 are discussed.

Figures 3–5 feature simulations of the estimated models for one intervention participant 

(participant A) and one control participant (participant B). Overall, the goodness of fit does 

not appear to differ across intervention and control participants. In Figures 3–5, the 

simulation start time is selected to match the day of the first ultrasound measurement; the 

simulation is carried out through the reported actual day of birth. In these simulations, 

measurements of the two model inputs, i.e., maternal energy in-take (back-calculated EI) 

and maternal PA (direct measurements), are displayed. In addition, the model states, i.e., 

fetal weight, placental volume, and body composition, are plotted and contrasted against 

estimated ultrasound measurements to qualitatively demonstrate the goodness of fit. 

Moreover, in Figure 6 and Figure A5 from Appendix A featuring the time-varying profiles 

of τf, ef, and Kf; it can be seen that, across all individuals, both τf and ef appear to 

exponentially increase over time as the fetus continues to grow. It is noted that [22] provides 

a significantly higher estimate for the overall efficiency (ef = 0.799) than the estimated 

ranges from our data (approximately, in the 0.1–0.4 range). Finally, Table 3 summarizes the 

estimated model parameters with mean and standard deviation values for the examined 

participants.

3.3. Model Validation

Model validation is determined by goodness-of-fit metrics as well as contrasting diverse 

estimated model features such as structure, parameter ranges, and output profiles against a 
priori knowledge from the literature.

First, all simulated fetal weight and placental volume growth profiles in Figures 3, 4, A1, 

and A2 are plausible and consistent with expected growth profiles from literature (Hadlock 

et al. [43, 47, 48]; Arleo et al. [49]). Comparing model predictions against the 

experimentally observed data (ultrasounds), a summary of individualized model outputs fit 

against available data is presented in Table 4.

The Normalized Root-Mean-Square Error (NRMSE) is defined as
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NRMSEEFW = 1 −
EFW t − W f t 2
EFW t − EFW 2

(34)

is considered as the primary metric for establishing the model goodness of fit against the 

HMZ data. Wf(t) is the simulated output, EFW(t) is the measured output, EFW is the mean 

of all measured EFW(t) values, and ‖ ⋅ ‖2 denotes the l-norm. REFW
2 , REPV

2 , and RFM f
2

denote the coefficients of determination for fitting to estimated fetal weights, placental 

volumes, and fetal fat mass in utero, respectively. For a qualitative evaluation of model fit, 

the reader may refer to Figures 3–5.

Further giving validity to our model is that the estimated eFM f
 values are consistently larger 

than eFFM f
, in agreement with reported patterns only available from animal studies [25]. 

Moreover, the mean estimated value of the placental volume growth rate parameter aP (with 

a narrow standard deviation of 0.003) matches the reported and validated value in [22, 50]: r 
= 0.03. Furthermore, from Figures 3, 4, A1, and A2, predicted % body fat at birth 

approximately ranges from 10 to 18%, which fall into the typical ranges reported in 

literature [26, 36, 51, 52]. In agreement with Demerath et al. (2016) [35], Figures 5 and A3 

show that predicted FFMf(t) profiles can be described as linear, while the FMf(t) are 

curvilinear (linear-exponential).

Finally, Figure A5 confirms that, except for only two brief instances in Participant A’s 

simulations, all estimated models satisfy the constraint in equation (23)) and hence validates 

the positive energy balance assumption throughout gestation. From Figure A6, one can 

observe the estimated rate of fetal energy intake If(t) (note the negative If(t) values in the two 

instances where Participant A’s positivity constraint is violated); comparing this to the 

maternal energy intake m(t) (‘Estimated EI’ in Figures 3, 4, A1, and A2) provides support 

for the assumption of a well-nourished mother.

4. Conclusions and Future Work

In conclusion, a dynamical systems model of intrauterine growth has been developed from 

first-principles, relying on the first and second laws of thermodynamics. This proposed 

model provides a rigorous yet more simple formulation than the fetal energy balance model 

of current literature (Thomas et al., 2008). In the parameter estimation of this model, a non-

linear least squares, constrained multi-objective optimization problem was formulated and 

guided by a priori knowledge of ranges of model parameters. For the first time (to the 

authors’ knowledge), estimates (and an estimation method) for the thermodynamic 

efficiencies governing the formation of new tissues of human fetuses are established. This 

developed model has been estimated and validated against ultrasound measurements 

provided from the Healthy Mom Zone study; despite the explained challenges with the 

estimation measurements, predictions follow from this model show good agreement with the 

data.
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The availability of more intensive estimation and validation datasets (i.e., datasets with more 

frequent measurements) in a future study should create opportunities for parameter 

refinement and increased model understanding. More intensive measurements will allow for 

further investigation of the contribution of maternal body components in fetal nutrition (see 

equation (14)). Moreover, additional ultrasound measurements (particularly closer to 

delivery) may allow estimation of a less biased fetal model described in equation (24). A 

better theoretical understanding of mechanisms behind the evolution of placental volume 

and the rate of fetal fat mass deposition is needed. This work considered a linear dependence 

of placental function on maternal physical activity; in future work, a more developed 

characterization of the influence of maternal physical activity may generate more resilient 

models: models with good predictions when input levels are far from those used in model 

estimation. Furthermore, a broader future goal is to use a combination of more experimental 

data and increased physiological understanding to reduce the modeling assumptions 

(outlined in Section 2.1) as much as possible.

Finally, the aims of this paper (achieved using a limited number of HMZ intervention and 

control participants) was to develop a more comprehensive energy balance model for fetal 

weight gain derived from first-principles modeling that can be validated through data. These 

aims were facilitated by the availability of intensive, longitudinal participant data from the 

HMZ intervention, which is ongoing. Model estimation and validation efforts for the 

remaining participants (N = 32) could enable making conclusions regarding participant 

differences and intervention versus control outcomes, which was not the scope of this paper. 

However, studying group differences (intervention vs. control) is a subject of current and 

future research.
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Appendix A.

Simulations in support of Section 3.3 featuring additional HMZ participants (participants C 

and D), ancillary time-domain responses, and positive energy balance.
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Figure A1: 
Time-domain response (fetal weight, placental volume, and fetal % body fat) with energy 

intake and physical activity for a representative HMZ intervention participant (participant C) 

(simulation starts at the day of first ultrasound measurement and ends at birth).

Figure A2: 
Time-domain response (fetal weight, placental volume, and fetal % body fat) with energy 

intake and physical activity for a representative HMZ control participant (participant D) 

(simulation starts at the day of first ultrasound measurement and ends at birth).
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Figure A3: 
Fetal fat mass and fat-free mass growth profiles over time for representative HMZ 

participants (participants C and D).
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Figure A4: 
Time-varying τf and ef for representative HMZ participants (participants C and D).
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Figure A5: 
Time-varying gain and the establishment of positive fetal energy balance for representative 

HMZ participants (see equation (23)).
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Figure A6: 
Predicted time-domain profile of fetal energy intake If(t) for representative HMZ participants 

(see equation (15)).

References

[1]. Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles M-A, and Pettitt DJ, “Childhood obesity 
and metabolic imprinting,” Diabetes Care, vol. 30, no. 9, pp. 2287–2292, 2007. [PubMed: 
17519427] 

[2]. Qiao Y, Ma J, Wang Y, Li W, Katzmarzyk PT, Chaput J-P, Fogelholm M,Johnson WD, Kuriyan R, 
Kurpad A, et al., “Birth weight and childhood obesity: a 12-country study,” International Journal 
of Obesity Supplements, vol. 5, pp. S74–S79, 2015. [PubMed: 27152189] 

[3]. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S,Barrett-Connor E, Bhargava 
SK, Birgisdottir BE, Carlsson S, et al., “Birth weight and risk of type 2 diabetes: a systematic 
review,” The Journal of the American Medical Association (JAMA), vol. 300, no. 24, pp. 2886–
2897, 2008.

[4]. Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE,Colditz GA, Hennekens 
CH, and Willet WC, “Birth weight and risk of cardiovascular disease in a cohort of women 
followed up since 1976,” BMJ, vol. 315, no. 7105, pp. 396–400, 1997. [PubMed: 9277603] 

[5]. Barker D, “The developmental origins of adult disease,” Journal of the American College of 
Nutrition, vol. 23, no. sup6, pp. 588S–595S, 2004. [PubMed: 15640511] 

[6]. O’Neill KA, Murphy MF, Bunch KJ, Puumala SE, Carozza SE, Chow EJ, Mueller BA, 
McLaughlin CC, Reynolds P, Vincent TJ, et al., “Infant birthweight and risk of childhood cancer: 
international population-based case control studies of 40,000 cases,” International Journal of 
Epidemiology, vol. 44, no. 1, pp. 153–168, 2015. [PubMed: 25626438] 

[7]. Ahlgren M, Wohlfahrt J, Olsen LW, Sørensen TI, and Melbye M, “Birth weight and risk of 
cancer,” Cancer, vol. 110, no. 2, pp. 412–419, 2007. [PubMed: 17538980] 

Freigoun et al. Page 26

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Spracklen CN, Wallace RB, Sealy-Je erson S, Robinson JG, Freudenheim JL, Wellons MF, Saftlas 
AF, Snetselaar LG, Manson JE, Hou L, et al., “Birth weight and subsequent risk of cancer,” 
Cancer Epidemiology, vol. 38, no. 5, pp. 538–543, 2014. [PubMed: 25096278] 

[9]. Ferraro Z, Barrowman N, Prud’Homme D, Walker M, Wen S, Rodger M, and Adamo K, 
“Excessive gestational weight gain predicts large for gestational age neonates independent of 
maternal body mass index,” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 25, no. 5, 
pp. 538–542, 2012. [PubMed: 22081936] 

[10]. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, and Gillman MW, “Gestational weight 
gain and child adiposity at age 3 years,” American Journal of Obstetrics & Gynecology, vol. 196, 
no. 4, pp. 322–e1, 2007. [PubMed: 17403405] 

[11]. Haugen M, Brantsæter AL, Winkvist A, Lissner L, Alexander J, Oftedal B, Magnus P, and 
Meltzer HM, “Associations of pre-pregnancy body mass index and gestational weight gain with 
pregnancy outcome and postpartum weight retention: a prospective observational cohort study,” 
BMC Pregnancy and Childbirth, vol. 14, no. 1, p. 201, 2014. [PubMed: 24917037] 

[12]. Dudenhausen JW, Grünebaum A, and Kirschner W, “Prepregnancy body weight and gestational 
weight gain—recommendations and reality in the USA and in Germany,” American Journal of 
Obstetrics & Gynecology, vol. 213, no. 4, pp. 591–592, 2015. [PubMed: 26070710] 

[13]. National Research Council, Weight gain during pregnancy: reexamining the guidelines. National 
Academies Press, 2010.

[14]. Symons Downs D, Savage JS, Rivera DE, Smyth JM, Rolls BJ, Hohman EE, McNitt KM, 
Kunselman AR, Stetter C, Pauley AM, Leonard KS, and Guo P, “Individually tailored, adaptive 
intervention to manage gestational weight gain: Protocol for a randomized controlled trial in 
women with overweight and obesity,” JMIR Research Protocols, vol. 7, p. e150, 6 2018. 
[PubMed: 29884603] 

[15]. Savage JS, Symons Downs D, Dong Y, and Rivera DE, “Control systems engineering for 
optimizing a prenatal weight gain intervention to regulate infant birth weight,” American Journal 
of Public Health, vol. 104, no. 7, pp. 1247–1254, 2014. [PubMed: 24832411] 

[16]. Thomas DM, Navarro-Barrientos JE, Rivera DE, Heymsfield SB, Bred-lau C, Redman LM, 
Martin CK, Lederman SA, Collins LM, and Butte NF, “Dynamic energy-balance model 
predicting gestational weight gain,” The American Journal of Clinical Nutrition, vol. 95, no. 1, 
pp. 115–122, 2012. [PubMed: 22170365] 

[17]. Guo P, Rivera DE, Symons Downs D, and Savage JS, “Semi-physical identification and state 
estimation of energy intake for interventions to manage gestational weight gain,” in 2016 
American Control Conference (ACC), pp. 1271–1276, 7 2016.

[18]. Rivera DE, Pew MD, and Collins LM, “Using engineering control principles to inform the design 
of adaptive interventions: a conceptual introduction,” Drug and Alcohol Dependence, vol. 88, no. 
2, pp. S31–S40, 2007. [PubMed: 17169503] 

[19]. Rivera DE, Martín CA, Timms KP, Deshpande S, Nandola NN, and Hekler EB, “Control systems 
engineering for optimizing behavioral mHealth interventions,” in Mobile Health. Sensors, 
Analytic Methods, and Applications (Rehg JM, Murphy SA, and Kumar S, eds.), pp. 455–493, 
Springer International Publishing, 2017.

[20]. Rivera DE, Hekler EB, Savage JS, and Symons Downs D, “Intensively adaptive interventions 
using control systems engineering: Two illustrative examples,” in Optimization of Behavioral, 
Biobehavioral, and Biomedical Interventions: Advanced Topics (Collins LM and Kugler KC, 
eds.), pp. 121–173, Springer, 2018.

[21]. Hall KD, “Estimating human energy intake using mathematical models,” The American Journal 
of Clinical Nutrition, vol. 100, no. 3, pp. 744–745, 2014. [PubMed: 25080459] 

[22]. Thomas DM, Clapp JF, and Shernce S, “A foetal energy balance equation based on maternal 
exercise and diet,” Journal of The Royal Society Interface, vol. 5, no. 21, pp. 449–455, 2008.

[23]. Chandler-Laney PC and Bush NC, “Maternal obesity, metabolic health, and prenatal 
programming of o spring obesity,” Open Obes J, vol. 3, pp. 42–50, 2011.

[24]. Catalano P and Ehrenberg H, “Review article: The short-and long-term implications of maternal 
obesity on the mother and her o spring,” BJOG: An International Journal of Obstetrics & 
Gynaecology, vol. 113, no. 10, pp. 1126–1133, 2006. [PubMed: 16827826] 

Freigoun et al. Page 27

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[25]. Christiansen E, Garby L, and Sørensen TI, “Quantitative analysis of the energy requirements for 
development of obesity,” Journal of Theoretical Biology, vol. 234, no. 1, pp. 99–106, 2005. 
[PubMed: 15721039] 

[26]. Bernstein IM and Catalano PM, “Ultrasonographic estimation of fetal body composition for 
children of diabetic mothers,” Investigative Radiology, vol. 26, no. 8, pp. 722–726, 1991. 
[PubMed: 1917407] 

[27]. Çengel YA and Boles MA, Thermodynamics: An Engineering Approach (Mcgraw-Hill Series in 
Mechanical Engineering). McGraw-Hill Science/Engineering/Math, 2005.

[28]. Barker D, Nutrition in the Womb: How Better Nutrition During Development Will Prevent Heart 
Disease, Diabetes and Stroke : an Account of the Developmental Origins of Health and Disease, 
and a Call for Action. Barker David, 2008.

[29]. Langho-Roos J, Lindmark G, and Gebre-Medhin M, “Maternal fat stores and fat accretion during 
pregnancy in relation to infant birthweight,” Br J Obstet Gynaecol, vol. 94, pp. 1170–1177, 1987. 
[PubMed: 3426988] 

[30]. Cetin I, Alvino G, and Cardellicchio M, “Long chain fatty acids and dietary fats in fetal 
nutrition,” The Journal of Physiology, vol. 587, no. 14, pp. 3441–3451, 2009. [PubMed: 
19528253] 

[31]. Ogunnaike BA and Ray WH, Process Dynamics, Modeling, and Control. New York : Oxford 
University Press, 1994.

[32]. Clapp JF, “The effects of maternal exercise on fetal oxygenation and feto-placental growth,” 
European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 110, pp. S80–S85, 
2003. [PubMed: 12965094] 

[33]. Kennaugh JM and Hay WW, Jr, “Nutrition of the fetus and newborn,” Western Journal of 
Medicine, vol. 147, no. 4, p. 435, 1987. [PubMed: 3318138] 

[34]. Noblet J, Karege C, Dubois S, and Van Milgen J, “Metabolic utilization of energy and 
maintenance requirements in growing pigs: effects of sex and genotype.,” Journal of Animal 
Science, vol. 77, no. 5, pp. 1208–1216, 1999. [PubMed: 10340588] 

[35]. Demerath EW, Johnson W, Davern BA, Anderson CG, Shenberger JS,Misra S, and Ramel SE, 
“New body composition reference charts for preterm infants,” The American Journal of Clinical 
Nutrition, vol. 105, pp. 70–77, 11 2016. [PubMed: 27806978] 

[36]. Schwartz J and Galan H, “Ultrasound in assessment of fetal growth disorders: is there a role for 
subcutaneous measurements?,” Ultrasound in Obstetrics & Gynecology, vol. 22, no. 4, pp. 329–
335, 2003. [PubMed: 14528466] 

[37]. Azpurua H, Funai EF, Coraluzzi LM, Doherty LF, Sasson IE, Kliman M, and Kliman HJ, 
“Determination of placental weight using two-dimensional sonography and volumetric 
mathematic modeling,” American Journal of Perinatology, vol. 27, no. 02, pp. 151–155, 2010. 
[PubMed: 19653142] 

[38]. Pitkin RM, “Nutritional support in obstetrics and gynecology,” Clinical Bbstetrics and 
Gynecology, vol. 19, no. 3, pp. 489–513, 1976.

[39]. Thompson J, Irgens L, Skjaerven R, and Rasmussen S, “Placenta weight per centile curves for 
singleton deliveries,” BJOG: An International Journal of Obstetrics & Gynaecology, vol. 114, no. 
6, pp. 715–720, 2007. [PubMed: 17516963] 

[40]. Wallace J, Bhattacharya S, and Horgan G, “Gestational age, gender and parity specific centile 
charts for placental weight for singleton deliveries in Aberdeen, UK,” Placenta, vol. 34, no. 3, pp. 
269–274, 2013. [PubMed: 23332414] 

[41]. Mu J, Slevin JC, Qu D, McCormick S, and Adamson SL, “In vivo quantification of embryonic 
and placental growth during gestation in mice using micro-ultrasound,” Reproductive Biology 
and Endocrinology, vol. 6, no. 1, p. 34, 2008. [PubMed: 18700008] 

[42]. Regnault TR, Limesand SW, and Hay WW, Jr, “Factors influencing fetal growth,” NeoReviews, 
vol. 2, no. 6, pp. e119–e128, 2001.

[43]. Hadlock FP, Harrist RB, and Martinez-Poyer J, “In utero analysis of fetal growth: a sonographic 
weight standard.,” Radiology, vol. 181, no. 1, pp. 129–133, 1991. [PubMed: 1887021] 

[44]. Flood A, Subar AF, Hull SG, Zimmerman TP, Jenkins DJ, and Schatzkin A, “Methodology for 
adding glycemic load values to the National Cancer Institute diet history questionnaire database,” 

Freigoun et al. Page 28

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Journal of the American Dietetic Association, vol. 106, no. 3, pp. 393–402, 2006. [PubMed: 
16503230] 

[45]. Ferraro ZM, Gaudet L, and Adamo KB, “The potential impact of physical activity during 
pregnancy on maternal and neonatal outcomes,” Obstetrical & Gynecological Survey, vol. 67, no. 
2, pp. 99–110, 2012. [PubMed: 22325300] 

[46]. Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, and Martí R, “Scatter search and local nlp 
solvers: A multistart framework for global optimization,” INFORMS Journal on Computing, vol. 
19, no. 3, pp. 328–340, 2007.

[47]. Hadlock F, Harrist R, Carpenter R, Deter R, and Park S, “Sonographic estimation of fetal weight. 
the value of femur length in addition to head and abdomen measurements.,” Radiology, vol. 150, 
no. 2, pp. 535–540, 1984. [PubMed: 6691115] 

[48]. Hadlock FP, Harrist R, Sharman RS, Deter RL, and Park SK, “Estimation of fetal weight with the 
use of head, body, and femur measurements—a prospective study,” American Journal of 
Obstetrics & Gynecology, vol. 151, no. 3, pp. 333–337, 1985. [PubMed: 3881966] 

[49]. Arleo EK, Troiano RN, da Silva R, Greenbaum D, and Kliman HJ, “Utilizing two-dimensional 
ultrasound to develop normative curves for estimated placental volume,” American Journal of 
Perinatology, vol. 31, no. 08, pp. 683–688, 2014. [PubMed: 24108663] 

[50]. Orzechowski K, Thomas D, McNamara CJ, and Miller RC, “Volumetric assessment of 
longitudinal placental growth,” Obstetrics & Gynecology, vol. 123, p. 164S, 2014.

[51]. Widdowson EM and Spray CM, “Chemical development in utero,” Archives of Disease in 
Childhood, vol. 26, no. 127, p. 205, 1951. [PubMed: 14857788] 

[52]. Demerath EW and Fields DA, “Body composition assessment in the infant,” American Journal of 
Human Biology, vol. 26, no. 3, pp. 291–304, 2014. [PubMed: 24424686] 

Freigoun et al. Page 29

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Representative placental volume growth profile.
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Figure 2: 
Example of an ultrasound report for establishing estimated measurements of Estimated Fetal 

Weight (EFW), Estimated Placental Volume (EPV), and fetal body composition of an HMZ 

participant.
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Figure 3: 
Time-domain response (fetal weight, placental volume, and fetal % body fat) with energy 

intake and physical activity for a representative HMZ intervention participant (participant A) 

(simulation starts at the day of first ultrasound measurement and ends at birth).
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Figure 4: 
Time-domain response (fetal weight, placental volume, and fetal % body fat) with energy 

intake and physical activity for a representative HMZ control participant (participant B) 

(simulation starts at the day of first ultrasound measurement and ends at birth).
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Figure 5: 
Fetal fat mass and fat-free mass growth profiles over time for representative HMZ 

participants (participants A and B).
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Figure 6: 
Time-varying τf and ef for representative HMZ participants (participants A and B).
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Nomenclature

Constants

λFM f
Energy stored per unit fetal fat mass

[kcal/kg]

λFFM f
Energy stored per unit fetal fat-free mass

[kcal/kg]

Parameters

eFM f
, eFFM f

Efficiencies of conversion of excess energy to new fat and fat-free tissues, respectively
[1]

α Proportionality constant [d/kcal/ml]

γ Conversion coefficient [ml−1]

μ Daily energy expenditure per unit fetal body mass [kcal/kg/d]

Variables

t Gestational age [days]

Cf(t) Daily energy accumulation in the fetus [kcal]

If(t) Daily fetal energy intake resulting from maternal energy intake [kcal/d]

Ee f
t Total fetal energy expenditure

[kcal/d]

EM f
t Energy required to maintain the fetus life

[kcal/d]

Ec f
Energy required for the conversion of excess energy into new fetal tissue

[kcal/d]

FMf(t) Fetal fat mass [kg]

FFMf(t) Fetal fat-free mass [kg]

Wf(t) Total fetal weight [kg]

fr(Wf) Rate of fetal fat mass deposition [1]

Wm(t) Total maternal weight [kg]

Ef(t) Total energy to build the fetal tissue up to day t [kcal]

EFM f
t Total energy to build the fetal fat tissue up to day t

[kcal]

EFFM f
t Total energy to build the fetal fat-free tissue up to day t

[kcal]

m(t) Maternal energy intake [kcal/d]

PA(t) Maternal physical activity [kcal/d]

P(t) Placental volume [ml]

g(t) Glycemic impact of intake [1]

Kf(t) Fetal gain coefficient from intake [kg-d/kcal/ml]

τf(Wf) Time constant of fetal weight growth [d]

ef(Wf) Overall efficiency of energy conversion [1]
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Table 1:

Mean and standard deviation values of daily glycemic index estimations for four representative HMZ 

participants

Participant g σg

A 0.5478 0.0461

B 0.5441 0.0653

C 0.5806 0.0644

D 0.5763 0.0835
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Table 2:

Initialization points for four representative HMZ participants

α × 108 eFM f
eFFM f aP bP cP

a f r
b f r

c f r

A −0.5 0.77 0.11 0.03 175 1281 0.47 9.56 9.47

B −0.5 0.77 0.11 0.03 175 864 0.47 9.56 12.30

C −0.5 0.44 0.15 0.03 175 774 0.47 9.56 8.99

D −0.5 0.77 0.11 0.03 175 760 0.47 9.56 10.98

Math Comput Model Dyn Syst. Author manuscript; available in PMC 2018 November 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Freigoun et al. Page 39

Table 3:

Estimated model parameter values for four representative HMZ participants (Mean and Standard Deviation 

(SD) are included)

α × 108 eFM f
eFFM f aP bP cP

a f r
b f r

c f r

A −13.70 0.44 0.24 0.027 206.2 1519.1 0.655 7.86 11.33

B −2.82 0.60 0.07 0.039 154.3 1026.8 0.441 9.71 12.30

C −0.31 0.82 0.12 0.028 182.3 1031.0 0.267 12.10 6.84

D −0.06 0.42 0.06 0.024 174.8 1101.7 0.577 8.22 11.27

Mean −4.22 0.57 0.12 0.030 179.4 1169.7 0.485 9.47 10.44

SD 6.44 0.18 0.08 0.007 21.4 235.5 0.170 1.93 2.44
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Table 4:

Summary of the goodness-of-fit from various metrics for four representative HMZ participants

NRMSEEFW REFW
2 REPV

2 RFM f
2

Participant A 0.9619 0.9986 0.8953 1.0000

Participant B 0.9763 0.9994 0.9008 0.9925

Participant C 0.9608 0.9985 0.8969 0.9997

Participant D 0.9763 0.9994 0.9174 1.0000
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