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Abstract

In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to 

encompass a large group of interdisciplinary sciences. It is now evident that rationally designed 

programmable RNA nanostructures offer unique advantages in addressing contemporary 

therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, 

to maximize the therapeutic benefit of these nanostructures, it is essential that we understand the 

immunostimulatory aptitude of such tools and identify potential complications. We present a set of 

16 nanoparticle platforms that are highly configurable. These novel nucleic acid-based polygonal 

platforms are programmed for controllable self-assembly from RNA and/or DNA strands via 
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canonical Watson-Crick interactions. We demonstrate that the immunostimulatory properties of 

these particular designs can be tuned to elicit the desired immune response or lack thereof. To 

advance our current understanding of the nanoparticle properties that contribute to the observed 

immunomodulatory activity and establish corresponding designing principles, we conducted 

QSAR (quantitative structure-activity relationships) modeling. The results demonstrate that 

molecular weight, together with melting temperature and half-life, strongly predict the observed 

immunomodulatory activity. This framework provides the fundamental guidelines necessary for 

the development of a new library of nanoparticles with predictable immunomodulatory activity.
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Introduction

The field of nanotherapeutics is exponentially growing due to the ability of nanoparticles to 

overcome many of the limitations noted for traditional small and macromolecular drugs. 

Nanotechnology is increasingly used in drug delivery due to the unique physical and 

chemical properties of nanoparticles, such as hydrophobicity, size, surface charge, and the 

presence of targeting moieties. These properties can overcome barriers that commonly limit 

the efficacy of traditional small and macromolecular drugs. The development of therapeutic 

nucleic acids (TNAs) that have rapidly evolved from conventional (e.g., siRNAs) to 

nanotechnology-formulated concepts (e.g., siRNAs incorporated into liposomes) and to the 

more controllable new generation of nano-TNAs represents one such example of utilizing 

benefits of nanotechnology for improving the quality of traditional therapeutics. These nano-

TNAs rely on rationally designed nucleic acids (RNA, DNA or their chemical analogs) to 

engineer well-defined, fully programmable, and self-assembling nanoparticles, in which the 

nucleic acids serve as both a carrier and an active pharmaceutical ingredient [1–23]. One 

major limitation to the clinical use of conventional TNAs is their immunostimulatory 

properties including the induction of cytokines, chemokines, and type I and II interferons. 

Translational considerations for nano-TNA have been discussed before, and among other 

areas, include an understanding of the immunological properties[24]. The ability to predict 

the effects of the nano-TNAs on the immune system would allow maximizing their 

therapeutic index. For example, diseases of the central nervous system (CNS) are extremely 

difficult to treat due to the highly selective permeability of the blood brain barrier. Moreover, 

the neuroinflammation, which has been implicated in degenerative CNS pathologies such as 

multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease[25], may also arise from 

delivery of therapeutic agents with undesirable immunostimulation into the brain, and 

therefore may counteract the efficacy of these drugs. Nano-TNAs have the potential to 

overcome both of these barriers. Their delivery to the brain can be achieved by previously 

characterized carriers, such as bolaamphiphiles[26–30], and rational design of nano-TNAs can 

help avoid the undesirable neuroinflammation. Therefore, it is necessary to characterize the 

immunomodulatory effects of nano-TNAs on resident CNS cells such as microglia and 

astrocytes that are essential for the initiation and progression of immune responses in the 
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CNS [31] through the production of various inflammatory cytokines[32–34]. Earlier studies by 

our research groups and others revealed that while some types of nano-TNAs do not induce 

an immunological response, the immunogenicity of other assemblies strongly depends on 

their connectivity and composition[4, 35–37]. Recently, we introduced a novel design strategy 

that allows for the simple and efficient construction of RNA nanoparticles[38]. The 

assemblies, exemplified by nano-triangles, are solely based on Watson-Crick interactions 

and therefore, can be made not only of RNAs but also of DNAs and even RNA and DNA 

mixtures. The alterations in composition significantly affect the thermodynamic and 

chemical stabilities of nanoparticles as well as their immunological properties.

In the present study, we expanded the library of nanoparticles from triangle to hexagon with 

the same connectivity rules and assessed the effect of the nano-TNA size and composition 

on their immunomodulatory activity in human glia-like cells. For these purposes, RNA 

triangles (~75 kDa) were compared to RNA tetragons (~100 kDa), RNA pentagons (~125 

kDa), and RNA hexagons (~150 kDa). Similarly, we compared corresponding DNA 

polygons and two types of different RNA/DNA hybrids for each polygon. We demonstrate 

that nucleic acid polygons primarily stimulate an interferon response in contrast to a 

damaging inflammatory cytokine response. Additionally, we report that nucleic acid 

composition significantly alters the amount of type I interferons release by microglia-like 

cells. Together these data suggest that nano-TNAs may be specifically engineered to 

minimize detrimental inflammatory responses while promoting beneficial host immunity. 

Finally, to establish a set of design rules that allow engineering of nucleic acid-based 

polygons with predicted immunological activities for further confirmative biological 

screening experiments, we applied a QSAR modeling technique to the experimental dataset 

generated for 16 polygons.

Methods

Assembly of polygons and their characterization.

The nucleic acid sequences for construction of a polygon library containing 16 candidates 

were computationally designed using 2D folding programs including Mfold[39] and 

NUPACK[40–43]. The nucleic acid strands encoding the composition of polygons are listed 

in the supporting information. All DNAs were purchased from IDT (idtdna.com) and all 

RNA strands were produced from PCR-amplified DNA templates using in vitro run-off 

transcription. Briefly, synthetic DNAs coding for the sequence of the designed RNA were 

amplified by PCR using primers containing the T7 RNA polymerase promoter. Resulting 

DNA templates were transcribed with T7 RNA polymerase. Transcription was performed in 

80 mM HEPES-KOH, pH 7.5; 2.5 mM spermidine; 50 mM DTT; 25 mM MgCl2; 5 mM 

NTPs; 0.2 μM of DNA templates, and “home-made” T7 RNA polymerase ~100 units/μL. 

Transcription was stopped with RQ1 DNase. Transcribed RNAs were purified with a 

denaturing urea gel electrophoresis (PAGE) (15% acrylamide, 8M urea). The RNAs were 

eluted from gel slices overnight at 4°C into 1 × TBE buffer containing 300 mM NaCl. After 

precipitating the RNA in 2.5 volumes of 100% ethanol, samples were rinsed with 90% 

ethanol, vacuum dried, and dissolved in double-deionized water.
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The polygons were assembled one pot from an equimolar mixture of nucleic acid strands (1 

μM) in 1 × TMS buffer (80 mM Tris-HCl pH = 8.0, 100 mM NaCl, 5 mM MgCl2) with 

subsequent heating and cooling processes (annealing) from 80 °C to 4 °C in 20 min. All 

assemblies were tested with 7% native-PAGE and/or 3 % agarose gels. Native-PAGE ran for 

1 hour at 4 °C at a constant 90 V and then were stained with ethidium bromide before 

imaging with the Bio-Rad ChemiDoc MP system.

3D modeling.

3D models of each RNA polygon were built using Discovery Studio Visualizer[44]. The 

energy minimization was applied for structural refinement of each polygon, using the ff10 

force field and the Amber12 molecular dynamics package[14, 45].

Atomic force microscopy (AFM).

Assembled RNA polygons (5 μL of 50 nM stock) were deposited on APS modified mica, 

incubated for ~2 min and air dried, as described previously. AFM visualization was 

performed using a MultiMode AFM Nanoscope IV system (Bruker Instruments, Santa 

Barbara, CA) in tapping mode. The images were recorded with a 1.5 Hz scanning rate using 

a TESPA-300 probe from Bruker with a resonance frequency of 320 kHz and spring 

constant of about 40 N/m. Images were processed by the FemtoScan Online software 

package (Advanced Technologies Center, Moscow, Russia)[46, 47].

Dynamic Light Scattering (DLS).

The average hydrodynamic radii for assembled polygons (at 1 μM final concentration) were 

measured in a micro-cuvette (Starna Cells, Inc) using Zetasizer nano-ZS (Malvern 

Instrument, LTD). All measurements were done at room temperature according to 

instrumentation protocol.

Degradation assay in fetal bovine serum (FBS).

The experiment was conducted by incubation of nucleic acid polygons (1 μM) in an aqueous 

2% (v/v) FBS solution at 37 °C, and aliquots (10 μL) were collected at 1, 5, 10, 20, 40, 60, 

and 90 min. Aliquots were immediately snap-frozen on dry ice to prevent any further 

degradation by nucleases presented in FBS. The collected samples were analyzed by a 7% 

native PAGE. We used ImageJ software to evaluate the fractions of remaining polygons by 

integrating the intensities of the bands corresponding to NPs. Integration areas for each time 

point were compared to the integration area for the control polygon of the same 

concentration in the absence of FBS. Plots were generated using OriginPro 8 Software 

where the remaining fraction (%) of polygons was plotted against FBS exposure time (min). 

An exponential decay function was used to fit data points following F(t) = F0 * e(−t/τ), where 

F(t) and F0 are the fractions at time t and at initial time 0 respectively; τ is exponential decay 

time constant.

Equilibrium dissociation constant (KD) measurements.

To measure the apparent KD for polygon assemblies, titration experiments were carried out. 

For this, fixed concentrations (10 nM) of IR-700 conjugated dT2 or rT2 strands were titrated 
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with various concentrations (0.01 nM – 1000 nM) of the corresponding triangle, tetragon, 

pentagon or hexagon short side oligonucleotides. For instance, for DNA triangle, 10 nM 

IR-700 dT2 were mixed with mixtures of unlabeled [dT1, dT3, dT4] at 0.1, 0.5, 1, 5, 10, 50, 

100, 500, and 1000 nM. The samples were annealed and analyzed with a 7% native-PAGE. 

The quantified polygon fractions (f) were plotted versus the total concentration (Ct) of the 

polygons. Non-linear sigmoidal curve fitting was applied to the data from two independent 

experiments using Origin 8.0 software. The general equilibrium equation for multi-strand 

nucleic acid components was used according to

KD =
(Ct
2n )

n − 1
× (1 − f )n

f

where n = numbers of oligonucleotide strands: triangle n = 4, tetragon n = 5, pentagon n = 6, 

hexagon n = 7. The bands corresponding to polygons were quantified using ImageJ 

software. The yield for each polygon was calculated by dividing the corresponding 

quantified value for triangles by the total sum of the values for all monomers, dimers, and 

trimers present in the lane.

Structural integrity of polygons associated with Lipofectamine 2000 (L2K).

To ensure that all polygons remain intact during the transfection experiments, polygons (at 1 

μM) were incubated with 2 μL of L2K at 25 °C for 30 minutes. Polygon/L2K complexes (4 

μL) were then mixed with 2 μL of Triton X-100 (Sigma Aldrich) for an additional 30 

minutes at 25 °C. All samples were analyzed by 7% native-PAGE and visualized by AFM 

(Figure 2C and supporting S3).

Transfections.

The human microglia-like cell line, hμglia or hHμ, was a generous gift from the laboratory 

of Dr. Jonathan Karn (Case Western Reserve University)[48]. Primary human microglia cells 

purchased from ScienCell were immortalized using SV40 and hTert antigens and sorted for 

the microglial/macrophage cell marker CD11b. These cells were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 5% FBS and 100 U/ml 

penicillin-100 μg/ml streptomycin at 37° C with 5% CO2. The human astrocyte-like cell 

line, U87 MG (ATCC HTB-14) was grown in Eagle’s Minimum Essential Medium (EMEM) 

supplemented with 10 % FBS, 1 mM sodium pyruvate, and 100 U/ml penicillin with 100 

μg/ml streptomycin at 37 °C 5 % CO2. Transfection of U87 MG cells and hHμ cells was 

conducted using Lipofectamine 2000 (L2K) (Invitrogen). Polygons or the positive controls 

poly dA:dT naked and poly I:C naked (Invivogen) were pre-incubated with L2K and Opti-

MEM medium prior to transfection. Cells were transfected with polygon/L2K complexes at 

a final concentration of polygons of 5 nM or 25 nM or with positive control/L2K complexes 

at a final concentration of 1ug/ml. Media used for transfection was either DMEM 

supplemented with 5% FBS or EMEM supplemented with 10% FBS and 1 mM sodium 

pyruvate. Four hours post transfection the cell culture media was changed to media 

additionally supplemented with 100 U/ml penicillin with 100 μg/ml streptomycin. The cell 

supernatants were collected for further analysis twenty-four hours post transfection.
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Cell Viability:

hHμ cells were plated in a 96 well plate at 5,000 cells per well (six wells per each sample) 

and polygons were transfected at a final concentration of either 5 nM or 25 nM. The cells 

were then incubated for four hours at 37° C and 5% CO2 and the transfection media was 

replaced with the fresh one. Twenty-four hours post transfection, 20 μL of CellTiter-Blue 

(Promega) was added to each well and incubated for 2.5 hours. Absorbance was measured at 

490 nM using a Tecan Ultra (Tecan) plate reader and normalized to solutions transfected 

only with L2K.

Relative uptake efficiencies in hHμ:

hHμ wells were plated in a 24 well plate at 50,000 cells per well and polygons tagged with 

IR-700 were transfected. The cells were then incubated in the solution for four hours at 

37 °C and 5% CO2 prior to media change. Twenty-four hours post transfection, cells were 

treated with Cell Dissociation Buffer (Gibco) and analyzed using a BD Accuri C6 Flow 

Cytometer. Untreated cells were used as control.

Enzyme-linked Immunosorbent Assay (ELISA).

Specific capture ELISAs were performed to quantify concentrations of human IL-6, IL-8, 

and IFN-β as previously described by our laboratory[49]. A commercially available ELISA 

kit was used to measure IL-8 (R&D Systems). The IL-6 ELISA was conducted using a rat 

anti-human IL-6 capture antibody (BD Pharmingen) and a biotinylated rat anti-human IL-6 

detection antibody (BD Pharmingen). The IFN-β ELISA was carried out using a polyclonal 

rabbit anti-human IFN-β capture antibody (Abcam) and a biotinylated polyclonal rabbit anti-

human IFN-β detection antibody (Abcam). Bound antibody was detected using streptavidin-

horseradish peroxidase (BD Biosciences) followed by the addition of tetramethylbenzidine 

(TMB) substrate. H2SO4 was used to stop the reaction and absorbance was measured at 450 

nm. Dilutions of recombinant cytokines for IL-6 and IFN-β (BD Pharmingen, Abcam) were 

used to generate a standard curve. The concentration of each cytokine was determined by 

extrapolation of absorbances in the study samples to that in the standard curve prepared from 

known concentrations of the relevant cytokine.

Statistics.

Experimental results were normalized to the L2K alone treated control and presented as the 

mean +/− SEM. Statistical significance was determined using a Student’s two-tailed t-test 

conducted with GraphPad Prism Software. A P-value of less than 0.05 was considered to be 

statistically significant.

Limulus Amoebocyte Lysate (LAL) assay.

The LAL assay was utilized to assess preparation contamination with the bacterial 

endotoxin, lipopolysaccharide. The polygons were tested at several dilutions according to a 

standardized procedure described earlier (https://ncl.cancer.gov/sites/default/files/protocols/

NCL_Method_STE-1.2.pdf)[2]. Controls included the addition of known quantities of an 

endotoxin standard to nanoparticle samples to rule out potential nanoparticle interference 

Johnson et al. Page 6

Small. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_STE-1.2.pdf
https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_STE-1.2.pdf


with the assay. Reported values are from dilutions that demonstrated acceptable spike 

recovery and did not interfere with the assay.

Quantitative Structure-Activity Relationship (QSAR) modeling.

Data set: In this study, 16 polygonal nanoparticles (both RNA- and DNA-based) were used 

for the construction of quantitative structure-activity relationships (QSAR). Three types of 

immune responses were identified based on the levels of IFN-β, IL-6, and IL-8 release 

experimentally measured from hHμ cells, and we used these activity values for QSAR 

modeling. The physicochemical properties and immune-response activities (observed and 

predicted) of studied polygons are presented in Supporting Tables S2 and S3. The polygon 

sequences can be found in the supplemental materials (Supporting Table S1).

QSAR approach.—For the development of the QSAR model we used two types of 

descriptors: physicochemical properties of constructed nanoparticles and sequence-based 

descriptors generated by Word2vec[50] approach as well as Random Forest (RF)[51] 

technique for model building.

Descriptors.—To generate the sequence-based descriptors we have used the Word2vec 

approach implemented in the KNIME analytic platform[52]. Word2vec is a two-layer neural 

network which is trained to reconstruct the linguistic contexts of words. As input Word2vec 

uses text and as an output, it produces a continuous vector space where semantically similar 

words are mapped to nearby points. Thus, sequences of nanoparticles were transformed into 

the vectors of real numbers of ten dimensions using nucleotides as the words. In additional 

to sequence-based descriptors, we also used the six physicochemical properties of 

constructed nanoparticles: molecular weight, GC content (%), diameter (nm), Tm (°C), 

decay time (min) and KD (nM).

Machine learning method

RF.—For the development of QSAR models, we used the RF implemented in the KNIME 

analytic platform[53], which is a modern and predictive machine learning approach. RF is an 

ensemble of decision trees and more trees reduce the variance. The classification from each 

tree can be thought of as a vote; the most votes determine the classification. The regression 

output was calculated as a mean value of all trees. Each tree was grown as the following: A 

random sample of nanoparticles (67%) was selected from the initial modeling set as the 

training set for the current tree. Not selected samples were used as a test set called an out-of-

bag (OOB), which typically is 33% of initial modeling data. The randomly selected 

descriptors from the training set were used to split the nodes in the tree. Each tree is grown 

until it reaches the maximum tree depth parameter. The internal model evaluation was done 

according to the performance with the OOB set. To construct the best RF model, the 

following parameters were considered during a 5-fold cross validation procedure (5-fold 

CV): the number of trees (100), and the number of descriptors (16).

Model construction and validation.—To estimate the predictivity of the developed 

models we used 5-fold external cross-validation procedure (5-fold CV)[54]. During this 

procedure the initial data set was randomly divided into 5 parts. Four parts were used as the 
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training set for model building and the remaining part was used as the test set for the 

assessment of external predictive accuracy. In additional, the Y-randomization (shuffling of 

the dependent values) was performed during 5-fold CV to assure that the accuracy of the 

model was not obtained due to chance correlations.

Evaluation of the model prediction accuracy.—To estimate the accuracy of 

prediction the following statistical parameters were calculated:

1) Determination coefficient

R2 = 1 −
∑n = 1

n (Yi − Yi)
2

∑n = 1
n (Yi − Y)2

where Y i, is predicted value for each particular object, Y is average activity value 

from the training set, and n is the number of objects in the training set.

2) Root mean square error

RMSE = 1
n ∑

n = 1

n
(Yi − Yi)

2

where Y i, is predicted value for each particular compound and n is the number of 

objects in the training set.

Results and Discussion

We constructed four types of equilateral polygons that can self-assemble from single-

stranded longer central and shorter side strands. All polygons, while being different in size, 

number of sides, and the total number of strands entering their assemblies, have minimal 

variance in their sequence signatures (Figure 1A). For example, polygons with n number of 

sides would share the sequences with n-1 polygons but have an extra short side strand and an 

elongated central strand in their assembly. Polygons assembled via one-pot assembly were 

extensively analyzed by gels (Figures 1, 2B, and supporting S1) with the average yield 

estimated to be greater than 90%. The type of polygon was determined by the sequence of 

the longer strand. Thus the assembly of the particular shape is guided by the addition of the 

corresponding central strand to a mixture of all short RNAs. The structural evaluation of the 

assemblies by AFM and DLS provide additional evidence of formation of the designed 

polygon structures (Figure 1). AFM studies revealed that the shapes of resulting polygons 

were similar to their computed 3D models. The hydrodynamic diameters of polygons in 

aqueous solution were measured to be ~15 nm, ~16 nm, ~20 nm, and ~24 nm for triangles, 

tetragons, pentagons, and hexagons, respectively. These experimental results were in 

agreement with the predicted sizes.

Due to the design principles that rely only on canonical Watson-Crick interactions, polygons 

have an ability to efficiently assemble not only from RNAs but also from DNAs as well as 
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from different ratios of RNA and DNA strands. This composition flexibility offers a rapid, 

convenient, and cost effective way to engineer different polygons with tunable 

physicochemical properties dictated by the nature of RNA and DNA. For example, by using 

various combinations of just 20 different RNA and DNA strands (10 each), it becomes 

possible to easily assemble a total of 240 unique RNA, DNA, and RNA/DNA hybrid 

polygons (16 triangles, 32 tetragons, 64 pentagons, and 128 hexagons). To show the 

feasibility of this approach, we have synthesized 16 polygons (Figure 2) made of all RNAs, 

all DNAs, only central strand RNA, and only central strand DNA and then further 

extensively characterized their properties and tested their immunogenicity. For all polygons, 

relative sizes (D), melting temperatures (Tm), dissociation constants (KD), and stabilities in 

blood serum (τ) were measured and the results are summarized in Supporting Table S2.

Prior to the immunological studies, the levels of endotoxin in prepared samples were 

assessed. Endotoxin is a component of the cell wall of Gram-negative bacteria and is a 

common contaminant in biotechnology and nanotechnology therapeutics[55]. Common 

sources of endotoxin are laboratory glassware, spatulas used to weigh out reagents, water, 

commercially available enzymes and oligonucleotides. Autoclaving kills bacteria, but does 

not eliminate endotoxin. Likewise, water purification systems remove ions, but not 

endotoxin. It is common knowledge in the area of nanotechnology that as much as 30-50% 

of nanoparticles fail during preclinical stage due to endotoxin contamination. Since 

endotoxins are potent immunostimulants, which may induce production of proinflammatory 

cytokines, we tested polygons for the presence of this contaminant using LAL assay. The 

level of endotoxin in all tested samples was below 0.05 EU/mL of 10 nM stock, which 

corresponds to less than 5 pg/mL concentration in our in vitro assays. The results are shown 

in Supporting Table S1. These levels of endotoxin are insufficient to elicit significant 

production of pro-inflammatory cytokines by glial cells.

Currently, one of the primary limitations in the translation of TNAs to the clinic is the 

stimulation of both off-target effects and immunotoxicity. In addition, treatment of CNS 

diseases is especially difficult due to an inability of therapies to cross the blood brain barrier 

and the sensitivity of the CNS to inflammatory damage. The TNAs discussed in this study 

can be complexed with lipid-based carriers that permit delivery to target cells within the 

CNS. Importantly, the carrier does not alter the structure of polygons (Figure 2C and 

supporting Figure S3). In the CNS, glial cells are key initiators of immune responses. Glial 

cells use a variety of cell surface, endosomal, and cytosolic receptors to sense pathogen-

associated molecular patterns (PAMPs) such as nucleic acids. Due to the complexing of 

TNAs with lipid-based carriers, we predict TNAs will be identified by endosomal and/or 

cytosolic nucleic acid sensors. Therefore, in order to determine the immunomodulatory 

activity of TNA polygons that differ in their nucleic acid composition, human microglia-like 

cells and astrocyte-like cells were transfected side-by-side with 16 different polygons or 

positive controls and inflammatory mediator release was determined by specific capture 

ELISA (Figures 2 and S4). The positive controls selected were poly dA:dT, a synthetic 

analog of B-DNA recognized by DNA sensors; and poly (I:C) a synthetic dsRNA polymer 

recognized by RNA sensors. We observed no significant release of IFN-β or IL-6 from 

astrocyte-like cells transfected with nano-TNAs (data not shown). Interestingly, transfection 

of microglia-like cells with 12 out of the 16 polygons resulted in significant IFN-β release 
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with minimal IL-6 or IL-8 production compared to the transfection reagent alone control. 

We observed no statistically significant difference in the release of I L-6 and I L-8 for 

polygons compared to our positive controls poly dA:dT and poly (I:C). These data suggest 

that these polygons primarily promote an interferon response rather than a damaging 

inflammatory cytokine production. The cytokine responses to these polygons did not show a 

clear dose dependency, potentially due to ligand saturation effects or reductions in cell 

viability resulting from greater activation and terminal differentiation of these cells, although 

it should be noted that such reductions were not statistically significant (Figure 2E).

Additionally, we observed that the nucleic acid composition of the TNA polygons 

significantly affected the release of inflammatory mediators. We observed that the polygons 

composed exclusively of RNA, or those that had central strand of RNA or DNA, stimulated 

a robust 10 to 40-fold increase in IFN-β responses compared to transfection reagent alone 

control. Additionally, compared to our positive controls, RNA and DNA center polygons 

induced a significant increase in the release of IFN-β further indicating the potency of these 

polygons as an interferon stimulus. In contrast, polygons composed exclusively of DNA do 

not stimulate significant IFN-β release above our transfection reagent alone control and 

induced significantly less release of IFN-β compared to our positive controls. These data 

suggest an RNA composition is required to stimulate an interferon response. Additionally, 

our data indicate DNA polygons are more immunologically quiescent compared to other 

polygon compositions and our positive controls. Interestingly, we observed a trend in 

inflammatory mediator responses attributable to polygon type for nano-TNAs composed 

exclusively of RNA, or TNAs composed of DNA with an RNA center. For these 

compositions, triangle and pentagon structures tended to simulate more IFN-β release 

compared to tetragon and hexagon compositions, suggesting a role for polygon type in 

cytokine production. However, further investigations will be required to definitively establish 

the role of polygon type in immune mediator release. Overall, these results hold promise for 

the development of these novel polygon nano-TNAs for clinical use given that their nucleic 

acid composition may dictate the cytokine response of the recipient. For example, all 

polygons composed solely of DNA elicit minimal inflammatory cytokine responses, thus 

avoiding the negative effects often associated with nanoparticle delivery, while RNA 

polygons may have use as adjuvants due to their ability to stimulate interferon responses. As 

such, these nano-TNAs provide an opportunity to engineer specific therapies for a variety of 

medical purposes. The effects shown in Figure 2 were not limited to the use of just 

Lipofectamine 2000. Experiments conducted using two other transfection reagents showed 

similar trends in cytokine release in response to polygon administration (Supporting Figure 

S5).

To construct a model that allows engineering of nucleic acid-based polygons with predicted 

immunological activities for further biological screening, we applied QSAR modeling 

technique to the experimental dataset of the 16 polygons (Figure 3). The two types of 

descriptors together with Random Forest were used for developing of QSAR models. To 

investigate the informativeness of the descriptors we built three separate models. The first 

model was based only on the physicochemical properties. The second model was based only 

on the sequence-based descriptors and the third model was based on both physicochemical 

properties together with sequence-based descriptors. The performance of each model was 
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evaluated by 5-fold CV procedure (Supporting Figure S6). The statistical characteristics of 

the generated models are presented in Table 1.

As shown in Table 1, the models constructed using two types of descriptors together 

demonstrated strong predictive power. All models showed negative determination 

coefficients after y-randomization procedures, proving the lack of correlations by chance. 

The models based only on sequence descriptors showed poor predictivity for IFN-β and IL-6 

responses, and moderate predictivity for IL-8. The best predictive accuracy was obtained 

using only the physicochemical descriptors. These results are not surprising since the 

developed polygons have little variation across their sequences. However, the sequence 

information still showed some effect in the models, especially for I L-8 responses, and might 

play a significant role in predicting the behavior of polygons with more diverse shapes and 

structures. Thus, to predict immune responses to novel structure-diverse polygons, the 

models based on both descriptor types, as well as models based only on physicochemical 

descriptors, should be applied to predict nano-TNA immunomodulatory activity.

As mentioned above, the best prediction results were obtained using the physicochemical 

descriptors. Besides yielding good accuracy, these types of descriptors allow mining for 

clear interpretations of the developed models. Since the RF algorithm was used to build the 

QSAR models, the contribution of each descriptor into the tree-based model can be readily 

calculated. Thus, for each descriptor, we calculated an importance value as a ratio of the 

number of models, which used the descriptor as a split of the tree to the number of times the 

descriptor was the candidate for splitting. The sum of the importance values for all 

descriptors was scaled to 100% for comparison purposes. The results obtained are presented 

in Table 2.

Table 2 shows that MW, Tm, and τ provide the major contributors to the RF models across 

all immune response activities. These important descriptors have interesting relationships 

with biological activities. It can be seen that DNA-based nanoparticles that have lower Tm 

values also induce low immune responses. Interestingly, the low decay time (30 min and 

less) for most of the nanoparticles corresponded to higher immune-response values. 

Although clear relationships between the physicochemical properties of nanoparticles and 

biological activities were discovered during modeling, future extension of the data set will 

improve the predictivity of these models and increase the confidence level in result 

interpretation.

Conclusion

In conclusion, we have developed novel nano-TNA platforms that are highly reconfigurable 

in both their physicochemical and immunological properties. These nano-TNAs can be 

specifically designed with the desired size, shape, melting temperature, enzymatic decay 

rates, and immunomodulatory activity. Our data strongly indicate that the nucleic acid 

composition of the nano-TNAs, specifically the combination of RNA to DNA, determines 

many of the physicochemical and immunological properties. Our data indicates that the 

properties of RNA and DNA determine stability factors including Tm and τ. In the present 

study, we have focused on defining the role of polygon type and composition in the initiation 
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of immune responses, but further studies will be required to determine the influence of lipid-

based carriers on the delivery of nano-TNAs and the initiation of polygon-induced immune 

responses in order to develop these agents for clinical use. We have concluded that polygons 

with an RNA composition stimulate a robust interferon response and minimal inflammatory 

cytokine release. In contrast, assemblies composed solely of DNA stimulate minimal 

interferon and inflammatory cytokine release. Additionally, we observed a trend for polygon 

type to contribute to the robustness of the immunological response. While our current data 

focuses on defining the role of polygon type and composition in initiating an immune 

response using one transfection reagent for delivery, preliminary experiments conducted 

using two additional transfection reagents display similar trends in the cytokine profile 

released in response to polygon transfection (Supporting Figure S6). These results suggest 

that the conclusions from our current data could be applied to additional carriers. However, 

future studies are necessary to fully investigate the role of lipid-based carriers in delivery 

and initiation of polygon induced immune responses in order to translate these nano-TNAs 

to clinical use. Interestingly, by developing QSAR models we were able to demonstrate that 

the physicochemical properties of the nano-TNAs, which are determined by the ratio of 

RNA and DNA, are the best predictors of immunological activity. Specifically, MW, Tm, and 

τ predict nano-TNA immunomodulatory activity. The QSAR models have also allowed for 

the generation of a library of nano-TNAs and their predicted immunological activity. Most 

importantly, the construction of this library provides a set of design principles for nano-

TNAs. These design principles allow engineering nano-TNAs with specific physicochemical 

and immunological properties for desired medical applications. The flexibility of designing 

nano-TNAs with differing RNA and DNA composition as well as polygon type provides the 

potential for efficient and cost-effective development of an extensive library of nano-TNAs 

with an array of physicochemical and immunological properties. Studies are ongoing to 

identify the molecular mechanisms, such as cytosolic nucleic acid sensors, that underlie the 

immune responses of these cells to our nano-TNAs. The ability to tailor these key nano-

TNA properties to therapeutic applications brings us one step closer to a more personalized 

medical treatment plan for patients for a myriad of diseases and conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Programmable nucleic acid RNA (A) and DNA (B) polygons. Each panel presents energy 

minimized 3D models of RNA and DNA nanoparticles (identical sequences are colored the 

same), with corresponding AFM images, hydrodynamic radii measured by DLS (presented 

as +/− SEM), and ethidium bromide total staining native-PAGE results. “MW standards” 

denote the low molecular weight DNA ladder (NEB) used as the size marker.
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Figure 2: 
Cell culture experiments with programmable polygons. Human microglia-like cell lines 

were transfected with polygons at a final concentration of 5 nM and 25 nM. (A) 3D models 

of tested polygons with RNA strands shown in grey and DNA strands in blue. (B) 

Assemblies all polygons visualized by agarose gel. “MW st.” denotes the low molecular 

weight DNA ladder (NEB). (C) Structural integrity of polygons associated with 

Lipofectamine 2000 (L2K) confirmed by the release studies with Triton X100. The results 

are analyzed by native-PAGE and visualized by AFM. (D) Relative cellular uptakes assessed 

by flow cytometry and (E) cell viability assays of polygons transfected with L2K. Polygons 
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tested without L2K showed negligible change in cell viability (data not shown). (F-G) 24 

hours post transfection with 16 RNA, DNA and RNA/DNA polygons, cell supernatants were 

collected and levels of IFN-β (F) and IL-6 (G) production were assessed by specific-capture 

ELISA. In C, E, and F, results were normalized to transfection reagent alone treated cells 

(L2K) and presented as the mean +/− SEM. Statistically significant results are indicated with 

asterisks (p value < 0.05).
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Figure 3: 
Schematic representation of quantitative structure-activity relationship (QSAR) modeling 

used in this project.
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Table 1.

Model accuracy estimated during 5-fold cross validation procedure.

IFN-β IL-6 IL-8

Descriptors R2 RMSE R2
y-rand R2 RMSE R2

y-rand R2 RMSE R2
y-rand

physicochemical (PC) 0.728 7.806 −0.318 0.803 1.333 −0.252 0.669 0.486 −0.358

sequence-based (Seq) 0.392 11.66 −0.649 0.353 2.415 −0.674 0.539 0.574 −0.706

PC and Seq 0.696 8.225 −0.540 0.682 1.694 −0.469 0.565 0.558 −0.614
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Table 2.

Descriptor’s contribution into the Random Forest models. Bold and italic font represents the most important 

descriptors.

IFN-β IL-6 IL-8

MW 20.54% 19.29% 19.38%

GC content 11.94% 5.96% 6.98%

Size (diameter) 2.99% 2.98% 5.99%

Tm, °C 24.01% 25.04% 21.88%

τ, min 31.30% 30.38% 31.38%

KD, nM 9.23% 16.36% 14.39%
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