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Abstract

Living cells possess membraneless-organelles formed by liquid-liquid phase separation. With the 

aim of better understanding the general functions of membrane-less microcompartments, this 

paper constructs acellular multi-compartment reaction systems using an aqueous multi-phase 

system. Membrane-less coacervate droplets are placed within a molecularly crowded environment 

where a larger dextran (DEX) droplet is submerged in a polyethylene glycol (PEG) solution. The 

coacervate droplets are capable of sequestering reagents and enzymes with a long retention time, 

and demonstrate multi-step cascading reactions through the liquid-liquid interfaces. The ability to 

change phase dynamics is also demonstrated through salt-mediated dissolution of coacervate 

droplets, which leads to release and mixing of separately sequestered reagents and enzymes. 

Finally, as phase-separated materials in membraneless organelles are often substrates and substrate 

analogues for the enzymes sequestered or excluded in the organelles, this paper explores the 

interaction between DEX and dextranase, an enzyme that hydrolyzes DEX. Results revealed that 

dextranase suffers from substrate inhibition when partitioned directly in a DEX phase but that this 

inhibition can be mitigated and reactions greatly accelerated by compartmentalization of 

dextranase inside a coacervate droplet that is adjacent to, but phase-separated from, the DEX 

phase. The insight that compartmentalization of enzymes can accelerate reactions by mitigating 

substrate inhibition is particularly novel and is an example where artificial membrane-less 

organelle-like systems may provide new insights into physiological cell functions.
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1. Introduction

Intracellular subcompartments regulate biological events and facilitate biochemical reactions 

through isolation, localization, and subsequent release of biomolecules facilitated by 

compartmentalization. Reaction networks in engineered microcompartments that mimic 

cellular organelles can enhance understanding of intracellular processes, allow added control 

in synthetic biology applications, and provide insights into the origin of life.1–4 Most such 

systems, however, mimic conventional membrane-bounded organelles such as the nucleus 

and mitochondria. Recently, there have been both multiple discoveries of and increased 

appreciation for membraneless compartmentalization through liquid-liquid phase separation 

(LLPS) in cells.5–7 Cells seemingly utilize molecular crowding to spatiotemporally regulate 

LLPS.8–10 The properties and biological functions of these membrane-less organelles are 

much less understood compared to their membrane-bounded counterparts. Some functions 

of membrane-less compartmentalization include concentration and storage of active 

biomolecules,11 regulation of biochemical reactions and kinetics,12, 13 mediation of stress,
14–16 and potential protection from toxic macromolecules.17 However, the link between the 

underlying mechanisms and functions, particularly how membrane-less 

compartmentalization regulates enzymatic reactions and kinetics, is still elusive.

Here we report an LLPS-based multi-compartment system in a molecularly crowded 

environment constructed through the combination of complex coacervation of adenosine 

triphosphate (ATP) and poly(diallyldimethylammonium chloride) (PDDA),18, 19 and an 
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aqueous two-phase system (ATPS) comprising dextran (DEX) and polyethylene glycol 

(PEG)20–22 in order to explore the capability of membrane-less compartments to sequester 

reagents, regulate cascading reactions, and accelerate enzymatic reactions. In particular, we 

propose a new mechanism of reaction acceleration by membrane-less compartmentalization 

that is based on the reduction of substrate inhibition. We show that substrate inhibition 

occurs for dextranase in highly concentrated DEX macromolecules, whereas it can be 

circumvented by sequestration of the enzyme in membrane-less compartments that are 

adjacent to, but phase separated from, the DEX phase.

While often overlooked, substrate inhibition in biochemical reactions is prevalent in living 

systems.23 For example, alchohol deoxygenase and tyrosine hydroxylase in the central 

nervous system, and phosphofructokinase and deoxyribonucleic acid (DNA) 

methyltransferase with nucleic acid substrates in the nucleus both show strong substrate / 

substrate analogue inhibition. Although our example using DEX and endo-dextranase is a 

specialized example, it is noted that membraneless organelles in cells can also sequester or 

exclude the enzymes that use the phase forming materials as substrates. Such a prominent 

example is the nucleolus24 that forms a multi-phase membraneless organelle comprised of 

ribonucleic acid (RNA) and their binding proteins; and compartmentalizes ribosomal DNA 

and RNA, RNA polymerase (RNAP), and the preribosomal particles in dedicated domains 

within the organelle to promote transcription and translation.25 Our system recapitulates 

such characteristics and serves as a model platform to explore organelle function.

In this work, we first evaluate the structural stability and molecular retention of the 

ATPPDDA coacervates in the DEX-PEG system and demonstrate the ionic strength-

mediated release of coacervate-encapsulated substances into the DEX phase. Next we 

perform a two-enzyme cascade reaction that occurs with substrate transport across 

compartments, and compare the reaction between compartmentalized and released enzyme-

substrate sets. The platform is further illustrated in a multiple substrate format to generate 

different colorimetric products in different compartments in a spatiotemporally controlled 

manner. Finally, we disintegrate compartmentalization by enzymatic degradation of the DEX 

phase and assess the effect of compartmentalization, including its ability to mitigate 

substrate inhibition.

2. Materials and Methods

All reagents were purchased through commercially available sources: dextran (DEX: Mw 

500,000), polyethylene glycol (PEG: Mw 35,000), horseradish peroxidase (HRP: 150 units 

mg−1), glucose oxidase (GOx: 15 units mg−1), dextranase (17.5 and 175 units mg−1), 

fluorescein isothiocyanate (FITC), rhodamine B isothiocyanate (RITC), ampliflu™ red, 

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 3,3’-

diaminobenzidine (DAB), o-phenylenediamine (oPD), 2-(N-morpholino)ethanesulfonic acid 

(MES) monohydrate, 3-morpholinopropane-1-sulfonic acid (MOPS), sodium hydroxide (6 

M NaOH), hydrochloric acid (1M HCl), and Pur-A-Lyzer Maxi dialysis kit (Mw cutoff 

12,000) were from Millipore-Sigma. FITC-DEX (Mw 500,000) was from TdB Consultancy 

AB. Food colorings (blue, green, red, and yellow) were from ESCO Foods. 35 mm glass-

bottom dishes (No.0) were from MatTek Corp. Flat-bottom 24-well plates were from 
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Corning. Fluorescent labelling of enzymes and characterization of ATP-PDDA coacervates 

were conducted using a previously reported protocol26 and described in the supporting 

information.

2.1 Preparation of ATP-PDDA coacervates and a DEX-PEG ATPS

MES buffer (20 mM, pH 6.0), ATP (50 mM, MES, pH 6.0), PDDA (50 mM, MES, pH 6.0), 

500 kg mol−1 DEX (10 % w/w, MES, pH 6.0), and 35 kg mol−1 PEG (10 % w/w, MES, pH 

6.0) solutions were prepared and filtrated using a 0.45 μm syringe filter (Puradisc™, 

Whatman). Given high resistance to wetting on a substrate,27 ATP-PDDA coacervates 

isolated in resuspension were utilized (Figure S1). ATP, PDDA, and loading materials were 

mixed and centrifuged at 5,000 rpm for 5 min. After the supernatant was removed, the 

remaining coacervate-rich pellet was stored at 4 °C and used within the same day of 

preparation. The surface potential and molecular composition of the ATP-PDDA coacervates 

were consistent with previously reported values (Ref 18 and 26) and summarized in Table 

S1. An ATPS comprising 10 % w/w DEX and 10 % w/w PEG above the critical 

concentration28 was used.

2.2 Confocal imaging of the ATP-PDDA coacervate in the DEX-PEG ATPS

Rhodamine B (final concentration of 1 μM) was premixed in the preparation of coacervates. 

50 μL of a DEX droplet containing 1 mg mL−1 FITC-DEX was placed on a glass-bottom 

dish and 0.5 μL of the coacervate was spotted in the DEX droplet. 500 μL of a PEG solution 

was gently added to the dish to form a three-phase system. Fluorescent z-stack images were 

collected (Nikon-A1, Nikon) and processed by ImageJ (NIH).

2.3 Molecular Stability of the ATP-PDDA coacervate

1 μL of the coacervate was spotted in 50 μL of either MES buffer or the DEX solutions. The 

supernatant was collected at specific time points (t = 0 – 24 hours) and measured by a UV-

VIS spectroscopy (NanoVue, Nanodrop). The subtracted absorbance (A260 nm - A320 nm) 

was utilized to calculate the released ATP concentration in the supernatant using the 

extinction coefficient of ATP (15.4 mM−1 cm−1). The total ATP concentration was obtained 

by complete dissociation of the coacervate in the presence of 500 mM NaCl. The ratio (mol

%) of the released ATP to the total ATP was averaged with three replicates and expressed as 

mean with standard deviation.

2.4 Patterning and degradation of the ATP-PDDA coacervates in the DEX-PEG ATPS

1000-fold diluted food colorings (red, yellow, green, and blue) were premixed during 

coacervation. 50 μL of a DEX solution was dispensed on a plastic plate (24-well plate, 

Corning Coaster) and 0.5 μL of a coacervate pellet was spotted in the DEX droplet. 500 μL 

of PEG or PEG-NaCl solutions (200 mM NaCl) was added to the DEX solution for retention 

or release of food colorings, respectively. Time-lapse images were collected with a 

stereoscope (C-DSD115, Nikon) at t = 0, 24, and 72 hrs for the retention measurement and 

at t = 0 through 35 min and t = 1200 min for the release measurement. Note that food 

colorings comprise a combination of dyes such as brilliant blue, allura red, and tartrazine 

yellow. Each food coloring shows different partitioning behavior (Figure S2).
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2.5 Compartentalized enzymatic cascade reactions across the coacervate, DEX, and PEG 
phases.

HRP (final concentration 0.1 mg mL−1, MES, pH 6.0) and ABTS (final concentration 1 mg 

mL−1, MES, pH 6.0), DAB (final concentration 1 mg mL−1, DMSO), oPD (final 

concentration 1 mg mL−1, DMSO), or Ampliflu™ Red (final concentration 1 mg mL−1, 

DMSO) were premixedduring coacervation. 50 μL of a DEX solution containing GOx (final 

concentration 0.1 mg mL−1, MES, pH 6.0) was dispensed on the plastic plate and 0.5 μL of 

the coacervates were spotted in the DEX droplet. 500 μL of a PEG solution was gently 

added to the dish. A glucose solution (final concentration 1 mM, MES, pH 6.0) was added to 

the PEG solution at 24 °C and images were taken using the stereoscope or an epifluorescent 

microscope (TE-300, Nikon).

2.6 Quantification of the enzymatic cascade reactions with compartmentalized and 
released HRP.

HRP (final concentration 0.1 mg mL−1, MES, pH 6.0) and DAB (final concentration 1 mg 

mL−1, DMSO) or oPD (final concentration 1 mg mL−1, DMSO) were premixed during 

coacervation. 1,3 μL of the coacervate pellet was spotted into 50 μL of a DEX solution 

containing 0.1 mg mL−1 GOx on a 24-well plastic plate. 200 μL of a PEG solution (± 200 

mM NaCl) was gently added and set for 30 min. For comparison of the droplet size, 1, 3, or 

9 μL of the coacervate droplet encapuslating the same amount of HRP was used. A glucose 

solution (final concentration 1 mM) was added to each well except blank conditions in the 

absence of glucose, and absorbance changes for DAB and oPD were monitored (Synergy™ 

H4 Hybrid Microplate Reader, BioTek) at 471 nm and 492 nm, respectively, every 3 min for 

90 min at 24 °C. The final absorbance values were averaged with three replicates and 

expressed as mean with standard deviation.

2.7 Degradation of DEX by compartmentalized or released dextranase

Dextranase (final concentration 0.1 mg mL−1, MES, pH 6.0) was premixed in the 

coacervates. 10 μL of a DEX solution containing 1 μg mL−1 FITC-DEX was added to each 

well in a 24-well plate. 0.5 μL of dextranase-laden coacervates were dispensed into the DEX 

droplet. 500 μL of a PEG solution (± 150 mM NaCl, MES, pH 6.0) was added to each well. 

0.5 μL of ATP-PDDA coacervates alone was used as a blank condition. Time-lapse images 

were taken at 24 °C by the epifluorescent microscope. The surface area of the DEX droplet 

was analyzed by ImageJ. The area values were averaged with three replicates and expressed 

as mean with standard deviation.

2.8 Bulk dextranase assay with compartmentalized or released dextranase

The detailed protocol is described in the supporting information. Briefly, dextranase 

degrades dextran that produces terminal isomaltose groups that convert a color reagent (3,5-

dinitrosalicylic acid) into a colorimetric product (3-amino-5-nitrosalicylic acid: λabs = 540 

nm) under basic conditions. A calibration curve was determined using maltose and 500 kg 

mol−1 DEX (0.5, 1, 2, 3, 4, 8, 10, and 20 % w/w, 0.1 M KH2PO4, pH 6.0) was used for the 

assay. The mass of dextranase was set to be around 2 μg per assay. The specific activity of 

dextranase was defined as unit mg−1 where one unit liberate one micromole of isomaltose 
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per min at pH 6.0 at 24 °C. The values were averaged with three replicates and expressed as 

mean with standard deviation.

2.9 Statistical analysis

ANOVA tests were performed using a commercially-available software package (SigmaStat 

3.5, Systat Software Inc.), using Student’s t-test or Tukey’s test for post-hoc pairwise 

comparisons.

3. Results and Discussion

Membrane-less compartmentalization using ATP-PDDA coacervates in a DEX-PEG ATPS

The proximity of most membrane-less organelles to critical points for phase transition along 

with their relatively open nature of compartmentalization allows dynamic exchange of 

molecules and phase transition triggered by relatively small changes in the external 

microenvironment.29, 30 In this paper, we first validated the integration of complex 

coacervation in an ATPS. An ATP-PDDA coacervate containing rhodamine B was dispensed 

by manual pipetting into a DEX-PEG system (Figure 1). Confocal imaging showed distinct 

boundaries of the coacervate, DEX, and PEG phases with rhodamine B confined to the 

coacervate phase (Figure 1A and Movie 1). UV-VIS spectroscopic measurements revealed 

that the crowded microenvironment in the DEX phase enables long-term retention of the 

coacervate with minimal disintegration compared to solutions in MES buffer (Figure 1B). 

Less than 5 % of the total ATP molecules dissociated from the coacervate in the DEX phase 

over 24 hours.

Next, we prepared ATP-PDDA coacervates containing different food colorings (Figure S2) 

and patterned the individual coacervates in the DEX-PEG system (Figure 1C). The 

ATPPDDA coacervates retained their shape without mixing and sufficiently sequestered the 

food colorings in the DEX-PEG system over 48 hours (Figure S3). The data are agreed well 

with the recent report,31 claiming that the presence of molecular crowders such as PEG and 

DEX can assist the encapsulation of molecules in RNA-peptide coacervates. The results 

demonstrate that multiple ATP-PDDA coacervates can be spatially patterned and structurally 

maintained without rapid disintegration in the DEX-PEG system.

In contrast to aqueous multiphase systems that solely rely on immiscibility,32 the individual 

coacervate phases in this system can be separately manipulated using pH, ionic strength, and 

constituent polymer concentrations.33 We confirmed selective disintegration of the 

coacervates by increasing ionic strength or lowering pH (Figure S4). The ionic strength-

driven release of compartmentalized biomolecules would be less harsh and a more versatile 

approach compared to pH change. We hypothesized that ion addition can functionally mimic 

“second messenger” signaling to trigger reactions. More specifically, by increasing the ionic 

strength, the ions triggered the release of encapsulated substances through selective 

disintegration of the coacervates while maintaining the DEX-PEG boundary (Figure S5 and 

Movie 2). The ATPPDDA coacervates gradually swelled over 5 min and completely 

dissociated in 15 min when exposed to 200 mM NaCl (Figure S5A–C). The food colorings 

were completely mixed while the DEX phase remained intact in the PEG phase for at least 
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1200 min (Figure S5D). The results demonstrate that the salt-induced regulation of the phase 

dynamics is potentially useful to initiate reactions.

Two-enzyme cascade reaction in the ATP-PDDA – DEX – PEG system

Membrane-less organelles facilitate metabolic cascade reactions34 and signal transduction35 

by selective partitioning that sequesters certain biomolecules while allowing others to transit 

relatively freely between phases and by reversible phase separation. Similar to 

membraneless-organelles in cells, our system is a membrane-free platform where small 

molecules like nutrients can diffuse out through the boundaries while macromolecules are 

spatially sequestered.

To articulate this advantage, we demonstrated an enzymatic cascade reaction that starts with 

glucose oxidase (GOx) oxidizing glucose to produce hydrogen peroxide and ends with 

horseradish peroxidase (HRP) oxidizing substrates (Scheme 1A and Figure S3). This 

cascade reaction has commonly been adopted as a cell signaling model in 

compartmentalized systems.36, 37 A single ATP-PDDA coacervate containing Amplex Red 

(HRP substrate) and HRP was dispensed into a DEX phase containing GOx, and this DEX 

phase was further surrounded by a PEG phase that contained β-glucose. The fluorescent 

signal from the ATP-PDDA coacervate was observed only when all essential components for 

the reaction were present in the system (Figure S6). FITC-labeled GOx showed that GOx 

was initially partitioned at the coacervate-DEX interface and gradually diffused into the 

coacervate phase over time (Figure S7). Multi-compartmentalization also enables the 

conduction of multiple reactions in defined spatial locations. In this context, we prepared 

three different substrates (ABTS, DAB, and oPD) together with HRP in different 

membraneless compartments (Scheme 1B). In the presence of glucose, colorimetric signals 

were observed. However, in the absence of glucose, no such signal was detected (Figure 2A 

and B). Additionally, no visible change was detected in the control coacervates. 

Interestingly, when we isolated HRP and DAB into separate compartments away from each 

droplet, no colorimetric change was observed over the course of our 60 minutes experiments 

due to insufficient time for DAB to diffusion from its droplet to the HRP-compartmentalized 

droplet (Figure 2C). In order to activate HRP substrates, HRP and its substrates need to be in 

close proximity to each other. The results confirm that the spatial control of components is 

essential to perform enzyme-mediated cascade reactions.38–40

Absorbance measurements highlight the effect of compartmentalization during the reaction 

(Figure 3). Interestingly, when the sequestered enzymes and substrates were released in the 

presence of 200 mM NaCl, the absorbance of the catalyzed products drastically dropped due 

to rapid diffusion of the substrate and product (Figure 3A–C). Since droplet size has been 

shown to affect the reaction rate,41–43 we changed the volume of coacervate droplets while 

maintaining total amount of encapsulate HRP the same (Table S2). In addition to fixing the 

total mass of HRP in the coacervate droplet, we distributed DAB and GOx outside the 

coacervate in the DEX phase to maintain total amounts of DAB and GOx constant even. The 

results show that DAB distributed in the DEX droplet diffuses into the coacervate droplet 

and precipitates through HRP-mediated catalysis. The stark color contrast between the 

inside and outside of the coacervate droplet after the reaction illustrates robust 
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compartmentalization of HRP in the coacervate droplet (Figure S8). However, we found no 

significant difference in the production rate of DAB when normalized by the droplet volume 

(data not shown). Given the relatively constant and small surface-to-volume ratio among the 

droplets (Table S2), we speculate that the coacervate droplets in our experiments are all in 

the larger size regime making it difficult to observe significant size-mediated effect.

Altogether, these results illustrate that our system allows flexible manipulation of coacervate 

droplets formed within a DEX-PEG ATPS to regulate enzymatic reactions through 

membrane-less compartmentalization.

DEX degradation by dextranase is accelerated by sequestering the enzyme in an adjacent 
phase

An interesting feature of the nucleolus, a prominent membrane-less organelle, is that the 

enzymatic machinery is often sequestered in a separate phase adjacent to the phase in which 

their biopolymer substrates are present in higher concentrations. For example, RNA 

polymerase I is exclusively sequestered in the nucleolus where the DNA concentration is 

relatively low compared to the nucleoplasm.44 It would be more intuitive for enzymes and 

substrates to be co-localized to accelerate reactions. What might be the effect of such 

separation of enzyme and substrate?

Hypothesizing that there is a difference during the reaction process when the substrate 

concentration is high such as in the cases where the substrate comprises one of the phase 

forming polymers, we tested the effect of sequestering dextranase away from its substrate 

DEX. We prepared RITC-labeled dextranase and compared time-lapse DEX degradation 

when dextranase is sequestered in coacervate droplets away from DEX macromolecules or 

released directly into the DEX phase (Figure 4). As expected, negligible DEX degradation 

was observed in the complete absence of dextranase (Figure 4C). Interestingly, however, 

RITC-dextranase compartmentalized in the ATP-PDDA coacervate adjacent to but away 

from the DEX phase degraded DEX faster than when the enzyme was distributed directly 

into the DEX phase (Figure 4A and B). The DEX degradation showed a distinct profile 

depending on the distribution of dextranase (Figure 4D). We note that the coacervate size 

was constant in the absence of NaCl over 24 hours and the DEX degradation was repeatable 

when new DEX droplets were supplied after complete degradation of the original DEX (data 

not shown).

Reduced substrate inhibition of dextranase when compartmentalized by ATP-PDDA 
coacervates

To understand the underlying mechanism, we performed a conventional dextranase assay in 

bulk conditions without the PEG phase (Figure 5). Given that the dextranase used in our 

manuscript is an endo-dextranase, we note that the dextranase product is also dextran of a 

smaller molecular weight and is hence also a substrate analogue. Dextranase showed 

negligible difference in enzyme activity regardless of the presence or absence of 150 mM 

NaCl (Figure 5A). Interestingly, despite the same amount of dextranase, significantly higher 

activity in the coacervate-compartmentalized dextranase was observed compared to the 

DEX-compartmentalized dextranase. Kinetics analysis suggests that substrate inhibition is 
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occurring when the dextranase is exposed directly to the DEX phase (Figure 5B). 

Importantly, there is no significant difference in reaction velocity between the 

compartmentalized and released conditions in the low concentration regime where no 

substrate inhibition is observed (up until 1% DEX). It is only in regimes where substrate 

inhibition is observed (2%, 3%, 8%, and 10% DEX) that compartmentalization provides a 

reaction velocity advantage. This further supports the notion that compartmentalization 

enhances reactions by alleviating substrate inhibition.

The another interesting feature of the results include the relatively steep drop in reaction 

velocity above DEX 2% that is difficult to explain simply by substrate inhibition alone, and 

the drastic reduction in reaction velocity of even the compartmentalized condition at 20% 

DEX. Given high molecular weight of DEX macromolecules (~500 kg‧mol−1), we compared 

the viscosities of the different DEX formulations (Figure S9). We found drastically higher 

viscosity at 20% DEX (~200 mPa‧s) compared to 1% DEX (1.5 mPa‧s) (Figure S9A and B). 

This may explain the overall slow reaction velocities at 20% DEX. Although the viscosities 

of 2% – 10% DEX solutions also increased (2~20 mPa‧s), perhaps not to the extent that all 

the reaction velocity decrease can be ascribed to higher viscosity. We additionally estimated 

the viscosity of the coacervate phase from the measured relative viscosity (Figure S9C) and 

the value was comparable to that of 15% DEX (~100 mPa‧s). Thus, viscosity decrease is not 

the reason for reaction acceleration in the compartmentalized system. Overall, we suggest 

that viscosity may play some role in the observed reaction velocity changes but not an 

overwhelming role.

Dextranase is an industrial enzyme used to reduce viscosity in sugar mills.45 Although the 

activity drop of dextranase at a high dextran concentration has been reported,46 this is, as far 

as we know, the first demonstration of the acceleration of dextranase reactions by enzyme 

compartmentalization from substrate inhibition. Our findings therefore may have some 

industrial relevance in sugar processing efficiency. More importantly, the results suggest 

mitigation of reaction inhibition by sequestration of enzymes away from the phase where its 

substrate and substrate analogues dominate as a potential mechanism by which 

membraneless organelles can accelerate bioreactions.

Recent studies have revealed that membrane-less organelles composed of protein-

protein47–49 or protein-nucleic acid50–52 complexes are prevalent in the nucleus and 

cytoplasm and linked to protein aggregation-related diseases,53–55 cancer,56 and stress 

response.57, 58 In the nucleolus, for example, membrane-less compartmentalization is known 

to concentrate RNAP I and boost the transcription rate.59 A recent study demonstrates 

upregulation of hyperphospholyration of RNAP II upon membrane-less 

compartmentalization through LLPS of kinase proteins in nuclear speckels.60 Such reaction 

acceleration by enzyme sequestration is traditionally assumed to be due to co-localization 

and better proximity between the enzyme and its reaction partners.61–63 Additionally, 

sequestration of biomolecules away from its reaction partners is generally considered as a 

way to slow reactions down. For example, nucleolar detention has been reported as a 

regulatory mechanism cells under stress adopt to sequester reaction intermediates to slow 

metabolic reactions down.64, 65
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Here, we show that sequestration of enzymes to a membrane-less compartment away from 

substrates can unexpectedly accelerate reactions by alleviating substrate inhibition in cases 

where the substrate concentration is high. As segregated compartmentalization of enzymes 

and their reaction partners is not uncommon in the cells, reaction acceleration by alleviation 

of inhibition by substrates and substrate-mimetics may be physiologically relevant. While 

this paper focuses on man-made polymer systems, we believe the insights can inspire 

additional analysis of nucleic acid-protein systems that are more directly related to 

epigenetics66–68 as well as neurodegenerative diseases and cancer.69

4. Conclusions

We report the formation of multiple stable membrane-less compartments comprised of ATP-

PDDA coacervation and DEX-PEG ATPS. The system recreates aspects of membraneless 

organelles using readily-available chemicals and materials to allow functional studies of the 

biochemical implications of such compartmentalization. Because coacervate droplets and 

DEXPEG ATPS have very distinct phase forming responses to ionic strength, pH, and 

dextranase, this combination allowed orthogonal manipulation of the different phases. For 

example, enzymes and substrates sub-compartmentalized within the coacervates could be 

released into the DEX compartment upon coacervate degradation by increased ionic strength 

or pH change. Alternatively, compartmentalization of dextranase in the coacervate droplets, 

even as the DEX phase was degraded by hydrolysis, enabled insight into unique ability of 

membraneless compartmentalization to reduce substrate inhibition.

Our robust membrane-free system recapitulates aspects of physiologically relevant 

membrane-less compartmentalization and sheds light on a previously overlooked mechanism 

of reaction acceleration by reducing reaction inhibition by substrate and substrate-analogues. 

While this manuscript focuses on dextranase and substrate inhibition caused by DEX, it may 

be interesting to interrogate other enzymatic reactions that demonstrate substrate inhibition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the NIH (R01 GM123517 and CA 196018) and NSF (CBET 0939511) for funding.

Abbreviation

ATPS aqueous two phase system

LLPS liquid-liquid phase separation

ATP adenosine triphosphate

PDDA poly(diallyldimethylammonium chloride)

DEX dextran
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PEG polyethylene glycol

HRP horseradish peroxidase

GOx glucose oxidase

FITC fluorescein isothiocyanate

RITC rhodamine B isothiocyanate

ABTS 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium 

salt

DAB 3,3’-diaminobenzidine

oPD o-phenylenediamine

MES 2-(N-morpholino)ethanesulfonic acid

MOPS 3-morpholinopropane-1-sulfonic acid

NaOH sodium hydroxide

HCl hydrochloric acid

DNA deoxyribonucleic acid

RNA ribonucleic acid

RNAP RNA polymerase
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Figure 1. 
Membrane-less compartmentalization using ATP-PDDA coacervates in a 10% DEX – 10% 

PEG system. (A) Reconstructed Z-stack image of a rhodamine B-encapuslating ATP-PDDA 

droplet (red) resuspended in a DEX droplet (green) in the PEG phase (black). Red: 

rhodamine B and green: FITC-DEX. (B) Time-lapse release of ATP from the coacervate 

quantified by UV-VIS spectroscopy measurement in MES (closed triangle) or the DEX 

(closed circle) solutions over 24 hours. The released ATP was normalized by the total ATP 

in the coacervate (mol%). The total ATP was obtained by complete coacervate dissociation 

by NaCl addition. (C) A brightfield image of the ATP-PDDA coacervates encapsulating food 

colorings (blue, red, yellow, and green) in the DEX-PEG ATPS. Scale bar (A) 500 μm and 

(C) 1 mm.
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Figure 2. 
Enzymatic cascade reactions across membrane-less compartments using GOx and HRP in 

the DEX-PEG ATPS. A GOx-suspended DEX droplet was submerged by a PEG solution. 

HRP-ABTS-laden coacervate (top), HRP-oPD-laden coacervate (left), HRP-DAB-laden 

coacervate (bottom), and blank coacervate (right) were spotted in the DEX deroplet. The 

images were taken (A) in the absence and (B) in the presence of 1 mM β-glucose at t = 60 

min, respectively. (C) The DAB-laden (bottom left) and HRP-laden (bottom right) 

coacervates were either isolated or overlaid (top) in the presence of 1 mM β-glucose. The 

image was taken at t = 60 min. Scale bar 1 mm.
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Figure 3. 
A colorimetric assay of the cascade reaction under compartmentalized and released 

conditions. (A) The compartmentalized HRP-DAB in the absence of 200 mM NaCl at t = 90 

min. (B) The released HRP-DAB in the presence of 200 mM NaCl at t = 90 min. (C) 

Absorbance change of DAB (l = 471 nm) and oPD (l = 492 nm) using compartmentalized or 

released HRP-DAB or HRP-oPD. Scale bar 1 mm. The bar indicates individual pairwise 

differences: * p < 0.05 and *** p < 0.01.
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Figure 4. 
A dextran degradation assay comparing compartmentalized and released dextranase. (A) 

Dextranase was compartmentalized in ATP-PDDA coacervate droplets in a DEX-PEG 

system. (B) Dextranase was released from the coacervate phase upon disintegration of the 

coacervate phase triggered by the addition of 150 mM NaCl. (C) A blank ATP-PDDA 

coacervate was used as a control condition. The images were taken at t = 24 hrs. Green: 

FITC-DEX and red: RITC-dextranase. Scale bar 100 μm. (D) The area shrinkage of DEX 

droplets was analyzed over 24 hours.
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Figure 5. 
A bulk dextranase assay comparing compartmentalized and released dextranase. (A) The 

specific activity of bulk dextranase in a 2 % (w/w) DEX solution was quantified at 24 °C 

using compartmentalized or released dextranase in the ATP-PDDA coacervates. Free-

floating dextranase with a similar amount of mass (2 μg) in the presence and absence of 150 

mM NaCl was used as control conditions. The bar indicates pairwise comparison to all 

others in that group: ** p < 0.01. (B) The specific activity of compartmentalized and 

released dextranase at 24 °C was measured as a function of the DEX concentration. The 

astarisk indicates pairwise comparison at each DEX concentration: ** p < 0.01, **** p < 

0.0001.
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Scheme 1. 
A schematic illustration of cascade reactions in the multicompartment system. (A) Single 

coacervate encapsulating HRP and Amplex Red in the DEX-PEG ATPS. (B) Multiple 

coacervates encapsulating HRP and ABTS, oPD or DAB in the DEX-PEG ATPS.
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