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Abstract

Purpose—To develop a novel framework for rapid, intrinsic head motion measurement in MRI 

using FID navigators (FIDnavs) from a multi-channel head coil array.

Methods—FIDnavs encode substantial rigid-body motion information; however, current 

implementations require patient-specific training with external tracking data to extract quantitative 

positional changes. In this work, a forward model of FIDnav signals was calibrated using 

simulated movement of a reference image within a model of the spatial coil sensitivities. An 

FIDnav module was inserted into a non-selective 3D FLASH sequence and rigid-body motion 

parameters were retrospectively estimated every readout time using non-linear optimization to 

solve the inverse problem posed by the measured FIDnavs. This approach was tested in simulated 

data and in seven volunteers, scanned at 3T with a 32-channel head coil array, performing a series 

of directed motion paradigms.

Results—FIDnav motion estimates achieved mean absolute errors of 0.34 ± 0.49 mm and 0.52 

± 0.61° across all subjects and scans, relative to ground-truth motion measurements provided by 

an electromagnetic tracking system. Retrospective correction with FIDnav motion estimates 

resulted in substantial improvements in quantitative image quality metrics across all scans with 

intentional head motion.

Conclusions—Quantitative rigid-body motion information can be effectively estimated using 

the proposed FIDnav-based approach, which represents a practical method for retrospective 

motion compensation in less cooperative patient populations.
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INTRODUCTION

MRI is highly sensitive to motion and resulting artifacts can significantly degrade image 

quality. Motion is particularly problematic for clinical imaging of pediatric or other 

uncooperative patient populations, in many cases leading to non-diagnostic images requiring 

a repeat scan. A variety of motion prevention strategies have been adopted including 

physical restraints, training and sleep manipulation in infants, which are partially effective, 

but not always practical (1). Sedation and general anesthesia are commonly used when 

imaging children (2); however, these are expensive and time-consuming to administer and 

there are increasing concerns over their potential long-term adverse side effects (3). 

Technological developments over the last few decades, from fast acquisition schemes (4,5) 

and parallel imaging (6–8), to advanced methods such as simultaneous multi-slice 

acquisitions (9) and compressed sensing (10), have enabled a reduction in imaging times, 

and hence inherent sensitivity to motion. However, despite these advances, scan times in 

routine brain MRI protocols still reach the order of several minutes, highlighting the need 

for techniques that can explicitly measure and correct for subject motion.

Various methods have been proposed to compensate for motion (11) either retrospectively, 

by modifying the acquired k-space data during reconstruction, prospectively, via real-time 

update of the image acquisition (12) or a combination (13). To correct for motion, subject 

movement must first be estimated, either using an external tracking system or from the MR 

data itself. Measurement noise (precision) should be a fraction of the target pixel resolution 

to avoid introducing additional artifacts (14). Optical (13,15) or electromagnetic (16,17) 

sensors may be used to measure motion with high temporal resolution and reported accuracy 

on the order of ±0.1 mm/°. However, these require integration of MR compatible hardware 

and fixation of a fiducial marker on the subject, which may compromise clinical workflow 

and will be sensitive to any non-rigid or skin motion. Optical trackers additionally require 

careful cross-calibration and a line of sight between the camera system and optical sensor, 

which may be difficult to achieve. In practice, MR-based motion tracking methods are 

arguably more convenient, particularly for imaging non-compliant patients. Motion-robust 

k-space trajectories, including radial (18), spiral (19) and periodically rotated overlapping 

parallel lines with enhanced reconstruction (PROPELLER) (20), help alleviate motion 

artifacts by oversampling the center of k-space and may be used for self-navigation prior to 

the final image reconstruction (20–22). Drawbacks of these approaches include reduced 

acquisition efficiency, increased reconstruction complexity, and most are limited to in-plane 

motion correction. Navigator methods acquire additional data to determine positional 

information relative to a reference signal. Navigators may be based in image space e.g. 

PROMO (23), fat navigators (24) and volumetric navigators (vNavs) (25), or k-space e.g. 

spherical (26), orbital (27) and cloverleaf (28) navigator echoes. There is usually a trade-off 

between tracking accuracy and the navigator acquisition time, meaning most navigator 

acquisitions are limited to sequences containing sufficient dead time.

Free induction decay (FID) navigation, originally developed to correct for system instability 

and physiological fluctuations in functional MRI (29), exploits the fact that individual coils 

are spatially sensitive to local signal changes from different regions of the head to detect 

motion within the coil array (30). FID navigators (FIDnavs) sample the k-space center 
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without any imaging gradients and are an attractive option for monitoring motion as they 

have negligible impact on the magnetization or overall scan time. This enables motion 

detection with a high temporal resolution, which may be used to trigger a prospective 

motion correction strategy with selection of an appropriate threshold (31). The ability of 

FIDnavs to recognize previously determined head positions within the magnet has also been 

demonstrated (32); however, this approach currently entails a patient-specific training 

session prior to imaging, requiring the subject to perform a series of choreographed head 

movements with external ground-truth motion measurements, in order to train a pattern 

recognition algorithm. This is impractical in many clinical scenarios and represents a 

significant barrier to widespread clinical implementation of this approach.

The purpose of this work is to develop a novel framework for motion measurement using 

FIDnavs from multi-channel head coil arrays, without the need for choreographed training 

or additional ground-truth motion data. We propose calibrating FIDnav signal changes using 

simulation of the acquisition physics and the effect of head motion upon the FIDnav 

measurements from each coil. This approach relies on construction of an appropriate 

forward model to predict FIDnav signal changes due to head motion. Here, we validate this 

approach in simulations and demonstrate the accuracy of derived motion measurements and 

the efficacy of retrospective artifact correction in a series of directed motion experiments in 

volunteers.

THEORY

FID Navigation

Multi-channel coil arrays are routinely used in clinical brain MRI examinations and 

prototype head coil designs with up to 64 array elements are now becoming commercially 

available (33). According to the Principle of Reciprocity (34), the strength of the received 

MR signal in an individual coil element is proportional to the ratio of the magnetic field B1 

generated by the coil to the coil current I, per the Biot-Savart Law (35):

B1
I =

μ0
4π∮ ds × (r − r′)

r − r′ 3 [1]

where ds is a differential element of wire along the coil path, ( r − r′) is the displacement 

vector from the wire element ds to the point within the object where the magnetic field is 

computed and μ0 is the magnetic permeability constant. FIDnavs measure the MR signal 

without any spatial encoding and may be represented as:

y j =∫
v

s j r ρ r dr [2]
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where y j is the complex FIDnav from the jth coil, ρ(r) is the effective proton density of the 

original image and s j(r) is the complex coil sensitivity profile (CSP) at position r. The 

received signal is dependent on the distance between the object and the coil element; 

therefore, movement of the object within the coil array results in changes in the measured 

FIDnav. We propose that a forward model of the magnitude of the FIDnavs may be 

constructed to estimate rigid-body motion parameters describing the head position within the 

magnet:

yt = C f (xt) [3]

where C is a real-valued model matrix describing how the spatial sensitivity map of each coil 

and the spin density of the object being imaged result in FIDnav measurements and xt is a 

vector whose elements are the six rigid-body motion parameters describing the change in the 

object’s position and orientation at time t. If a linear relationship between FIDnav signal 

changes and rigid-body motion is assumed, f x = [x1, x2…x6, 1]T, C is an Nc × 7 matrix 

(where Nc is the number of channels) and motion parameters can be computed from the 

inverse of Equation 3. Given the non-linear nature of the coil sensitivities (Eq. 1), we 

propose that a higher-order polynomial regression model may provide a closer 

approximation to Equation 1 and more effectively characterize larger amplitude motion 

within the coil array. For a second-order polynomial regression model, 

f x = [x1
2…x6

2, x1x2…x5x6, x1…x6, 1]T (i.e. a 28 × 1 vector parameterized by six unknowns), 

C is an Nc × 28 matrix and Equation 3 may then be solved for xt in a least-squares sense 

using a suitable non-linear optimization algorithm. A schematic of the proposed FIDnav 

motion measurement approach is shown in Figure 1.

Coil Sensitivity Estimation and Extrapolation

This approach assumes that the CSPs are static and independent of the head position and 

orientation, which should be valid for small head movements (36). It also requires that CSPs 

can be accurately estimated over the full range of possible head positions within the field of 

view (FOV). One solution is to explicitly calculate the CSPs via the Biot-Savart Law (37); 

however, this is challenging as it requires a priori knowledge of the exact coil positions and 

may also be affected by unpredictable coil loading and coupling between array elements. In 

practice, CSPs are typically derived from low-resolution complex surface coil images 

normalized by either a root-sum-of-squares image or a body coil image, which is assumed to 

have a spatially uniform sensitivity (7). This approach necessitates extrapolation of the 

measured CSP beyond the boundaries of the initial object position, which may be achieved 

by fitting a parametric surface in the form of local polynomials (7) or global basis functions 

(splines) (38). In this work, CSPs were extrapolated across the imaging FOV by fitting a 

series of 3D radial basis functions (RBFs), described in the Appendix.
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METHODS

Numerical Simulations

To validate the proposed approach, numerical simulations were performed in Matlab 

(R2016b; Mathworks, Natick, MA). 3D CSPs were simulated for 16 channels by 

numerically integrating Equation 1 along each coil path to obtain an approximation of the B1 

field (39). Simulation parameters were as follows: FOV = 300 mm, coil radius = 45 mm, 

distance of coil from image center = 150 mm. A 2-mm isotropic proton density-weighted 

axial brain volume (40) was used as the test object. Individual coil images were simulated by 

point-wise multiplication of the test object with the CSPs and the FIDnav signal was 

computed as the complex sum of each coil image. FIDnavs were calculated for series of 500 

rigid-body motions in six degrees of freedom (DOF) with maximum vector norms of 10 

mm/° to generate a training dataset. Resampling was implemented in C++ using the Insight 

Toolkit (ITK), using Kaiser-Bessel window (sinc) interpolation to preserve information at 

the edges of the image. Simulated FIDnavs were used to calibrate first and second-order 

polynomial regression models to compute the model matrices C.

The accuracy (mean absolute error) and precision (standard deviation of the error) of FIDnav 

motion tracking was tested for a series of 500 compound rigid-body movements (6 DOF) 

with increasing displacement and rotation amplitudes. Multi-variate complex Gaussian noise 

with zero-mean, standard deviation σ j = y j¯ /SNR (where y j¯  is the mean of the jth FIDnav 

signal and SNR = 400 is the signal-to-noise ratio of the FIDnav time course) and covariance 

matrix ψ  ( ψ ii = 1; 0 < ψ i j < 0.25) was added to the simulated FIDnavs. An efficient 

numerical non-linear optimization algorithm BOBYQA (41) was then used to compute 

motion parameters xt from the magnitude of the noisy FIDnav signal vector yt by solving the 

following minimization problem:

min
xt

yt − ktC f (xt) ψ−1 yt − ktC f (xt) [4]

where kt is a scaling factor introduced to account for bulk magnitude fluctuations in the 

FIDnav signal over time. This was seeded with motion estimates from the linear model, 

computed from the inverse of Equation 3. To determine the minimum resolution 

requirements for the reference image, the simulation was repeated using successively lower 

resolution images for the training dataset. Simulation of simple 1D 10 mm/° translations and 

rotations was also performed to further explore the nature of the errors for each of the 

regression models in the presence of large amplitude motion.

MRI Experiments

Data Acquisition—Seven volunteers were scanned at 3T (Siemens Healthcare, Erlangen, 

Germany) using a 32-channel head coil. Volunteers gave written informed consent prior to 

imaging and all scans were performed in accordance with the local Institutional Review 

Board protocol. Two reference images were acquired with the surface and body coils, 

respectively, using a sagittal, non-selective 3D fat-suppressed fast low-angle shot (FLASH) 
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sequence for estimation of the CSPs, effective proton distribution ρ and noise covariance 

matrix ψ  (Fig. 2a). Acquisition parameters were as follows: repetition time (TR) = 22 ms, 

echo time (TE) = 1 ms, flip angle ( α) = 20°, receiver bandwidth (RBW) = 87.5 kHz, FOV = 

256 ×256 ×224 mm, 4 mm isotropic resolution, total acquisition time (TA) = 1 min 23 s.

An FIDnav module was inserted into a 3D FLASH sequence immediately after the non-

selective excitation pulse and before the imaging readout (Fig. 2b). Following excitation, 

320 complex FID data points were sampled during an analog-to-digital converter (ADC) 

readout, with an acquisition time (TADC) of 2 ms. TADC was chosen so that the navigator 

time (TNAV; defined as the center of the FIDnav readout) was equal to the TE of the 

reference image, so that the simulated FIDnav signal (Eq. 2) should match the measured 

FIDnav. As the FIDnav utilizes the same excitation pulse as the host sequence, this increases 

the minimal TE and TR of the sequence by TADC (2 ms). Fat suppression was applied to 

prevent dephasing of the FIDnav signal over the sampling time due to the different resonant 

frequencies of water and fat.

A total of five FID-navigated fat-suppressed T1-weighted anatomical scans were then 

acquired with the following acquisition parameters: TADC/TNAV = 2/1 ms, TR/TE = 22/3.96 

ms, α = 20°, RBW = 87.5 kHz, FOV = 256 ×256 ×224 mm, 1.3 ×1.3 ×2 mm resolution, TA 

= 8 min 15 s. Subjects were instructed to perform the following directed motion experiments 

to simulate a variety of motion conditions:

1. Remain as still as possible for the duration of the scan (small involuntary motion 

only)

2. Perform a smooth head nodding motion, beginning 30 seconds into the scan and 

continuing for the duration of the scan

3. Perform a smooth head shaking motion, as above

4. Perform a series of eight abrupt head jerks (resulting in a repositioning of the 

head within the magnet), spaced approximately 1 minute apart

5. Perform a continuous, free motion during the central two minutes of the scan, 

remain still for the remainder of the scan

All instructions were given verbally through the scanner intercom system. An 

electromagnetic (EM) tracking system (Robin Medical Inc., Baltimore, MD) was used to 

provide ground-truth motion data. Four sensors were affixed to a flexible strip, which was 

tightly attached to a headband worn by the subject and the relative position and orientation 

of each sensor was measured every TR.

Data Analysis—Complex k-space data from each channel were reconstructed in Matlab. 

The noise covariance ψ  was estimated from a small region of background voxels in the 

reconstructed surface coil images. CSPs were estimated by taking the ratio of the complex 

surface and body coil images. A mask was defined to segment the background region by 

applying an empirical thresholding criteria to the body coil image, which was the same for 

all volunteers. A sparse set of reliable data points were selected from the measured CSPs in 

the foreground region using a local first-order polynomial fitting criteria (42). Specifically, a 
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linear plane was fit to local regions centered on each pixel within the bias field map 

(computed by taking the sum-of-squares of the ratio data) and the sum-of-square difference 

was computed between the measured data and each fitted linear plane. Points with errors 

<1% were included as nodes for the RBF extrapolation. A linear RBF (biharmonic spline) 

was fit to this sparse set of data points to extrapolate the CSP information, as described in 

the Appendix. The regularization parameter was empirically chosen to be equal to one voxel 

width (4 mm) to obtain a smooth approximation of the CSP information across the whole 

FOV (Supporting Information Fig. S1).

The reference image was created using Roemer optimal reconstruction of the individual coil 

images, as this exploits the higher SNR of the multi-channel surface coils, whilst retaining 

the uniform sensitivity of the body coil (35). As the acquisition was non-selective, the 

reference image was partitioned into two locally rigid regions: the head (assumed to move as 

a rigid body) and the neck-and-shoulder region (assumed to remain stationary). Binary 

masks were prospectively defined for each subject by positioning a single oblique plane on 

the reference image. Masks were convolved with a Gaussian kernel to enforce a smooth 

transition between the moving and stationary spin densities. The simulated FIDnav signal 

was obtained by summing over both spatial regions (see Supporting Information Fig. S2), 

assuming these are approximately separable, subject to some small errors as a result of 

localized gaps and overlaps near the boundaries of the mask (43). The masked reference 

image was rotated and translated (6 DOF; maximum amplitude 5 mm/°) and resampled 500 

times within this model of the coil array to generate a simulated FIDnav dataset to calibrate 

a second-order polynomial regression model (Fig. 1). 50 complex FIDnav readout samples 

(centered around TNAV) were averaged prior to magnitude extraction, generating a single 

measurement for each coil and time point. The resulting FIDnav time course was low-pass 

filtered, using a Kaiser-Bessel filter with a cut-off frequency of 0.2 Hz, to mitigate the effect 

of physiological noise (cardiac pulsation and respiration) prior to motion estimation. 

Measurements from the first five seconds of each dynamic phase were discarded to allow the 

signal to reach a steady state. Rigid-body motion parameters were then estimated from the 

measured FIDnavs using non-linear optimization (Eq. 4).

Optimal rigid-body motion parameters were estimated from the position and orientation of 

the four EM sensors using singular value decomposition (44). Accuracy and precision of 

FIDnav motion estimates were computed as the mean absolute error and standard deviation 

of the error, respectively, relative to the ground-truth EM tracking data. The mean voxel 

displacement (MVD), which describes the mean distance traversed by each voxel within a 

model of the head (45), was calculated for each subject and motion paradigm as follows:

MVD = 1
(Nt − 1)Nv

∑
t = 1

Nt − 1

∑
i = 1

Nv

(ri, t − ri, 0) [5]

where ri, t i = 1

Nv ∈ ℝ3 is a set of Nv points within a brain region mask, segmented using FSL 

BET2, (Analysis Group, FMRIB, Oxford, UK) at time t, computed using the EM tracker 
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rotation and displacement estimates relative to the initial position ( ri, t = Rtri, 0 + dt) and Nt 

is the total number of time points. The residual MVD following retrospective correction with 

FIDnav motion predictions was also calculated.

Motion estimates from each scan were applied to the raw k-space data to evaluate FIDnav-

based retrospective motion correction. Translational and rotational motion correspond to a 

linear phase shift and rotation of k-space lines, respectively. Reconstruction was performed 

by regridding the rotated k-space data from each coil (46), as proposed by Gallichan et al. 
(24). Retrospectively corrected and uncorrected images were registered to the (uncorrected) 

image volume acquired without any voluntary motion and the voxel-wise normalized root-

mean-square error (NRMSE) and the structural similarity (SSIM) index (47) were calculated 

within the segmented brain region relative to this motion-free reference image. Paired 

Wilcoxon signed-rank tests were performed to determine if the improvement in these 

quantitative image metrics following retrospective correction with EM tracking and FIDnav 

motion estimates were significant.

RESULTS

Model validation

The accuracy and precision of translational and rotational motion estimates for simulated 

head movements with increasing maximum motion amplitude are displayed in Figure 3a for 

the linear and non-linear regression models. The linear model exhibits a reduction in 

accuracy and precision with increasing motion amplitude, whilst the non-linear model 

retains accuracy and precision on the order of 0.16 ± 0.12 mm and 0.52 ± 0.38° for 

amplitudes up to 10 mm/°. The 1D simulations reveal that the poor performance of the linear 

model at larger motion amplitudes is due to “cross-talk” errors, where a change in one 

motion parameter induces a false change in another (Supporting Information Fig. S3). 

Figure 3b demonstrates that reducing the resolution of the reference image beyond 5 mm 

decreases the accuracy and precision of the resulting motion estimates.

Accuracy of Head Motion Measurement

Representative FIDnav time courses from each motion paradigm are displayed in Supporting 

Information Figure S4. Per-TR motion parameters were estimated in ~10 ms using the 

BOBYQA algorithm to solve the optimization problem posed by the measured FIDnavs. 

The estimated motion trajectories from the FIDnavs and the EM tracking system from a 

representative scan with no voluntary motion are shown in Figure 4. Translational motion 

estimates are in excellent agreement, with both the EM tracker and FIDnavs measuring a 

slow drift in z-translation over the course of the eight-minute scan. A small bias can be seen 

in the FIDnav in-plane rotational motion estimates. Several swallowing events can also be 

observed in the EM tracking data, denoted by the arrows, which introduce small errors into 

the FIDnav motion estimation at these time points, due to violation of the assumption of 

rigid-body motion. Similar slow, drift-like motion patterns were observed across all 

volunteer scans with no intentional motion (n=7) with maximum motion amplitudes on the 

order of 0.46/0.24/0.61 mm and 0.73/0.82/0.34° for x/y/z translation and rotation. Under 
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these conditions, FIDnavs demonstrated absolute errors on the order of 0.11 ± 0.05/0.08 

± 0.04/0.17 ± 0.08 mm and 0.3 ± 0.17/0.27 ± 0.14/0.36 ± 0.19°.

Figure 5 shows the translational and rotational motion trajectories measured by the EM 

tracking system and proposed FIDnav measurement system for a subject performing slow 

continuous head nodding and shaking motion for the duration of the scan. There is good 

agreement between rigid-body motion estimates from FIDnavs and EM tracking, with 

FIDnavs tending to slightly underestimate larger amplitude motions. Across all subjects and 

motion paradigms, FIDnavs demonstrated absolute errors of 0.44 ± 0.68/0.25 ± 0.40/0.31 

± 0.40 mm and 0.67 ± 0.73/0.45 ± 0.57/0.44 ± 0.54° for maximum x/y/z translation and 

rotation amplitudes on the order of 6.90/3.14/2.57 mm and 13.07/5.15/11.80°. Figure 6 

shows the distribution of the translational and rotational errors in each direction for all 

volunteers and motion paradigms. Larger errors are evident for some scans and motion 

paradigms (notably for Subject 3 performing the abrupt motion paradigm where the 

magnitude of x-translation was underestimated), which indicates the limitations of the 

method for reliably measuring large (>10 mm/°) motion amplitudes. Histograms of the 

absolute translational and rotational errors for each motion paradigm are shown in 

Supporting Information Figure S5, alongside the maximum amplitude motion measured in 

each direction. Across all scans, 94.9% of translational and 85.8% of rotational motion 

estimates were estimated with errors <1 mm/°.

The MVD computed within the masked brain region using rigid-body motion estimates from 

the EM tracker is shown in Figure 7 for each motion paradigm, along with the residual 

MVD following correction with FIDnav motion estimates. FIDnav-based correction resulted 

in a significant (P<0.05) decrease in MVD across all volunteers for each directed motion 

paradigm.

Retrospective Artifact Correction

Figure 8 shows a representative example of sagittal and axial slices through uncorrected and 

retrospectively corrected 3D FLASH images with abrupt intermittent head jerks, relative to 

the no motion scan, which acted as the reference image volume for comparison. 

Substantially reduced blurring can be seen with both EM and FIDnav-based motion 

compensation, with a corresponding increase in the SSIM index and decrease in NRMSE 

following correction. An example of retrospective correction of continuous free motion 

during acquisition of the central k-space lines is displayed in Figure 9, demonstrating a 

comparable improvement in image quality. Additional examples of FIDnav-based 

retrospective correction of abrupt and continuous motion are shown in Supporting 

Information Figures S6 and S7. Figure 10 shows improvements in NRMSE and SSIM 

indices with retrospective correction, compared to the uncorrected images for each motion 

paradigm. Across all subjects and scans with intentional motion, the NRMSE value of the 

uncorrected images was 6.11% ± 1.96%. Retrospective correction with the EM tracking and 

FIDnav motion estimates yielded significantly reduced (P<0.005) NRMSE values of 5.03% 

± 1.52% and 5.11% ± 1.76%, respectively. A significant increase (P<0.01) in the SSIM 

index was also observed, from 0.773 ± 0.134 (uncorrected) to 0.818 ± 0.111 and 0.819 

± 0.125 with EM and FIDnav-based correction.
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DISCUSSION

This work describes a practical FIDnav-based motion measurement approach that eliminates 

the need for choreographed training with simultaneously acquired external tracking data by 

calibrating FIDnav measurements using simulated motion within a model of the head coil 

array. The effectiveness of this approach for retrospective motion compensation was 

demonstrated in a series of simulations and volunteer experiments with directed motion 

performed at 3T using a standard 32-channel head coil.

Numerical Simulations

Previous studies have assumed a linear relationship between FIDnav signal changes and 

underlying motion parameters (30,32,48); however, directly solving the inverse problem 

posed by measured FIDnavs failed to reliably estimate displacements and rotations >1 mm/° 

(48). Simulations revealed that whilst a simple linear regression model of FIDnav signals 

can account for small positional changes, the model breaks down at large amplitudes due to 

“cross-talk” between motion parameters, yielding poor accuracy and precision. Our 

proposed non-linear regression model can more effectively compensate for large motion 

amplitudes by accounting for second-order changes and interactions between parameters. In 

theory, even higher order models could be used, but at the risk of over-fitting parameters in 

the presence of noise. Rotations are more sensitive than translations to noise in the FIDnav 

time course and cross-talk errors, likely because translations induce larger FIDnav signal 

changes than rotations of equivalent magnitude. The simulations also revealed a trade-off 

between the resolution of the reference image and FIDnav tracking accuracy. The time taken 

to acquire the reference image should ideally be kept as short as possible, partly to minimize 

the potential for motion artifacts during this scan. In practice, a 4-mm resolution image 

provides an acceptable compromise between scan time and navigator accuracy.

Accuracy of Head Motion Measurement

Ground-truth motion values for intra-scan movement were provided by the EM tracking 

system. Overall, mean absolute translational and rotational errors were in the sub-millimeter 

and sub-degree range for motion amplitudes and patterns representative of those seen in less 

compliant subjects (16,49,50). The FIDnav prediction errors in this experiment were higher 

than those reported by Babayeva et al. (0.14 ± 0.21 mm and 0.08 ± 0.13°) for similar 

amplitude motions (32), likely due to the increased number of assumptions in using 

simulated data for the model calibration. The CSP extrapolation is expected to become less 

accurate further away from the original object boundaries, which may lead to errors when 

extrapolating larger amplitude motions. Furthermore, the FIDnav motion measurement 

model may break down in the presence of particularly large amplitude motion, due to 

changes in coil loading and motion-induced magnetic field (B0) variations, discussed in 

more detail below. Nevertheless, this is still a promising result as the previous study used a 

third of the acquired FIDnav and optical tracking data from each choreographed scan to train 

the regression algorithm, which is unrealistic in many clinical scenarios. Non-rigid motion, a 

lack of symmetry in the underlying coil geometry and inaccuracies in EM tracking (e.g. due 

to skin motion) are expected to be further sources of errors.
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Retrospective Motion Correction with FIDnavs

Retrospective correction using the proposed FIDnav framework resulted in a comparable 

improvement in image quality, relative to ground-truth correction with EM tracking motion 

measurements, with substantially less blurring than the uncorrected images. Both EM 

tracking and FIDnav-based correction led to a significant decrease in NRMSE for all motion 

paradigms, except continuous head nodding. This may be due to artifacts caused by 

temporal B0 field variations, which are expected to be most severe for out-of-plane rotations. 

FIDnav motion compensation led to a significant increase in the SSIM index for all 

continuous motion paradigms; failure to achieve significance for abrupt motion may be due 

to the overall larger mean voxel displacements for this paradigm (Fig. 7). Residual artifacts 

are expected due to inconsistencies between k-space lines induced by large rotational 

motions, which is a limitation of retrospective correction without reacquisition of corrupted 

data.

Non-Rigid Motion

For the volunteer experiments, a multi-rigid approach (43) was employed for model 

calibration, to help compensate for the fact that the whole FOV does not move as a rigid 

body. This required manual definition of a binary mask to segment the head region (assumed 

to move rigidly) from the neck and shoulder region (assumed to remain stationary). Non-

rigid motion e.g. swallowing (51) was also shown to influence FIDnav measurements, 

leading to small errors in motion estimation (Fig. 4). Future implementations could explore a 

more sophisticated model of head motion based on more realistic kinematic models and 

training with non-rigid motion. In this work, motion estimates were derived from FIDnavs 

measured from all 32 channels in the head coil array. Future work will explore the use of 

automated coil selection algorithms to help detect the dominant motion from a sub-set of 

coils and remove channels that are sensitive to noise and non-rigid motion (52). This could 

be particularly advantageous if using an even higher channel-count coil array.

B0 Field Variations

FIDnavs are sensitive to changes in B0 that arise due to thermal gradient drifts over time, 

respiration (53) and bulk motion (12). The former may be corrected by detrending the 

measured FIDnavs prior to motion estimation, but at the expense of reducing sensitivity to 

slow drift-like motion (30). Respiration is associated with both true motion as well as 

“apparent motion” induced by B0 variations attributed to bulk susceptibility changes in the 

lungs, and these effects can be difficult to resolve (54). As the main goal of this work was to 

correct for bulk rigid-body head motion, a low-pass filter was applied to the data to mitigate 

physiological fluctuations due to breathing and cardiac pulsation. Magnetic susceptibility 

boundaries produce distortions in the B0 field, which change as the subject moves. These 

changes are particularly important for out-of-plane rotations e.g. “nodding” motion due to 

the changing orientation of the object relative to the B0 field direction, which may confound 

motion measurements (12). In this work, only the magnitude of the FIDnavs was used as this 

primarily reflects changes in the distance to each coil element. Including phase values in the 

model gave a poor prediction performance, probably because of these phase effects that arise 

from position changes in susceptibility gradients, which are difficult to model. Previous 
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work has demonstrated the ability of FIDnavs and sensitivity encoding to determine up to 

second-order B0 field inhomogeneities, with application for real-time shimming of the static 

magnetic field (55). Future work will test the ability of complex FIDnav signals to 

simultaneously monitor and correct for motion and temporal B0 fluctuations.

Timing Considerations

Whilst other image and k-space-based navigator approaches typically require sufficient dead 

time (on the order of hundreds of milliseconds) to be present in the host sequence, FIDnavs 

can be inserted into almost any sequence with just a marginal increase in the overall scan 

time. The same excitation pulse may be used for both navigation and imaging, so the 

minimal TE/TR is only increased by the duration of the navigator. To enable simulated 

training, the timing of the FIDnav is designed to match the contrast properties of the 

reference image. The minimal FIDnav duration is therefore limited by the minimum TE of 

the reference image and in theory could be further reduced by increasing the receiver 

bandwidth, decreasing the pixel resolution, or employing an ultra-short echo time 3D radial 

acquisition. Reducing the acquisition time of the FIDnav may also help reduce the 

confounding effects of B0 variations on motion estimates.

The simulated training step currently requires acquisition of two low-resolution reference 

scans (acquired using the surface and body coils, respectively) prior to imaging; however, 

these may also be useful in providing coil sensitivity information for subsequent sequences. 

Per-TR motion estimates can be obtained in ~10 ms, making this a feasible method for 

prospective motion correction. This would require CSP extrapolation and model calibration 

to be performed on-line. Significant speed-ups could be achieved by using fewer sample 

points to construct the CSP model and reducing the number of training data points. Further 

work would need to be done to assess the impact of each of these steps on the overall 

accuracy and precision of motion tracking.

Potential Applications

FIDnavs are an attractive approach for motion compensation in non-compliant subjects as 

motion data can be rapidly acquired, with minimal impact on contrast or scan time, using 

standard scanner hardware. Here, we demonstrate that our proposed approach may be used 

to measure a wide range of head motions with sub-millimeter and sub-degree accuracy and 

precision, and to retrospectively correct motion-corrupted 3D FLASH data with 1.3 mm in-

plane resolution. In light of previous studies, which show that tracking accuracy should be 

on the order of a fraction of a pixel to ensure successful motion artifact correction (14), we 

suggest our proposed FIDnav motion measurement algorithm could be used to correct 

images with resolutions ~1 mm3, depending on the maximum observed motion amplitude. 

FIDnav motion measurements may also be used to guide autofocusing algorithms by 

providing an initial estimate and limiting the search space, making correction of higher-

resolution 3D datasets more computationally feasible.

Extension to other non-selective 3D sequences should be relatively straightforward, 

providing a suitable low-resolution reference image can be acquired with the same contrast 

properties as the FIDnavs. The application of the proposed FIDnav motion measurement 
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approach to 2D sequences is expected to be more challenging, as the acquired FIDnav will 

be sensitive to different excited spatial locations. This may be overcome by incorporating a 

model of the slice excitation profile into the simulations, but would require further 

experimentation to determine the validity of such an approach.

CONCLUSIONS

This work demonstrates the ability of our proposed motion measurement approach using 

FIDnavs and the spatial sensitivity patterns of multi-channel coil arrays to provide real-time, 

quantitative motion measurements for retrospective correction. In our implementation, the 

use of simulated training data eliminates the requirement for the subject to perform 

choreographed head movements prior to imaging, providing a more practical solution for 

motion compensation in less cooperative patient populations.
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APPENDIX

Radial Basis Function Extrapolation of Coil Sensitivity Profiles

RBFs provide a solution for interpolation or approximation of scattered data in multi-

dimensional space. The scattered data interpolation problem can be formally described as 

follows. Given a set of function values f j j = 1
N ∈ ℝ at N distinct data points (nodes) 

r j j = 1
N ∈ ℝ, find an interpolant s such that:

s r j = f j, 1 ≤ j ≤ N [A1]

where r j = (x j, y j, z j) for points r ∈ ℝ3. Here, the function values f j are the measured CSPs 

(obtained by division of each low-resolution surface coil image by a body coil image), 

sampled at reliable data points r j within the original image (determined by a local first-order 

polynomial fitting criteria). The general form of an RBF consists of a set of N basis 

functions ϕ j(r) and weighting coefficients λ j as follows:

s x = ∑
j = 1

N

λ jϕ r − r j2 + p r [A2]
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where p(r) is a low degree polynomial, added to help to regulate the matrix inversion and 

improve accuracy at domain boundaries. To remove the additional DOF, Equation A2 is 

subject to the following side conditions:

∑
j = 1

N

λ j = ∑
j = 1

N

λ jx j = ∑
j = 1

N

λ jy j = ∑
j = 1

N

λ jz j = 0 [A3]

Various choices exist for the basis function ϕ j including polyharmonic, Gaussian and multi-

quadric functions. The thin plate spline ϕ r = r2log(r) is a popular choice for fitting smooth 

functions for r ∈ ℝ2. In this work, we employ a linear RBF (biharmonic spline) ϕ r = r, 

which has C1 continuity, to fit a smooth function in three dimensions. The weights λ j and 

linear polynomial terms p(r) = c0 + c1x + c2y + c3z can be found by solving the following 

linear system of equations:

s(x1, y1, z1)

s(x2, y2, z2)

⋮
⋮

s(xn, yn, zn)

0
0
0
0

=

0 ϕ2 x1, y1, z1 ⋯ ϕn x1, y1, z1 1 x1 y1 z1
ϕ1 x2, y2, z2 0 … ϕn x2, y2, z2 1 x2 y2 z2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

ϕ1(xn, yn, zn) ϕ2(xn, yn, zn) … ϕn(xn, yn, zn) 1 xn yn zn
1 1 … 1 0 0 0 0
x1 x2 … xn 0 0 0 0

y1 y2 … yn 0 0 0 0

z1 z2 … zn 0 0 0 0

λ1
λ2
⋮
⋮
λn
c0
c1
c2
c3

[A4]

The matrix form can be written as:

s
0 =

A P

PT 0
λ
c

[A5]

Since noise is present in the measured CSP, the interpolation condition is too strict and can 

be relaxed by introducing a regularization term. A solution can then be found that 

approximates the data by minimizing the following cost function:

1
N ∑i = 1

N

s ri − f i
2 + μs2 [A6]
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where μ ≥ 0 and ⋅  denotes the semi-norm, which gives a measure of the energy or 

“smoothness” of the function. The regularization parameter μ controls the trade-off between 

smoothness and fidelity to the underlying data. This corresponds to introducing non-zero 

diagonal terms to the matrix in Equation A5 as follows:

s
0 =

A − μI P

PT 0
λ
c

[A7]

where I is the identity matrix. Thus, by solving the system of linear equations in Equation 

A7 a smooth extrapolation of the CSP is obtained across the whole FOV.
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FIG. 1. 
Proposed FID navigator motion measurement system.
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FIG. 2. 
Reference 3D FLASH (a) and FID-navigated 3D FLASH (b) pulse sequences. The echo 

time of the reference image is designed to match center of the FIDnav (TNAV).
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FIG. 3. 
Accuracy and precision of translational and rotational estimates from linear (circles) and 

non-linear (squares) regression models (a), calculated for trials of 500 simulated data points 

with increasing motion amplitudes. The non-linear model retains high accuracy and 

precision with increasing motion amplitudes. Impact of the pixel resolution of the reference 

image for calibration of the non-linear regression model on the accuracy and precision of 

FIDnav navigator translational and rotational motion estimates (b), calculated for maximum 

motion amplitudes of 10 mm/°. There is a trade-off between resolution of the reference 

image and navigator accuracy.
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FIG. 4. 
Translational and rotational motion trajectories recorded from the EM tracking system 

during a volunteer scan (Subject 5) with no intentional motion and corresponding FIDnav 

motion estimates; arrows denote swallowing events. FIDnav translational measures are in 

excellent agreement with EM tracking, whilst an additional drift is observed in the FIDnav 

tracking estimates for in-plane rotation. Swallowing events introduce small errors in FIDnav 

motion estimation due to the assumption of rigid-body motion.
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FIG. 5. 
Translational and rotational motion trajectories estimated from the EM tracking system and 

the proposed FIDnav motion measurement system during a volunteer scan where the subject 

was verbally instructed to perform a smooth, continuous (a) nodding motion and (b) shaking 

motion for the duration of the scan. FIDnav motion estimates are in good agreement with the 

ground truth motion values measured by the EM tracking system, with a slight trend for 

underestimation of larger amplitude motions.
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FIG. 6. 
FIDnav motion prediction errors for all subjects and motion paradigms, plotted for 

translation and rotation about the x, y and z-axes. Boxplots visualize the distribution of the 

error and encapsulate data between the 25th (Q1) and 75th (Q3) percentiles i.e. the 

interquartile range (IQR), with the whiskers extending to the maximum errors not 

considered outliers (defined as data points further away from Q1 or Q3 by 1.5[IQR]). The 

median (solid line) and mean (open circle) errors are also shown. Overall, FIDnav motion 

predictions achieved good accuracy and precision, relative to the EM tracking system; 

however, larger errors are evident for some volunteers and motion paradigms.
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FIG. 7. 
Summary of motion levels before and after FIDnav correction across different motion 

paradigms. MVD is calculated within the masked brain region from rigid-body motion 

estimates from the EM tracking system (blue bars). Yellow bars show the residual MVDs 

after correction with FIDnav motion estimates. FIDnav motion correction results in a 

significant (P<0.05; denoted by *) decrease in MVD across all volunteers and scans with 

intentional motion.
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FIG. 8. 
Impact of FIDnav-based retrospective correction of abrupt motion in Subject 1. Sagittal and 

axial slices through 3D FLASH images are shown (from left to right) with no voluntary 

motion, uncorrected image with abrupt motion, and with retrospective motion compensation 

using the EM tracking and FIDnav motion estimates. NRMSE and SSIM indices, relative to 

the reference scan, are also shown. FIDnav-based correction of abrupt head motion results in 

a comparable increase in both qualitative image quality and quantitative metrics, relative to 

ground-truth correction with EM tracking motion measurements.
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FIG. 9. 
Impact of FIDnav-based retrospective correction of slow continuous motion during 

acquisition of the central k-space lines in Subject 5. Sagittal and axial slices through 3D 

FLASH images are shown (from left to right) with no voluntary motion, uncorrected image 

with slow, continuous motion, and with EM tracking and FIDnav-based retrospective motion 

compensation. FIDnavs provide accurate real-time motion estimates that can correct for 

continuous head motion, resulting in improved image quality.

Wallace et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 10. 
Improvement in quantitative image quality metrics with FIDnav-based retrospective 

correction. NRMSE in percent (a) and SSIM index (b) for each motion paradigm, relative to 

the uncorrected reference image acquired without any voluntary motion, before correction 

and after retrospective correction with EM tracking and FIDnav motion estimates. FIDnav-

based motion compensation yielded a significant (P<0.05; denoted by *) improvement in 

NRMSE and SSIM across most motion paradigms tested.
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