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Abstract

Background—-Biallelic deleterious variants in R7 7/, which encodes rotatin, are associated with
primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in
human infants.

Methods and Results—We performed exome sequencing of an infant with primary
microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated
parents. We cultured the infant’s fibroblasts to determine primary ciliary phenotype.

Results—We identified biallelic variants in 77N in the affected infant: a novel missense variant
and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the
infant demonstrated reduced length and number of primary cilia.

Conclusion—Biallelic variants in 77N cause primary microcephaly in infants. Functional
characterization of primary cilia length and number can be used to determine pathogenicity of
RTTN variants.
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Introduction

Methods

Autosomal recessive primary microcephaly (MCPH) is a rare, heterogeneous
neurodevelopmental disorder characterized by developmental disruption of brain growth
including reduced cerebral cortex, simplified gyri, reduced white matter volume,
abnormalities of the corpus callosum, and intellectual disability.(1, 2) At least 18 genes have
been linked to MCPH,(3) with variants in ASPM(4) and WDR62(5) identified most
frequently.(3, 6) Most of these genes encode components of basal bodies and
centrosomes(7) illustrating the significant role of primary cilia in normal brain development.

RTTN encodes rotatin, a centrosome-associated protein that co-localizes to the basal bodies
of primary cilia(8) and is required for appropriate expression of nodal, lefty2, and pitx2 in
the left lateral plate mesoderm of the developing mouse embryo.(9) Mouse embryos lacking
rotatin demonstrate abnormal heart looping, delayed neural tube closure, and alterations of
left-right sidedness.(9, 10) Biallelic 77N variants have been identified among infants and
children with primary microcephaly, polymicrogyria, seizures, intellectual disability, and
somatic growth impairment, (Table 1), (7, 8, 11) and fibroblasts from these individuals
demonstrate shortened cilia.(8) We present a male infant with primary microcephaly,
simplified gyri, pontocerebellar hypoplasia, contractures, and intractable epilepsy with a
novel missense and a rare, intronic variant in R77/N that results in an aberrantly spliced
transcript and reduced length and number of cilia in fibroblasts. Our data expand the
genotypic and phenotypic spectrum for MCPH that results from genetic disruption of RT7TN
and demonstrate the usefulness of ciliary length and number for functional characterization
of RTTN missense variants.

Clinical Report

A male infant of European-descent was born at 33 weeks gestation to a 38 year old
primigravid mother whose pregnancy was complicated by the antenatal detection of
calcifications of the fetal liver and cardiac intraventricular septum with non-diagnostic
maternal serum 7oxoplasma gondii and cytomegalovirus studies, shortening of the fetal long
bones, polyhydramnios, pregnancy induced hypertension, pre-pregnancy maternal
hyperthyroidism treated with thyroidectomy and thyroid hormone replacement, and preterm,
premature rupture of membranes for which mother received antenatal corticosteroids and
magnesium. The infant was delivered via caesarean section due to non-reassuring fetal
surveillance. The infant required resuscitation at birth including intubation and mechanical
ventilation. Family history was significant for a paternal grandfather with childhood seizures
and a maternal grandfather with young-onset Parkinson’s disease.

His birth measurements were: weight 1710g (—0.78 standard deviation (SD) below mean),
length 38cm (-2.1 SD), and occipitofrontal circumference (OFC) 28cm (=1.5 SD). His
measurements at 6 weeks of age were: weight 19509 (3.4 SD), length 42.5cm (3.4 SD),
and OFC 27.5cm (—4.9 SD). Of note, OFC measurement at 6 weeks (27.5cm) was decreased
from birth (28cm), possibly related to neonatal caput succedaneum or inter-individual
differences in measurement. OFC measurement at 6 weeks was confirmed by a clinical
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geneticist and a pediatric neurologist. Physical findings included relative microcephaly with
metopic ridging, occipital prominence, bilateral microophthalmia, reactive pupils,
microstomia, microretrognathia, smooth philtrum, relatively large, cupped, low-set ears,
bilateral contractures of knees and ankles, mild camptodactyly with contractures of
interphalangeal joints, bilateral syndactyly of fourth and fifth fingers and second to fifth
toes, microphallus, cryptorchidism, and appendicular hypertonia with normal deep tendon
reflexes.

Shortly after birth, the infant developed clinical seizures with head turning and extension of
all extremities. His electroencephalogram demonstrated suppressed background and
intermittent burst suppression that arose independently from both hemispheres. Despite
aggressive anti-epileptic treatment with phenobarbital, fosphenytoin, levetiracetam,
lorazepam, midazolam, pyridoxine, leucovorin, vigabatrin, and topiramate, his seizures
persisted with multiple events per day. He died at 4 months of age after developing acute,
progressive respiratory failure.

His diagnostic evaluation included magnetic resonance imaging of his brain that was notable
for cerebral hypoplasia with simplified gyral pattern, pontocerebellar hypoplasia, bilateral
frontal cortical dysplasia, agenesis of the corpus callosum, thinning of the periventricular
white matter with ex vacuo dilatation of the occipital and temporal horns, misshapen orbital
globes, and optic nerve hypoplasia (Figure 1). Ophthalmologic evaluation demonstrated
rudimentary retinal vasculature, hypoplastic optic nerves, and pale optic disks. Skeletal
radiographs demonstrated gracile appearing bones with thin ribs, hypoplastic mandible,
increased density of the temporal bones, and soft tissue syndactyly. Renal ultrasound showed
bilateral pyelocaliectasis. Cytomegalovirus and 7oxoplasma gondii studies, serum amino
acids, urine organic acids, lactate, pyruvate, thyroid studies, 7-dehydrocholesterol (7-DHC)
reductase (to exclude Smith-Lemli Opitz syndrome), routine newborn screen, and
chromosomal microarray analysis were non-diagnostic. Autopsy was not performed.

Exome sequencing

This study was approved by the Human Research Protection Office at Washington
University. After parental informed consent was obtained, genomic DNA was isolated from
the proband’s skin fibroblasts and from parental saliva. Exome capture was performed using
the Nimblegen VCRome v2.1 Exome kit (Roche, Madison, WI) with paired-end sequencing
(2x125bp) on an Hlumina HiSeq 2500 instrument (Illumina, San Diego, CA). Sequence
reads were aligned to the human reference genome sequence (GRCh37/hg19) with 90% of
the exome having at least 20x coverage. Variants were annotated with Annovar (http://
annovar.openbioinformatics.org/en/latest/).(12) Variants in coding regions and near exon-
intron junctions that were novel or rare (minor allele frequency less than 0.01 in the Exome
Aggregation Consortium (EXAC) database, (exac.broadinstitute.org))(13) were assessed for
predicted pathogenicity using Combined Annotation Dependent Depletion (CADD,
cadd.gs.washington.edu),(14) SIFT (sift.jcvi.org),(15) Polyphen2 (genetics.bwh.harvard.edu/
pph2/),(16) LRT (genetics.wustl.edu/jflab/Irt_query.html), (17) MutationTaster
(www.mutationtaster.org),(18) GERP++ (mendel.stanford.edu/SidowLab/downloads/gerp/),
(19) and PhyloP (http://compgen.cshl.edu/phast/help-pages/phyloP.txt).(20) Exonic variants
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were classified as deleterious if predicted to be pathogenic by the majority of these
programs. We used the dbscSNV database(21) within Annovar to assess variants in splicing
consensus regions. We evaluated for de novo, autosomal recessive, and X-linked recessive
transmission, and candidate genes were reviewed for possible associations with the clinical
phenotype.

Exon level oligo array comparative genomic hybridization (CGH) (ExonArrayDx) for the
coding exons of the candidate gene was performed in a clinical laboratory (GeneDx,
Gaithersburg, MD) on DNA obtained from the proband. Probe sequences and location were
based on human genome build 19. Array CGH alterations were reported according to the
International System for Human Cytogenetic Nomenclature (ISCN) guidelines.

Transcript Characterization

We extracted RNA from the proband’s skin fibroblasts (RNeasy RNA extraction kit (Qiagen,
Germantown, MD)) and from parental peripheral blood (PaxGene RNA tubes and blood
RNA kit (Qiagen, Germantown, MD)) and synthesized cDNA using SuperScript 111
(Invitrogen, Carlsbad, CA). To assess RNA splicing, we designed PCR primers that would
specifically amplify cDNA that includes exons 1 through 5, spanning several splice
junctions. To test for possible aberrant splicing from a cryptic splice site in intron 1, we
designed a primer pair in which the forward primer was located in intron 1, and the reverse
primer in exon 3. To characterize RNA splicing further, we ligated Illumina adaptors to our
PCR products, and performed deep resequencing on an Illumina Miseq instrument (lllumina,
Carlsbad, CA).

To evaluate for aberrant splicing in a larger cohort, we queried the GTex database
(gtexportal.org) which contains 8,812 RNA-seq BAM files from 551 individuals for 55
tissue types to tabulate raw read counts for splice junctions. Briefly, data from each RNA-
seq experiment were filtered to obtain spliced reads (containing the ‘N’ CIGAR operation)
with mapping quality >20 that overlap the genomic interval of interest. Splice junctions were
calculated from read mapping positions and the gapped alignment information contained
with the CIGAR string. The number of reads supporting each unique junction was counted
for each sample. Splice junctions were compared to Refseq gene annotations to define
canonical versus non-canonical splicing events (e.g., exon skipping, alternate donor/acceptor
sites, or alternate transcription start sites).

Ciliary Staining and Characterization

We cultured fibroblasts from the proband and a healthy control on coverslips maintained
with 10% fetal bovine serum (FBS)/Dulbecco’s minimal essential medium (DMEM). After
fibroblasts reached 90% confluence, we arrested cell growth and facilitated ciliogenesis by
reducing FBS/DMEM concentration (0.5%) for 48 hours. To assess cilia length and number,
we performed immunofluorescent staining with anti-yy tubulin (to mark centrosomes) and
anti-acetylated tubulin (to mark cilia). Briefly, after cell fixation with pre-chilled methanol
(-20°C for 10 minutes) and washing with PBS and 0.1% Triton X-100 in PBS (PBS-T),
cells were stained with monoclonal 1gG1 anti-y tubulin (1:1000, Sigma, St. Louis, MO) and
monoclonal 1gG2b anti-acetylated tubulin (1:10,000, Sigma, St. Louis, MO) for 1 hour.
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After washing cells with PBS-T, cells were incubated with goat anti-mouse 1gG1 Alexa
Fluor 488 and goat anti-mouse 1gG2b Alexa Fluor 594 (Invitrogen, Carlsbad, CA) for 1
hour. Images were captured with a Nikon Eclipse Ti-E inverted microscope and a wide-field
immunofluorescence microscope. At least 100 cells were scored for the presence or absence
of cilia. We used Chi square testing to compare the percentage of ciliated cells. We used
Image J (https://imagej.net) to measure cilia length and Student’s t-test to compare cilia
length in the proband and control fibroblasts.

Magnetic Resonance Imaging Scanning

Results

Images were collected on a Siemens Magnetom Trio 3T scanner. Structural images were
collected with an axial magnetization-prepared rapid gradient-echo (MP-RAGE) T1-
weighted sequence (time of repetition/echo time [TR/TE] 1550/3.05 ms and voxel size 1
mma3) and a turbo spin-echo T2-weighted sequence (TR/TE 8950/161 ms, voxel size 1 mm3,
and echo train length 15).

Exome Sequencing

We identified 2 rare variants in RT7/N in the proband inherited in frans. a novel, predicted
deleterious (CADD score=33)(14) missense variant, ¢.190G>T; p.Val64Phe, inherited from
mother that is not present in the EXAC database [accessed May, 2018] and a rare, intronic
variant (c.32-3C>T) inherited from father (frequency of 0.0073 in EXAC).(Supplemental
Figure S1) Clinical exon level oligo array CGH did not detect any deletions or duplications
that include the R77TN locus.

Transcript Characterization

We speculate that the ¢.32-3C>T variant results in leaky splicing (22) that concurrently
produces canonical and aberrantly spliced (exon 2 skipping and activation of a cryptic splice
site with partial intron 1 retention) cDNA transcripts. To assess exon 2 skipping, we
designed primers to amplify the cDNA region from exon 1 to exon 5 of RTTN (primers
listed in Supplement). Agarose gel electrophoresis (Supplemental Figure S2a) revealed an
expected band size from the canonical transcript of 601 base pairs (bp) (Supplemental
Figure S3a), but also a much lower abundance, smaller band at 407 bp in all samples. Gel
extraction and Sanger sequencing of individual bands confirmed that the 601 bp band was
the expected canonical transcript, and the 407 bp lower band lacked exon 2 (Supplemental
Figure S3b). The identification of the exon 2 missense variant from the proband’s 601 bp
band indicates that some canonical splicing is occurring from both alleles. Since the sample
from the mother, who is not a carrier of the ¢.32-3C>T splice variant, also showed a much
lower abundance 407 bp band consistent with exon 2 skipping, we performed deep next
generation sequencing on the PCR products to assess the relative amounts of canonical and
aberrantly spliced alleles in each member of the family and in 4 unaffected control samples.
We detected much more aberrantly spliced cDNA in the proband and father than in the
mother and controls (Supplemental Table).
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To assess the possibility of leaky activation of a cryptic splice site upstream in intron 1, we
designed a primer pair in which the 5" (forward) primer was located in intron 1, and the 3’
(reverse) primer was located in exon 3. PCR amplification of cDNA produced a band only in
the samples from the subjects who carried the ¢.32-3C>T variant (proband and father) and
not from the mother’s sample (Supplemental Figure 2b). Gel extraction and Sanger
sequencing of this amplicon revealed intron 1 sequence, but canonical exon2-exon3 splicing,
suggesting this variant also results in retention of intron 1 (Supplemental Figure S3c). This
finding indicates the ¢.32-3>T variant also results in an aberrantly spliced transcript from an
upstream alternate splice site. However, the very small size of the exon 1-intron 1 region
(~60 bp) precluded sufficient amplification and genomic resolution to confirm this
additional aberrant transcript sequence.

As we detected some aberrant transcript in the samples from the mother and 3 controls and
an alternate splice site in the samples from the proband and the father, we queried the GTex
database to tabulate raw read counts for splice junctions involving exons 1-3 of R7TN. We
found 146 (0.8%) reads in which exon 2 was skipped compared to 18,330 reads which
demonstrated canonical exon 1-exon 2 splicing, demonstrating a low level of aberrant
splicing in unrelated individuals. Of note, the canonical junction is supported by a mean of
only 2 reads per sample in the GTex database, in contrast to our NextGen data with greater
than 300x coverage per sample. In addition, the aberrantly spliced transcript is smaller than
the canonical transcript (407 bp vs. 601 bp) and is likely to be preferentially amplified.

Immunofluorescent Staining

Biallelic variants in 77/ have been shown to cause defects in ciliary assembly.(8) We
identified fewer ciliated cells (28% ciliated vs. 89% ciliated, p< 0.0001) and shorter cilia
(2.4£0.8um vs. 3.7+1.5um, p<0.0001) from the proband fibroblasts as compared to the
control fibroblasts (Figure 2) in 3 independent experiments.

Discussion

Rotatin, a 2,226 amino acid protein, contains 2 highly conserved, armadillo-type fold
domains that mediate protein-protein interaction.(8-10) Both the ¢.190G>T (p.Val64Phe)
and the ¢.32-3C>T variants are located in the genomic region that encodes the first
armadillo-type fold domain. Other variants (p.Cys27Tyr, p.Ala578Pro, p.His865Arg) within
this region have been previously identified among individuals with microcephaly, abnormal
gyri, and seizures(6-8) and suggest the importance of this domain for normal function and
formation of primary cilia and for subsequent neurodevelopment. The R7 7N variants
identified among infants and children with primary microcephaly have been missense or
splicing variants, suggesting that biallelic null variants may be embryonic lethal as described
for another microcephalic primordial dwarfism gene DONSON.(23)

In silico splicing software predicts that the native 3 splice site near exon 2 of the RTTN
gene is relatively weak, and that the ¢.32-3C>T variant further reduces the strength of this
site (Alamut®). Our experimental results suggest that a very low rate of exon 2 aberrant
splicing occurs in unrelated, healthy individuals, but the ¢.32-3C>T variant substantially
increases the rate of aberrant splicing. Unlike the novel p.Val64Phe variant, the ¢.32-3 C>T
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variant is present in 882 heterozygous individuals in EXAC including 4 homozygous
individuals without available clinical phenotype information. We demonstrate that the c.
32-3C>T variant reduces strength of the native splice site and results in leaky splicing(22) in
which some canonically spliced product is produced. We speculate individuals homozygous
for this variant produce sufficient canonical transcript for neurodevelopmental viability.
However, when in frans with a deleterious variant, a single ¢.32-3C>T variant is insufficient
to achieve a threshold of expression to permit normal neurodevelopment. Shortened ciliary
length of our patient’s fibroblasts has been previously identified among other patients with
biallelic R7TN variants(8) and supports the pathogenicity of these R77TN variants. The
decreased number of ciliated fibroblasts from our patient has not been previously observed
among fibroblasts from patients with biallelic R7 7N variants.

Murine embryos with genetically abrogated rotatin expression demonstrate randomized
heart looping, delayed neural tube closure, and abnormalities of left-right sidedness.(9, 10)
The lack of congenital heart disease or situs abnormalities in our patient and in previously
reported MCPH patients with R7 7N variants suggests species-specific differences in the role
of RTTN, fetal lethality associated with R77/A-mediated cardiac abnormalities, genetic
redundancy for R7 7N encoded functions during human cardiac development, or differences
in phenotypic consequences between complete null alleles (murine model) and biallelic
missense/splice variants observed among the infants and children. Genetic disruption of
RTTNand its Drosophila homolog Ana3expression in murine and fly models, respectively,
demonstrates the importance of rotatin in brain development.(9, 24) Ana3also localizes to
centrioles and basal bodies, and Ana3-deficient flies are severely uncoordinated and die soon
after larval emergence, a phenotype similar to mutants of other centriolar and basal body
structural proteins which result in defective cilia of type | neurons.(24)

The neurologic (microcephaly, simplified gyral pattern, agenesis of the corpus callosum,
cortical dysplasia, reduced white matter, and contractures) and extra-central nervous system
(bilateral cryptorchidism, microphallus, and renal pyelocaliectasis) findings in our patient
are similar to previously reported patients with biallelic R77N variants.(7, 8, 11) However,
his ophthalmologic findings (misshapen orbital globes, optic nerve hypoplasia, rudimentary
retinal vasculature, and pale optic disks) and skeletal findings (gracile appearing bones, thin
ribs, hypoplastic mandible, increased density of the temporal bones and syndactyly) have not
been previously reported.

In conclusion, our results support and extend the association of biallelic R7 7N variants with
severe primary microcephaly and emphasize the usefulness of functional characterization of
primary cilia length and number for assessment of pathogenicity of R77/N variants. While
some individuals with R77N-related microcephaly have survived into adolescence or even
early adulthood,(7, 8, 11) our patient had intractable epilepsy and died at 4 months of age.
While earlier identification of a candidate gene to account for his phenotype would likely
not have changed his anti-epileptic management or his disease course, genomic diagnosis
permitted prediction of recurrence risk and prenatal or pre-implantation genetic diagnosis.
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Figure labc.
MRI findings at term equivalent age. T1-weighted sagittal view (a) demonstrates

cerebellopontine hypoplasia and micrognathia. T2-weighted transverse view (b)
demonstrates enlarged occipital horns and agenesis of the corpus callosum with large third
ventricle. T2-weighted coronal view (c) demonstrates typical ventricular configuration for
agenesis of the corpus callosum with superior extension of an enlarged third ventricle. All
three views demonstrate microcephaly and markedly delayed folding pattern for age.

Pediatr Res. Author manuscript; available in PMC 2018 December 04.
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Anti-y tubulin

Figure 2.
Comparison of confocal immunofluorescence microscopy images of control (a) and proband

fibroblasts (b) demonstrate fewer ciliated cells and shortened cilia in the proband fibroblasts.
Green fluorescent-labelled anti-gamma tubulin was used to stain centrosomes, red
fluorescent-labelled anti-acetylated tubulin was used to stain primary cilia, and DAPI was
used to stain nuclei.
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