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Abstract

Purpose—To develop an improved k-space reconstruction method using scan-specific deep 

learning that is trained on autocalibration signal (ACS) data.

Theory—Robust Artificial-neural-networks for k-space Interpolation (RAKI) reconstruction 

trains convolutional neural networks on ACS data. This enables non-linear estimation of missing 

k-space lines from acquired k-space data with improved noise resilience, as opposed to 

conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on 

linear convolutional kernels.

Methods—The training algorithm is implemented using a mean square error loss function over 

the target points in the ACS region, using a gradient descent algorithm. The neural network 

contains three layers of convolutional operators, with two of these including non-linear activation 

functions. The noise performance and reconstruction quality of the RAKI method was compared 

with GRAPPA in phantom, as well as in neurological and cardiac in vivo datasets.

Results—Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at 

high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows 

improved noise resilience at high acceleration rates (rate 4: 23% and rate 5: 48%) over GRAPPA. 

The same trend of improved noise resilience is also observed in high-resolution brain imaging at 

high acceleration rates.

Conclusion—The RAKI method offers a training database-free deep learning approach for MRI 

reconstruction, with the potential to improve many existing reconstruction approaches, and is 

compatible with conventional data acquisition protocols.

Keywords

accelerated imaging; image reconstruction; parallel imaging; deep learning; convolutional neural 
networks; k-space interpolation; non-linear estimation

Correspondence to: Mehmet Akçakaya, Ph. D., University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, Phone: 
612-625-1343; Fax: 612-625-4583, akcakaya@umn.edu. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2020 January 01.

Published in final edited form as:
Magn Reson Med. 2019 January ; 81(1): 439–453. doi:10.1002/mrm.27420.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Long scan times remain a limiting factor in MRI, often necessitating trade-offs with spatial 

and temporal resolution or coverage. In most applications, some form of accelerated imaging 

is required. Most clinical scans rely on parallel imaging for acceleration (1–3), where the 

local sensitivities of phased array coil elements are utilized for reconstruction to enable 

undersampled data acquisitions. The two most common parallel imaging approaches are 

sensitivity encoding, SENSE (2), and generalized autocalibrating partially parallel 

acquisition, GRAPPA (3). SENSE is a reconstruction approach which is formulated in the 

image domain as a linear inverse problem with a priori knowledge of the receiver 

sensitivities. In the GRAPPA algorithm, the reconstruction is an interpolation in k-space 

using shift-invariant convolutional kernels to estimate missing k-space lines from acquired 

lines, which constitutes a linear reconstruction method. For GRAPPA, these convolutional 

kernels are determined from a small amount of fully-sampled reference data, referred to as 

autocalibration signal (ACS). More recently, an alternative approach called iTerative Self-

consistent Parallel Imaging Reconstruction, SPIRiT (4), which iteratively performs local 

interpolation and enforces data consistency has also been proposed, facilitating the use of 

regularization in the reconstruction process.

An alternative line of work relies on non-uniform sampling of k-space (5–10). Other than 

non-Cartesian acquisitions (5–8), randomly undersampled Cartesian acquisitions have 

recently gained attention with the advent of compressed sensing (9,10). While such 

undersampled acquisitions can be reconstructed using the linear conjugate gradient SENSE 

(8) or SPIRiT method, they are more traditionally processed with non-linear iterative 

algorithms that enforce some regularization based on the compressibility of images in a 

transform domain. Popular regularizations include l1 norm of wavelet coefficients (10), total 

variation (9,11), low-rank schemes (12,13) and methods based on an adaptive generation of 

the sparsity transform domain (14–16). Regularized compressed sensing has been shown to 

have favorable noise properties in high-dimensional datasets (17), however linear parallel 

imaging has been shown to outperform it in lower-dimensional, especially 2D acquisitions 

(18). While the inherent denoising properties of CS-based techniques are desirable, the need 

for incoherent undersampled acquisitions, as well as its residual artifacts that are not readily 

accepted by clinical radiologists (18), have hindered its deployment. Thus, even though 

noise amplification remains a challenge for the linear reconstruction algorithms used in 

parallel imaging, these approaches continue to be the prominent technique for accelerated 

imaging in clinical MRI.

Recently, machine learning based techniques have gathered interest as a possible means to 

improve reconstruction quality with different undersampling patterns. So far, the focus of the 

MRI reconstruction community has been on generating more advanced regularizers by 

training on large amounts of datasets, along with both random and uniform undersampling 

patterns (19–23). Initial results indicate the promise of this approach in improving the 

reconstruction quality or providing a simple mapping from undersampled k-space to the 

desired image. Commonly, this training is performed in a manner that is not patient- or scan-

specific, and thus requires large databases of MR images.
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In this study, we develop a k-space reconstruction method that utilizes deep learning on a 

small amount of scan-specific ACS data. We focus on uniformly undersampled acquisitions, 

in order to improve the quality of parallel imaging reconstructions and for integration with 

existing data acquisition approaches. However, extensions to other sampling patterns such as 

random and non-Cartesian are possible within the described k-space method. Unlike most 

recent deep learning approaches, the proposed scheme does not require any training database 

of images. Instead the neural networks are trained for each specific scan, or set of scans, 

with a limited amount of ACS data, similar to GRAPPA. The proposed method, called 

Robust Artificial-neural-networks for k-space Interpolation-based (RAKI) reconstruction has 

an intuitive premise: Instead of generating linear convolutional kernels from the ACS data as 

in k-space interpolation-based reconstruction methods such as GRAPPA, we propose to 

learn non-linear convolutional neural networks from the ACS data. By using scan- and 

subject-specific deep learning, and learning all the necessary neural network parameters 

from the ACS data, any dependence on training databases or assumptions about image 

compressibility are avoided. After motivating our non-linear reconstruction approach, a brief 

review of convolutional neural networks is provided. We then introduce our reconstruction 

and training methods. Phantom experiments and in vivo imaging are performed, comparing 

the proposed reconstruction to the GRAPPA parallel imaging approach.

Theory

Non-linear Estimation of Missing k-space Lines

Reconstruction methods based on interpolation kernels in k-space aim to synthesize missing 

k-space lines as a linear combination of acquired lines across all coils (3,4,24,25). 

Specifically, for uniformly undersampled k-space data, GRAPPA uses linear convolutional 

kernels to estimate the missing data (3). Thus, for the jth coil k-space data Sj, we have:

S j(kx, ky − mΔky) = ∑
c = 1

nc
∑

bx = − Bx

Bx
∑

by = − By

By
g j, m(bx, by, c)Sc(kx − bxΔkx, ky − RbyΔky) [1]

where R is the acceleration rate; Sj (kx, ky − mΔky) are the unacquired k-space lines, with m 
= 1, …, R − 1; gj,m(bx, by, c) are the linear convolution kernels for estimating the data in the 

jth coil specified by the location m as above; nc is the number of coils; and Bx, By are 

specified by the kernel size. The convolutional kernels, gj,m(bx, by, c), need to be estimated 

prior to the reconstruction. This is typically done by acquiring an ACS region, either 

integrated into the undersampled acquisition as central k-space lines or as a separate 

acquisition (3). Subsequently, a sliding window approach is used in the ACS region to 

identify the fully-sampled acquisition locations specified by the kernel size and the 

corresponding missing entries. The former, taken across all coils, is used as rows of a 

calibration matrix, A; while the latter, for a specific coil, yields a single entry in the target 

vector, b (26). Thus for each coil j and missing location m = 1, …, R − 1, a set of linear 

equations are formed, from which the vectorized kernel weights gj,m(bx, by, c), denoted gj,m, 

are estimated via least squares, as g j, m = arg min
g

‖b − Ag‖2.
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Since the encoding process in a multi-coil MRI acquisition is linear, the reconstruction for 

sub-sampled data is also expected to be linear. This is the premise of linear parallel imaging 

methods, which aim to estimate the underlying reconstruction process that exploits 

redundancies in the multi-coil acquisition, using a linear system with a few degrees of 

freedom. These degrees of freedom are captured in the small convolutional kernel sizes for 

GRAPPA or the smooth coil sensitivity maps for SENSE. In essence, linear functions with 

such limited degrees of freedoms form a subset of all linear functions. In linear parallel 

imaging, the underlying reconstruction is approximated with a function from this restricted 

subset. Our hypothesis is that the underlying reconstruction function, although linear in 

nature, can be better approximated from a restricted subset of non-linear functions with 

similarly few degrees of freedom. Examples of this phenomenon, i.e. using non-linear 

functions with few degrees of freedom to better approximate higher-dimensional linear 

functions, can be observed even in very low dimensions. For instance, assume a two-

dimensional hyperplane, which is the range space of a two-dimensional linear mapping, is to 

be approximated. On average, using a one-dimensional non-linear mapping, parametrized by 

one independent variable, such as an Archimedean spiral, will be a better approximation 

compared to a one-dimensional linear mapping, which is a line through the origin, also 

parametrized by one independent variable. We hypothesize that similar approximations can 

be made in MRI reconstruction of multi-coil acquisitions. For instance, if the true underlying 

linear mapping is n-dimensional, an m-dimensional nonlinear mapping may outperform an 

m-dimensional linear mapping, where m << n. Thus, we seek to estimate missing k-space 

lines from acquired ones using such a non-linear mapping.

We confine the modeling of this non-linear process to few degrees of freedom using 

convolutional neural networks (CNNs). Thus, the degrees of freedom in the previous 

discussion refers to the CNN parameters. Note, similarly in the linear case for GRAPPA, the 

degrees of freedom refers to the coefficients of the linear convolutional kernels. We 

hypothesize that this restricted, yet non-linear, function space defined through CNNs enables 

to non-linearly learn redundancies among coils, without learning specific k-space 

characteristics, which may lead to overfitting. This is similar to the GRAPPA reconstruction, 

which successfully extracts such redundancies with a linear procedure, without adapting to 

k-space signal characteristics. The idea of using a larger class of nonlinear functions in 

modeling redundancies among coils for GRAPPA has also been explored previously (26), 

although a fixed nonlinear kernel mapping was used, instead of the deep learning strategies 

explored here. Thus, the modeling of the multi-coil system with a non-linear approximation 

with few degrees of freedom, instead of a linear approximation with similarly few degrees of 

freedom, is hypothesized to extract comparable coil information without overfitting, while 

offering improved noise resilience.

Another reason for using non-linear estimation relates to the presence of noise in the 

calibration data. For the GRAPPA formulation above, there is noise in both the target data, 

b, and the calibration matrix, A. When both sources of noise are present, it has been shown 

that linear convolutional kernels incur a bias when estimated via least squares, and this bias 

leads to non-linear effects on the estimation of missing k-space lines from acquired ones 

(26). In the presence of such data imperfections, which are in addition to the model 
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mismatches related to the degrees of freedom described earlier, a non-linear approximation 

procedure may improve reconstruction quality and reduce noise amplification.

Convolutional Neural Networks for MRI Reconstruction in k-space

We propose to replace the linear estimation in GRAPPA that utilizes convolutional kernels 

with a non-linear estimation that utilizes CNNs (27). The proposed method, RAKI, is 

designed to calibrate the CNN from ACS data without necessitating use of any external 

training database for learning.

CNNs are a special type of artificial neural network, whose utility dates back to the late 

1980s (28). They have recently gained interest due to the availability of efficient training 

implementations along with substantial gains in computing power (29), use of fast-

converging nonlinear layers (30), and increased access to large training datasets (31). Thus, 

CNNs have been successfully applied to multiple fields, including image classification (29), 

face recognition (32), image super-resolution (33) and image denoising (34). CNNs are 

simple mathematical models that estimate a (potentially nonlinear) function f:X → Y, for 

two arbitrary sets X and Y. The fundamental idea is to combine multiple layers of simple 

modules, such as linear convolutions and certain point-wise nonlinear operators, in order to 

effectively represent complex functions of interest (27).

For the problem of nonlinearly estimating missing k-space data from acquired k-space data, 

a set of functions, fj,m are desired such that

S j(kx, ky − mΔky) ≈ f j, m

{Sc(kx − bxΔkx, ky − RbyΔky)}bx ∈ [ − Bx, Bx], by ∈ [ − By, By], c ∈ [1, nc]

[2]

where [a,b] denotes the set of integers from a to b inclusive. In RAKI, these functions fj,m 

are approximated using CNNs, and their parameters are learned from the ACS data. CNN 

literature and the associated deep learning procedures are commonly based on mappings 

over the real field (27). Thus, prior to any processing, we map all the complex k-space data 

to real-valued numbers. For a complex-valued k-space dataset, s of size nx×ny×nc, where nc 

is the number of coils, we embed this into a real-valued space as a dataset of size nx×ny×2nc, 

where the real part of s is concatenated with the imaginary part of s along the third (channel) 

dimension. Thus, effectively 2nc input channels are processed. We note that other 

embeddings, which will increase dimensionality in the other dimensions, are possible, but 

were not explored due to the ease of implementation of the channel dimension.

Before a CNN can be trained, its structure, i.e. the number of layers and layer operations, 

needs to be determined. There is no optimization procedure for choosing the structure, and 

this is done in a heuristic manner (27). In this study, we use a three-layer structure, as 

depicted in Figure 1. Each layer, except the last, is a combination of linear convolutional 

kernels and a nonlinear operation called the rectified linear unit (ReLU), which has desirable 
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convergence properties (30). The linear convolution in CNNs, denoted by *, e.g., z = w * s, 

and is defined as follows:

z(x, y, j) = ∑
m = 1

nc
∑

p = 1

bx
∑

q = 1

by
w(p, q, m, j) · s(x + p − 1, y + q − 1, m) for  j = 1⋯, nout [3]

where s is an input data of size nx×ny×nc, w is a kernel of size bx×by×nc×nout, and z is the 

output data of size (nx−bx+1)×(ny−by+1)×nout. The ReLU is defined as

ReLU(x) = max(x, 0) . [4]

The last layer performs the output estimation without any nonlinear operations. The details 

of the network is given next.

The first layer of our network takes in the sub-sampled zero-filled k-space of size 

nx×ny×2nc, which has been embedded into the real field. The convolutional filters in this 

layer, denoted by w1, are of size b1
x×b1

y×2nc×n1. The operation of this layer is given as

F1(s) = ReLU(w1 ∗ s) . [5]

The second layer of our network takes in the output of the first layer and applies 

convolutional filters, denoted by w2, of size b2
x×b2

y×n1×n2. The operation of this layer is 

given as

F2(s) = ReLU(w2 ∗ s) . [6]

Intuitively, the first two layers are non-linearly combining the acquired k-space lines, 

essentially integrating the ideas of creating “virtual” channels and coil compression with 

non-linear processing. The final layer of the network produces the desired reconstruction 

output by applying convolutional filters, w3, of size b3
x×b3

y×n2×nout, yielding

F3(s) = w3 ∗ s . [7]

Thus the overall mapping is given by

F(s) = F3 F2(F1(s)) . [8]

We note that a bias term is typically used in all layers in CNN applications. However, these 

were not included in our setup, as they change if the k-space is linearly scaled by a constant 

factor, for instance due to changes in the receiver gain, ultimately limiting robustness. In our 
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implementations, all layers use kernel dilation (35) of size R in the ky direction to only 

process the acquired k-space lines. We implement a CNN for each output channel, and 

perform the estimation of all the missing k-space lines, within the specified kernel size, 

leading to nout = R − 1. Since there are 2nc output channels over the real field, this process 

yields a set, {F j( · )} j = 1
2nc

, of non-linear reconstruction functions, where each Fj(·) is an 

approximation of {fj,m}m in Equation [2] using CNNs.

Training Database-Free Learning of Scan-Specific Neural Networks

In order to learn a non-linear reconstruction function, Fj(·), the unknown network 

parameters, θj = {w1, w2, w3} for that input channel need to be estimated. Note we omit the 

subscript j for the kernels for ease of notation. Let s denote the zero-filled acquired k-space 

lines, as the input to the network. The goal is to minimize a loss function between the 

reconstructed k-space lines using Fj(·), and the known ground truth for the target missing k-

space lines in the ACS region, denoted by Yj, which is formatted to match the output 

structure with the same number of nout channels in the third dimension. The loss function we 

use is the mean squared error (MSE), matching the original GRAPPA (3) formulation:

L(θ j) = ‖Y j − F j(s; θ j)‖F
2 , [9]

where ‖·‖F denotes the Frobenius norm. The main difference with GRAPPA is that instead of 

solving a linear least squares problem to calculate one set of convolutional kernels; we need 

to solve a non-linear least squares problem to calculate three sets of convolutional kernels. 

Unlike the linear least squares problem, a closed-form minimization of the objective 

function is not possible. Therefore, in RAKI, gradient descent with backpropagation (36) 

and momentum (37) is employed to minimize Equation [9]. In order to update the 

convolutional kernels, at iteration t, we have

wi
(t) = μwi

(t − 1) + η ∂L
∂wi

(t − 1) , [10]

wi
(t) = wi

(t − 1) − wi
(t), [11]

where µ is the momentum rate, η is the learning rate, i ∈ {1,2,3}, and backpropagation is 

used to calculate the derivative ∂L/ ∂wi
(t − 1). The same approach is used to calculate all 

convolutional filters. We note that while stochastic gradient descent is popular in most deep 

learning applications due to the immense size of the training datasets (31), we can use 

simple gradient descent due to the limited size of the ACS region.

Akçakaya et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Reconstruction Algorithm: Implementation Details

The parameters used for the network are as follows: b1
x= 5, b1

y = 2, n1 = 32, b2
x= 1, b2

y = 1, 

n2 = 8, b3
x= 3, b3

y = 2, no = R − 1. Note that with this choice of parameters, at most 2R ky 

lines are not estimated, which is the same as GRAPPA with a kernel size of [5,4] (3). Three 

convolutional kernels {w1, w2, w3} are trained for each output channel. The input is the 

zero-filled sub-sampled k-space, on which all the necessary Fourier transform shifts in k-

space have been performed using phase correction. Kernel dilation (35) is used at each layer 

in order to process only the acquired data. We note that there is no effective dilation in the 

second layer due to our choice of kernel size. The momentum rate is set to µ = 0.9. The 

learning rate is k-space scaling dependent. We scale the k-space such that the maximum 

absolute value across all input channels is set to 0.015, and use η = 100 for the first layer and 

η = 10 for the next two layers. A slower learning rate for the later layers is important for 

convergence, as has been reported in image processing applications (33,34). The nout = R 
− 1 outputs per processed k-space location is placed back to the corresponding missing k-

space locations, consistent with standard GRAPPA practice.

The gradient descent for learning and the reconstruction was implemented in Matlab (v9.0, 

MathWorks, Natick, MA), with the CNN convolution and backpropagation operations 

implemented using the MatConvNet toolbox (38). An implementation of the gradient 

descent, the CNN architecture and the reconstruction algorithm, will be provided online on 

http://people.ece.umn.edu/~akcakaya/RAKI.html.

Phantom Imaging

Phantom imaging was performed at a 3T Siemens Magnetom Prisma (Siemens Healthcare, 

Erlangen, Germany) system using a 32-channel receiver head coil-array. A head-shaped 

resolution phantom was imaged using a spoiled gradient recalled echo (GRE) sequence. The 

imaging parameters were: 2D multi-slice, FOV = 220×220 mm2, in-plane resolution = 

0.7×0.7 mm2, matrix size = 320×320, slice thickness = 4 mm, TR/TE = 500 ms/15 ms, flip 

angle = 70°, 27 slices, bandwidth = 360 Hz/pixel.

The fully-sampled acquisition had an SNR of approximately 200. To test the noise 

robustness of RAKI, complex Gaussian noise was added to the raw k-space to bring the 

image domain SNR measured within an ROI in the phantom down to 20. This noisy k-space 

was retrospectively under-sampled using uniform undersampling of rates, R ∈ {1,2,3,4,5,6}. 

ACS data of size 40 was taken from the central k-space lines, and this was used for the 

training of the CNN in RAKI reconstruction, and for the determination of the convolutional 

kernels for GRAPPA reconstruction. GRAPPA reconstruction was implemented using a 

[5,4] kernel. For both GRAPPA and RAKI, no boundary extension was used. Thus, edges of 

k-space that do not fully lie in the edges of the convolutional windows were not evaluated. 

For both methods this meant the outermost 2(R−1) ky lines were not calculated. The 

normalized mean square error (NMSE) of each reconstructed k-space was calculated with 

respect to the acquired k-space data. Additional experiments using higher SNR phantom 

data is provided in Supporting Figure S1.
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In Vivo Imaging

The imaging protocols were approved by the local institutional review board, and written 

informed consent was obtained from all participants prior to each examination for this 

HIPAA-compliant study.

Cardiac imaging was performed at a 3T Siemens Magnetom Prisma (Siemens Healthcare, 

Erlangen, Germany) system using a 30-channel receiver body coil-array. SAPPHIRE 

myocardial T1 mapping (39) was acquired in a mid-ventricular short-axis slice on four 

healthy volunteers (three men, 40 ± 17 years). A balanced steady-state free precession image 

acquisition was used with the following parameters: FOV = 300×300 mm2, TR/TE = 2.6 

ms/1.0 ms, flip angle = 35°, bandwidth = 1085 Hz/pixel. 11 images with different T1 

weights were acquired in a single breath-hold. One acquisition was performed with 

resolution = 1.7×1.7 mm2, matrix size = 176×176, slice thickness = 8 mm, in-plane 

acceleration (iPAT) = 2, ACS lines = 32. Another high-resolution acquisition was performed 

with resolution = 1.1×1.1 mm2, matrix size = 272×272, slice thickness = 6 mm, iPAT = 5. 

For this high-resolution acquisition, a separate calibration scan with resolution = 1.1×4.7 

mm2, corresponding to 64 ACS ky lines, were performed in the same breath-hold with a 3 

second delay to allow for T1 recovery.

These datasets were used to test the robustness of RAKI across different contrasts. 

Specifically, the CNNs in RAKI and the convolutional kernels in GRAPPA were estimated 

using ACS data from only one T1 weighted image. These CNNs and convolutional kernels 

were then used to reconstruct all 11 images with varying T1 weights. Thus, this tested 

whether RAKI captured the coil information, as in GRAPPA, or performed over-fitting to 

specific image or k-space features. Three experiments were performed with these datasets: 

1) The standard resolution acquisitions were reconstructed with RAKI and GRAPPA, where 

the CNN parameters and convolutional kernels were estimated using the integrated ACS 

region of the image with no T1 preparation; 2) The standard resolution acquisitions were 

retrospectively undersampled to R = 4, and RAKI and GRAPPA reconstructions were 

performed on the same datasets and using the same ACS region of the image with no T1 

preparation; 3) The high resolution acquisitions were reconstructed with RAKI and 

GRAPPA, where the training and convolutional kernels were estimated using the ACS data 

from the additional low-resolution calibration scan. Non-linear reconstructions change the 

statistical distribution of the noise, and introduce dependencies between the reconstruction 

noise and reconstructed signal beyond additivity, hindering the definition of the equivalent of 

a g-factor (40,41). For these quantitative MRI datasets, the spatial variability of the T1 times 

in the homogenous muscle tissue of the myocardium were used as a surrogate for noise 

performance (42) for both reconstruction methods.

Brain imaging was performed at a 7T Siemens Magnex Scientific (Siemens Healthcare, 

Erlangen, Germany) system using a 32-channel receiver head coil-array. Anatomical T1-

weighted imaging was acquired in a patient (man, 76 years) and in a healthy volunteer (man, 

43 years) using a standard Siemens 3D-MPRAGE sequence with the following parameters: 

FOV = 230×230×154 mm3, resolution = 0.6×0.6×0.6 mm3, TR/TE = 3100 ms/3.5 ms, 

inversion time = 1500 ms, flip angle = 6°, bandwidth = 140 Hz/pixel, ACS lines = 40. The k-

space data was inverse Fourier transformed along the slice direction, and a central slice, 
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matrix size = 384×384, was processed for the rest of the study. A single slice of a 3D data 

set was chosen over 2D imaging to enable a 0.6mm isotropic acquisition, while overcoming 

inherent SNR limitations of the latter. The patient data was acquired with iPAT = 3, and was 

also retrospectively undersampled to R = 6. RAKI and GRAPPA reconstructions were 

performed on both these datasets. The healthy volunteer data was acquired with iPAT = 

3,4,5,6. To further help the visualization of artifacts and avoid SNR losses, iPAT= 5 and 6 

data were acquired with two averages. Thus, the only SNR penalty between iPAT = 3 and 6 

acquisitions is due to differences in coil encoding. All datasets were reconstructed using 

RAKI and GRAPPA. These datasets were used to test RAKI at very high resolutions for 

robustness and potential blurring artifacts. Additional experiments on the effect of 

calibration region on the high-SNR high-resolution volunteer data is provided in Supporting 

Figure S2.

Additional brain imaging was performed at a 3T Siemens Magnetom Prisma (Siemens 

Healthcare, Erlangen, Germany) system using a 32-channel receiver head coil-array. T1-

weighted imaging was acquired in a healthy subject (man, 41 years) using a standard 

Siemens 3D-MPRAGE sequence with the following parameters: FOV = 224×224×179 mm3, 

resolution = 0.7×0.7×0.7 mm3, TR/TE = 2400 ms/2.2 ms, inversion time = 1000 ms, flip 

angle = 8°, bandwidth = 210 Hz/pixel, ACS lines = 40. Two separate acquisitions were 

performed with iPAT = 2 and 5. The k-space data was inverse Fourier transformed along the 

slice direction, and a central slice, matrix size = 320×320, was processed for the rest of the 

study. The R = 2 acquisition was retrospectively undersampled to R = 4 and 6. 

Reconstructions were performed using both RAKI and GRAPPA for R = 2, 4, 5, 6 to test the 

robustness of RAKI at very high resolutions for potential blurring artifacts.

Results

Phantom Imaging

Figure 2 depicts the results from phantom imaging. GRAPPA and the proposed RAKI 

reconstructions from noisy data for various acceleration rates. While virtually no difference 

is observed at acceleration rates of 2 and 3, starting with rate 4, the noise performance of 

RAKI improves upon that of GRAPPA. RAKI reconstructions at acceleration rates 4 and 5 

show visually improved noise properties over GRAPPA, which has high levels of noise 

amplification, especially in the center part of the phantom. The difference images depicted in 

Figure 3 are also in agreement with these observations, where the errors in GRAPPA 

reconstruction become apparent and structured from rate 4 onwards. The noise amplification 

behavior of the two reconstructions is further reflected with the quantitative NMSE 

performance. GRAPPA reconstruction exhibits NMSE 0.65, 0.51, 0.51, 0.66 and 0.89 from 

rates 2 to 6 respectively, whereas RAKI reconstruction has NMSE 0.65, 0.51, 0.46, 0.47 and 

0.52 for the same rates. This corresponds to 0%, 0%, 11%, 28% and 41% decrease in NMSE 

respectively, using RAKI as compared to GRAPPA. Note the NMSE values reported here 

are not monotonically increasing, due to several reasons, including i) the averaging nature of 

NMSE in capturing the non-uniform noise characteristics, ii) noise-suppression outside the 

object in the reconstructions, iii) a noiseless reference in the NMSE calculation, iv) the 

tendency of k-space interpolation techniques to exhibit g-factors less than 1 in certain areas.
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In Vivo Imaging

Figure 4 shows representative T1-weighted images from SAPPHIRE T1 mapping acquired at 

the conventional resolution of 1.7×1.7 mm2. The images corresponding to the shortest 

inversion time, with a low SNR, are shown in Figure 2a for the acquisition acceleration rate 

of 2, as well as a retrospective acceleration rate of 4. There is visually no discernible 

difference between GRAPPA and RAKI at rate 2. However, at rate 4, the improved noise 

performance of RAKI over GRAPPA becomes visually apparent. Figure 2b shows T1-

weighted images acquired without any preparation, corresponding to the highest SNR 

images in the acquisition. At this higher SNR, the differences between RAKI and GRAPPA 

are visually minor even at the acceleration rate of 4, with a slight improvement in the left 

ventricle blood pool for the proposed approach. These observations are reflected in the 

quantitative T1 measurements, with virtually no difference (<0.5%) in mean myocardial T1 

value among the two methods at either rate, and <1% difference in spatial variability at rate 

2. However, RAKI showed an improvement of 10% in spatial variability over GRAPPA at 

rate 4. These trends are consistent across all subjects, where comparable quantification is 

observed with RAKI and GRAPPA reconstructions, with the exception of a 23% reduced 

noise variability with RAKI at rate 4 (average T1 time ± average spatial variability: RAKI: 

1562±197.0 ms vs. GRAPPA: 1542±258.8 ms). These experiments show the improved noise 

resilience of RAKI, as well as its robustness in reconstructing varying contrast weightings.

Figure 5 and 6 show all of the 11 T1-weighted images acquired using the SAPPHIRE 

sequence at the improved spatial resolution of 1.1×1.1 mm2, and acceleration rate 5. In this 

substantially lower SNR regime, due to the higher acceleration rate and improved resolution, 

the noise improvement of RAKI over GRAPPA is visually apparent for all images. A 

quantitative analysis of the resulting T1 maps indicate that the spatial variability of the 

myocardial T1 is 253.8 ms using the RAKI-reconstructed images versus 403.5 ms using the 

GRAPPA-reconstructed images, indicating a 37% improvement. The improvement is 

observable across all subjects, with an overall 48% improvement in spatial variability with 

RAKI. We note that in two cases, GRAPPA reconstruction do not provide image quality that 

allows for reasonable quantitative evaluation, as residual artifacts and excessive noise 

amplification, prevent reliable delineation of the myocardium against the blood-pools. For 

the remaining two cases, the improvements in spatial variability are 37% and 31% for 

RAKI.

Figure 7 depicts a slice of the high-resolution 7T MPRAGE acquisition on the patient, both 

at the acquisition acceleration rate of 3, as well as at a retrospective acceleration rate of 6. At 

rate 3, RAKI and GRAPPA methods both successfully reconstruct the image with little 

residual artifacts. At rate 6, GRAPPA reconstruction suffers from pronounced noise 

amplification, whereas the proposed RAKI reconstruction exhibits better noise tolerance. 

However, some residual aliasing artifacts remain due to the high-level of in-plane 

acceleration. No blurring artifacts are observed with either method, even though the 

acquisition is performed at a very high resolution.

Figure 8 depicts a slice of high-SNR 0.6 mm isotropic 7T MPRAGE acquisition, at 

acceleration rates 3, 4, 5 and 6, where the latter two acceleration rates were acquired with 

two averages. At rates 3 and 4, both RAKI and GRAPPA successfully reconstructs the 
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images with little artifacts. At R = 5, GRAPPA and RAKI starts exhibiting slight differences, 

with the latter showing better noise performance. The differences become more pronounced 

at R = 6, while the quality also degrades for both reconstructions. At the higher rates, RAKI 

has improved noise amplification with no apparent blurring.

Figure 9 depicts a slice of the 0.7mm isotropic 3T MPRAGE acquisition, at the acquisition 

acceleration rates of 2 and 6, as well as at a retrospective acceleration rates of 4 and 6. At 

rate 2 and 4, RAKI and GRAPPA methods both successfully reconstruct the image with 

little residual artifacts. At rate 5, RAKI visually outperforms GRAPPA in terms of noise 

amplification, while incurring no visible reconstruction artifacts or blurring at this high-

resolution. R = 6 reconstructions also show RAKI has visible noise advantages over 

GRAPPA, though at this high acceleration rate, both reconstructions have visible residual 

artifacts.

Discussion

In this study, we developed a k-space method, called RAKI, enabling deep learning for 

reconstruction of undersampled data from ACS data, as an alternative to linear k-space 

interpolation techniques. This enables us to generate a non-linear function to estimate the 

missing k-space data from the acquired k-space lines without additional training on 

databases containing many subjects. In effect, our approach creates subject-specific neural 

networks for a non-linear reconstruction, which extends upon the subject-specific linear 

convolution kernels used successfully in many parallel imaging reconstruction techniques, 

including GRAPPA. Our results indicate that RAKI offers improved noise performance 

compared to GRAPPA in phantom and in vivo imaging.

The use of machine learning for MRI reconstruction has recently received increasing 

interest. These recent works aim to build on the immense success of deep learning in image 

processing applications, and have focused on training reconstruction algorithms on large 

amounts of datasets. Big data training has led to different regularization approaches for MR 

images, most often as regularizers without an explicit formula and based on CNNs 

(19,22,23,43), or as unsupervised learning of parameters for variational networks (21). In 

this work, we took an MRI-focused approach and considered the problem as a k-space 

estimation problem instead of an image domain regularization problem. This approach 

avoids dependency on large amounts of training data, and instead uses a small amount of 

ACS data, similar to existing parallel imaging reconstructions that are used in clinical 

practice. We also note that almost a decade ago, the use of neural networks was proposed for 

improving SENSE reconstruction in a scan-specific manner (44). However, this earlier work 

did not utilize CNNs, and was not further explored beyond the original conference 

publication. Furthermore, the work in (44) employs an image domain approach based on 

SENSE formulation. Due to the use of non-linear reconstructions, this is not necessarily 

equivalent to our k-space formulation, so its relative efficacy to our approach is hard to 

compare.

The non-linearity in our convolutional network architecture improves the noise performance 

of the reconstructions, as presented in our experiments. This non-linearity was introduced by 
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the use of ReLU functions in all layers, except the last one. Other non-linear activation 

functions, such as sigmoid functions (27), have also been explored in neural network 

community, and can also be applied as part of our method. However, ReLU has several 

advantages. Since it has a gradient that is either 0 or 1 - unlike the sigmoid function, which 

can take arbitrarily small non-zero derivatives - its derivative can be back-propagated across 

multiple layers without convergence issues, enabling deeper network architectures. The 

nature of the ReLU function also enables sparsity in representations (45). With a random 

initialization of weights, half of the output values are zeroes, facilitating an inherent data 

sparsification.

The use of non-linear methods to improve GRAPPA reconstruction has been explored before 

(26,46), but without the use of concepts from neural networks. A fixed set of virtual 

channels for a higher-dimensional feature space (26) or transform-domain sparsity (46) has 

also been proposed before. RAKI differs from these techniques, by refraining from any 

explicit assumptions on k-space or transform domains. Instead neural networks were shown 

to effectively represent a non-linear function for estimating missing k-space data, 

successfully facilitating model-free reconstruction.

The advantage of our method over a linear reconstruction approach like GRAPPA becomes 

apparent at high acceleration rates or at low SNRs. In the other regimes, GRAPPA is known 

to perform very well, thus differences are not noticeable. At the high acceleration rate 

regime, both RAKI and GRAPPA approaches require larger ACS regions for better 

estimation of the reconstruction filters. Due to the multi-layer network architecture, RAKI 

has more unknowns. In most applications, where one is interested in these higher rates, e.g. 

diffusion, perfusion or quantitative MRI, it is not difficult to obtain one set of high-quality 

ACS data of sufficient size, which can be shared across multiple scans. The success of 

training a set of CNNs from one set of ACS data for varying contrast acquisitions was shown 

in our cardiac imaging experiments. Nonetheless, there may be applications where ACS 

region cannot be increased easily. In these cases, several modifications to our method are 

possible. One approach would be to reduce the number of layers. Another would be to 

reduce the output sizes for each layer. An alternative approach would be to perform a hybrid 

reconstruction, by first performing linear GRAPPA reconstruction in the central region to 

grow the ACS region and then use this larger area for training the neural network in RAKI 

reconstruction. All these approaches warrant further investigation in specific applications, 

but these were not pursued in this study.

Unfortunately there are no existing methods for optimally determining the network structure 

in deep learning applications (27). Therefore several parameters for the network architecture 

were determined heuristically. These include the number of layers, the kernel sizes for each 

layer, the output sizes for the first and second layer, as well as the activation functions. The 

kernel sizes were chosen to not increase the number of unestimated ky boundary lines 

beyond a [5,4] GRAPPA kernel, while enabling contributions from neighboring locations in 

the first and last layers. The number of layers and output sizes of each layer were chosen to 

limit the number of unknowns in the CNN, in order not to increase the required ACS data 

for training. The output size for the last layer was also a design choice, and our networks 

were trained to output all missing lines per coil. Other alternatives are possible. For instance, 
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a different network can be trained per coil per each missing k-space locations relative to the 

acquisition location. However, this increased the number of unknowns by roughly a factor of 

R − 1, and provided virtually no benefit in preliminary observations. An alternative approach 

would be to train the network to output all the missing lines for all coils. This would require 

deeper networks and bigger output sizes per layer. We did not explore this alternative since 

we wanted to avoid interactions across coils in the output layer, in order to provide a fair 

comparison to GRAPPA. However, alternative network architectures with such interactions 

may be beneficial and will be explored in future work.

Another design decision for the CNNs used in this work was the exclusion of bias terms for 

all three layers. In standard deep learning practice, both a set of convolutional filters and a 

set of biases are trained at each layer. For instance, in the first layer, this would correspond 

to convolutional filters w1 of size b1
x×b1

y×2nc×n1, and a bias term b1 of size 1×1×n1, and 

the output of this layer would be calculated as ReLU(w1 * x + b1). However, due to their 

additive nature, inclusion of biases increases dependence on how the l2 (or l∞) norm of the 

k-space is scaled. This creates major limitations in processing data with multiple-varying 

contrast, as in quantitative MR parameter mapping, when training is done on one set of ACS 

data with a specific contrast weighting, which was the case in our experiments. Therefore 

biases were not used in our CNNs, although they may find utility in other settings.

The application of the CNN to missing lines is not significantly more time-consuming than 

the application of GRAPPA kernels. For the CNN architecture and GRAPPA kernels used in 

this manuscript, for acquired nx·ny/R k-space points, the complexity of the CNN approach 

per k-space point is (1280nc
2 + 512nc + 96(R−1)nc) real additions and multiplications, and 

40 logical comparisons. For GRAPPA this is approximately 20(R−1)nc
2 complex additions 

and multiplications per acquired k-space point. Thus, in terms of the number of real 

multiplications, for nc = 32, RAKI has a ~7-fold overhead at R = 4 and ~4-fold overhead at 

R = 6, compared with GRAPPA. However, the calibration of the GRAPPA kernel can be 

done with a simple linear least squares problem, whereas the CNN needs to be trained with a 

gradient descent. Our MATLAB implementation for the gradient descent has an approximate 

run-time of 5–6s for 250 iterations, which can likely be improved using optimized 

implementations or parallelization with graphics processing units (GPU).

There are limitations to the use of the current proposed approach. As with other parallel 

imaging approaches, the coil geometry in the acquisition has to be able to support the 

desired acceleration rates. Aliasing artifacts may persist if the rate is increased further (see 

Supporting Figure S1). As discussed earlier, the CNN architecture was heuristically selected. 

The performance of the approach may change based on different network parameters, 

similar to how the performance of linear methods is affected by kernel sizes. The 

optimization problem in the deep learning portion of the approach is based on minimizing a 

non-linear least squares objective function depicted in Equation [9]. Unlike the linear least 

squares problem in GRAPPA, this objective function is non-convex. Thus, there is a 

potential of converging to local minima. This is typically handled using momentum in 

gradient descent approaches, which has been shown to work well in practice (37). 

Nonetheless, the solution to Equation [9] is not exact, but approximate. A further limitation 

in our current implementation is the use of fixed learning rates in the gradient descent 
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algorithm. While these rates were optimized heuristically for in-vivo datasets, they may not 

be optimal in all applications (see Supporting Figure S1 for phantom data). To overcome this 

limitation, further work on implementations and optimizers that can adaptively update the 

learning rate is warranted, and is one of our current topics of research.

Since our proposed method works with uniformly undersampled acquisitions, it has the 

potential to be applied to existing highly-accelerated and low-SNR datasets to improve 

reconstruction quality, such as those generated by Human Connectome projects (47). It 

could also easily be employed in most protocols, as it does not require modifications to data 

acquisition.

Our RAKI reconstruction naturally extends to other approaches that utilize k-space 

interpolation. Although we concentrated on GRAPPA and uniform undersampling for 2D 

acquisitions in this study due to their high utility, RAKI reconstruction is applicable to both 

2D and 3D acquisitions with uniform undersampling (3,48,49), as well as to simultaneous 

multi-slice imaging (24,50). It is also applicable to random undersampling patterns as an 

alternative to SPIRiT convolution kernels (4), and can be combined with image 

regularization in this setting (10). It can also be extended to non-Cartesian acquisitions, as an 

alternative to linear convolutional approaches, such as radial (25) or spiral (4) acquisitions. 

These extensions are beyond the scope of the current study and will be explored in future 

work.

Conclusion

The proposed reconstruction uses a scan-specific deep learning approach with convolutional 

neural networks trained on limited ACS data to improve upon the reconstruction quality of 

linear k-space interpolation-based methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The three layer network structure used in this study for the convolutional neural network. 

The first layer, F1 (·), takes in the sub-sampled zero-filled k-space of size nx×ny×2nc, as 

embedded into the real field. The convolutional filters in this layer, w1 are of size 

b1
x×b1

y×2nc×n1. This is followed by a rectified linear unit (ReLU) operation. The second 

layer of our network, F2 (·), takes in the output of the first layer and applies convolutional 

filters, denoted by w2, are of size b2
x×b2

y×n1×n2. This layer also includes a ReLU operation. 

These two layers non-linearly combine the acquired k-space lines. The final layer of the 

network, F3 (·), produces the desired reconstruction output by applying convolutional filters, 

w3, of size b3
x×b3

y×n2×nout. In our implementation all missing lines per coil (over reals) is 

estimated simultaneously, therefore nout = R − 1.
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Figure 2. 
Results of phantom experiments. Images reconstructed using GRAPPA (top row) and the 

proposed RAKI (bottom row) reconstructions from noisy data sets for various acceleration 

rates, as well as a fully-sampled noisy reference image. Starting with rate 4, the noise 

performance of RAKI improves upon that of GRAPPA. RAKI reconstructions at 

acceleration rates 4 and 5 show visually improved noise properties over GRAPPA, which 

has high levels of noise amplification.
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Figure 3. 
The difference images for the reconstructions in Figure 2, as compared to the original 

acquisition without additional noise, confirm the observations regarding the improved noise 

resilience of RAKI. NMSE quantification is also consistent with these observations: 0.65, 

0.51, 0.51, 0.66 and 0.89 for GRAPPA versus 0.65, 0.51, 0.46, 0.47 and 0.52 for RAKI from 

rates 2 to 6.
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Figure 4. 
Representative T1-weighted images from SAPPHIRE T1 mapping acquired at the 

conventional resolution of 1.7×1.7 mm2. (a) Images with low acquisition SNR, 

corresponding to the shortest inversion time, at the acquisition acceleration rate of 2, and a 

retrospective acceleration rate of 4. At rate 4, the noise performance improvement of RAKI 

over GRAPPA becomes apparent. (b) Images with high acquisition SNR, where the 

differences between RAKI and GRAPPA are visually minor even at the acceleration rate of 

4, with a slight improvement in the left ventricle blood pool for RAKI. A quantitative 
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analysis of the resulting T1 maps indicate that comparable quantification is observed for the 

two reconstructions, except for a 10% reduced noise variability with RAKI at rate 4.
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Figure 5. 
6 T1-weighted images, corresponding to the shortest inversion times, acquired using the 

SAPPHIRE sequence at a high spatial resolution of 1.1×1.1 mm2, and acceleration rate 5. At 

this high acceleration rate, the noise improvement of RAKI over GRAPPA is observable for 

all images. A quantitative analysis of the resulting T1 maps indicate that the spatial 

variability of the myocardial T1 is improved by 37% using RAKI versus GRAPPA.
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Figure 6. 
5 T1-weighted images, corresponding to the longest inversion times, from the same dataset 

depicted in Figure 5. At this high acceleration rate, the noise improvement of RAKI is 

observable for all images. Quantitative analysis of T1 map spatial variability shows 37% 

improvement using RAKI versus GRAPPA.
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Figure 7. 
A central slice of the high-resolution (0.6 mm isotropic) 7T MPRAGE acquisition, both at 

the acquisition acceleration rate of 3, as well as at a retrospective acceleration rate of 6. At 

rate 3, GRAPPA (top) and RAKI (bottom) methods both successfully reconstruct the image 

with little residual artifacts. At rate 6, GRAPPA reconstruction suffers heavily from noise 

amplification, whereas the proposed RAKI reconstruction exhibits improved noise tolerance 

without blurring artifacts.
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Figure 8. 
A central slice of the high-resolution (0.6 mm isotropic) MPRAGE acquisition at 7T, 

acquired at R = 3, 4, 5 and 6, where the first two rates were acquired with one average, and 

the latter two were acquired with two averages. Thus, the only SNR penalty between R = 3 

and 6 is due to differences in coil encoding. The results show that at this high SNR, 

GRAPPA (top) and RAKI (bottom) reconstruct the images with little residual artifacts up to 

R = 4. At R = 5, slight differences between GRAPPA and RAKI can be observed, with the 

latter showing better noise performance. At R = 6, the difference is further pronounced. At 

the higher rates, RAKI has improved noise tolerance while exhibiting no blurring artifacts.
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Figure 9. 
A central slice of the high-resolution (0.7 mm isotropic) MPRAGE acquisition at 3T, 

acquired at R = 2 and 5, as well as retrospective R = 4 and 6. At rates 2 and 4, GRAPPA 

(top) and RAKI (bottom) methods both successfully reconstruct the image with little 

residual artifacts. At rates 5 and 6, noise amplification becomes visible for GRAPPA 

reconstruction. At these rates, RAKI has improved noise tolerance and exhibits no blurring 

artifacts.
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