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Abstract

Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis

(CMA) are often reported as germline chromothripsis. However, such cases might need fur-

ther investigations by massive parallel whole genome sequencing (WGS) in order to accu-

rately define the underlying complex rearrangement, predict the occurrence mechanisms

and identify additional complexities. Here, we utilized WGS to delineate the rearrangement

structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83

breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on

the patterns observed: I) Cases with only deletions (n = 8) often had additional structural

rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with

only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demon-

strated mostly interspersed duplications and BPJs enriched with microhomology. In two

cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge

cycle process and haltered formation of a ring chromosome. Finally, we observed two cases

with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007780 November 12, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nazaryan-Petersen L, Eisfeldt J,

Pettersson M, Lundin J, Nilsson D, Wincent J, et al.

(2018) Replicative and non-replicative mechanisms

in the formation of clustered CNVs are indicated by

whole genome characterization. PLoS Genet 14

(11): e1007780. https://doi.org/10.1371/journal.

pgen.1007780

Editor: Nancy B. Spinner, University of

Pennsylvania, UNITED STATES

Received: June 25, 2018

Accepted: October 23, 2018

Published: November 12, 2018

Copyright: © 2018 Nazaryan-Petersen et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The bam files of all

the sequenced samples indicating SVs are

deposited in European Nucleotide Archive (ENA),

(S4 Table). Patients’ CNV data are reported to

ClinVar (P2046_133, P2109_123, P2109_150,

P2109_151, P2109_162, P2109_188, P2109_190,

P2109_302, P4855_511, P4855_512, P2109_176,

P1426_301, P2109_185, P5513_206, P5513_116,

P5371_204) or to DECIPHER (P72, P81, P06, P74,

P00). The details of in-house developed analysis

http://orcid.org/0000-0003-3716-4917
http://orcid.org/0000-0003-3120-1625
http://orcid.org/0000-0001-5831-385X
http://orcid.org/0000-0002-1431-7792
http://orcid.org/0000-0002-4547-001X
http://orcid.org/0000-0003-3811-5439
http://orcid.org/0000-0001-6813-3051
http://orcid.org/0000-0003-2304-0112
http://orcid.org/0000-0001-5692-725X
http://orcid.org/0000-0003-0806-5602
https://doi.org/10.1371/journal.pgen.1007780
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007780&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1371/journal.pgen.1007780
https://doi.org/10.1371/journal.pgen.1007780
http://creativecommons.org/licenses/by/4.0/


seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder

rearrangement.

In conclusion, through detailed characterization of the derivative chromosomes we show

that multiple mechanisms are likely involved in the formation of clustered CNVs and add fur-

ther evidence for chromoanagenesis mechanisms in both “simple” and highly complex chro-

mosomal rearrangements. Finally, WGS characterization adds positional information,

important for a correct clinical interpretation and deciphering mechanisms involved in the

formation of these rearrangements.

Author summary

Clustered copy number variants (CNVs) as detected by chromosomal microarray are

often reported as germline chromoanagenesis. However, such cases might need further

investigation by whole genome sequencing (WGS) to accurately resolve the complexity of

the structural rearrangement and predict underlying mutational mechanisms. Here, we

used WGS to characterize 83 breakpoint-junctions (BPJs) from 21 clustered CNVs, and

outlined the rearrangement connectivity pictures. Cases with only deletions often had

additional structural rearrangements, such as insertions and inversions, which could be a

result of multiple double-strand DNA breaks followed by non-homologous repair, typical

to chromothripsis. In contrast, cases with only duplications or combinations of deletions

and duplications, demonstrated mostly interspersed duplications and BPJs enriched with

microhomology, consistent with serial template switching during DNA replication (chro-

moanasynthesis). Only two rearrangements were repeat mediated. In aggregate, our

results suggest that multiple CNVs clustered on a single chromosome may arise through

either chromothripsis or chromoanasynthesis.

Introduction

Structural variants (SVs) contribute to genomic diversity in human [1] and include copy num-

ber variants (CNVs) (deletions, duplications), as well as copy number neutral (balanced) vari-

ants (inversions and translocations), and more complex rearrangements, resulting from

chromothripsis and/or chromoanasynthesis [2,3]. Complex SVs (complex chromosomal rear-

rangements, CCRs) often result in congenital and developmental abnormalities, as well as in

cancer development, although carriers with unaffected phenotypes have also been reported

[4].

A rare phenomenon regularly observed in clinical genetic diagnostic laboratories is multi-

ple CNVs co-localizing on the same chromosome. Even though a chromosomal microarray

(CMA) may identify such rearrangements, further characterization with whole genome

sequencing (WGS) may be useful. A previous WGS study of two closely located duplications

revealed additional copy-neutral complex genomic rearrangements associated with paired-

duplications, such as inverted fragments, duplications with a nested deletion and other com-

plexities, which were cryptic to CMA [5].

Proposed mechanisms that could explain the formation of multiple CNVs on the same

chromosome include chromothripsis and chromoanasynthesis [6,7] while the term chromoa-

nagenesis, a form of chromosome rebirth, describe the two phenomena independent of the

underlying mechanism [8].

Clustered CNVs generated via NHEJ/MMEJ or FoSTeS/MMBIR
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tool dubbed SplitVision is provided in S1 Appendix
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Chromothripsis is a chromosome shattering phenomenon, where part of or an entire chromo-

some, or few chromosomes, are fragmented into multiple pieces and reassembled in a random

order and orientation resulting in complex genomic rearrangements [9]. During this process,

some of the generated fragments can be lost resulting in heterozygous deletions. One of the dis-

tinctive features of chromothripsis is that the rearrangement breakpoints (BPs) are localized to rel-

atively small genomic regions, usually spanning a few Mb. The causes of such clustered

fragmentations are still unclear, however some studies suggested that chromothripsis could be

generated through the physical isolation of chromosomes within micronuclei, where the

“trapped” lagging chromosome(s) undergo defective DNA replication and repair, resulting in

chromosome pulverization [10,11]. Others hypothesized that the clustered DNA double-strand

breaks (DSBs) during chromothripsis could be initiated by ionizing radiation [9,12], breakage-

fusion-bridge cycle associated with telomere attrition [9,13], aborted apoptosis [14], as well as

endogenous endonucleases [15]. The highly characteristic breakpoint-junction (BPJ) sequences in

the derivative chromosomes point to non-homologous end-joining (NHEJ) [16] or microhomol-

ogy-mediated end-joining (MMEJ) [17] as being likely underlying repair mechanisms for rejoin-

ing of the shattered DNA fragments [9,18,19]. Although non-allelic homologous recombination

(NAHR) was excluded as a chromothripsis repair mechanism [20], our recent report showed that

homologous Alu elements may also mediate germline chromothripsis [15]. Chromothripsis was

deciphered by the help of whole genome next generation sequencing technologies (WGS) in

microscopic complex chromosomal rearrangements involving three or more BPs [18,19,21,22], as

well as in microscopically balanced reciprocal translocations [23,24].

Chromoanasynthesis [25], was described by high resolution chromosome microarray anal-

ysis (CMA) and refers to clustered copy number changes, including deletions, duplications,

and triplications, that are flanked by regions of normal dosage state. Small templated insertions

and microhomologies found at most BPJs pinpointed that chromoanasynthesis likely involves

replication failures, such as fork stalling and template switching (FoSTeS) [26] and/or micro-

homology-mediated break-induced replication (MMBIR) [27]. Another rare but distinct

underlying mechanism of formation is atypical chromoanasynthesis that seems to only involve

single chromosomes and exclusively generate duplications [28], either clustering on one chro-

mosome arm or scattered throughout the entire chromosome.

It has also been shown that clustered duplications confined to a single chromosome may

not only be integrated into the chromosome-of-origin in tandem, but could be integrated at

multiple positions in the derivative chromosome and have non-templated insertions at the

BPJs, indicating a different mutational mechanism, such as alternative NHEJ mediated by the

DNA polymerase Polθ [28]. Finally, evidence suggests that both chromothripsis and replicative

errors are not only responsible for highly complex rearrangements involving several chromo-

somes or a large number of chromosomal segments. Even simpler rearrangements involving a

small number of chromosomal segments on a single chromosome could have formed through

shattering of a chromosome or replicative errors [21].

To delineate the chromosomes and analyze the plausible underlying mechanisms of forma-

tion of multiple CNVs on a single chromosome, we characterized 21 germline complex rear-

rangements initially detected by CMA. The rearrangements involved only duplications, only

deletions or both deletions and duplications. Underlying mechanisms of rearrangement for-

mation were inferred from the BPJ architecture as well as the overall connective picture.

Results

We investigated the BPs of 21 individuals with clustered germline CNVs using WGS (mate-

pair or paired-end sequencing) to elucidate potential underlying mechanisms of

Clustered CNVs generated via NHEJ/MMEJ or FoSTeS/MMBIR
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rearrangement formation and possibly clinically relevant genomic imbalances or gene disrup-

tions. Cases were included if they harbored two or more CNVs on the same chromosome. The

clinical symptoms were variable, including congenital malformations and neurodevelopmental

disorders. Phenotypes and CMA results are presented in Table 1.

Segregation analysis had been performed in 20 cases and showed that the CNVs were inher-

ited in 8 and de novo in 12. Parental DNA samples for further investigation of parental origin

were available in seven of the de novo cases. It was found that the rearrangement was on the

maternal chromosome in four cases and on the paternal chromosome in three cases (S1

Table). We also excluded presence of copy number neutral inversions in the parents. Among

the eight inherited cases, the rearrangement segregated from a phenotypically unaffected

mother (n = 6) or father (n = 2), indicating that the complex chromosomal rearrangement

may be an incidental finding. We detected a complex overall picture with 83 BPs associated

with deletions, duplications, inversions and insertions (Table 2; S1 Fig; S2 Table). Resolution

was on single nucleotide level in 83 BPJs (75%) (Table 2).

In ten cases, two distinct patterns DEL-INV-DEL (n = 4) and DUP-DIP-DUP (n = 6) were

observed (DEL, deletion; INV, inversion; DUP, duplication; DIP, diploid). In four of these

(P2109_302, P2109_123, P2109_150, P2109_151), the initial CMA suggested a single deletion

or duplication and the nature of the rearrangement was resolved with WGS (Table 3). The

remaining 11 cases showed unique patterns (Table 3).

Classification of complex clustered CNVs

Based on the CNV type, all rearrangements were classified into deletions-only group (n = 8),

duplications-only group (n = 7) and deletions-and-duplications group (n = 6) (S1 Fig). Exam-

ples from each group are presented in Fig 1. The average number of BPJs per case was 4

(range = 2–14). The rearrangements in the duplications-only group contained the fewest BPJs

per case (average = 3, range = 2–5) and consisted mostly of DUP-DIP-DUP rearrangements

(Table 1). The rearrangements in the deletions-only group contained slightly more junctions

(average = 4, range = 2–7). The rearrangements belonging to the deletions-and-duplications

group showed the highest degree of complexity with more BPJs per case (average = 6,

range = 2–14).

Clustered CNVs show additional complexities at nucleotide-level

resolution

In total, WGS revealed additional duplicated or deleted fragments not detected by CMA in 16

out of 21 cases (76%) (Table 3). In most of the cases, the obtained BPJs allowed us to resolve

the exact nature of rearranged chromosomes. For one case (P5513_206) from the duplica-

tions-only group, there was no conclusive order for the duplicated fragments, hence three pos-

sibilities are shown in Fig 2. In one highly complex case (P1426_301) the full connective

picture of rearranged chromosomes could not be established (Fig 3).

In four cases where CMA suggested two clustered duplications separated by a diploid frag-

ment (P4855_511, P2109_150, P06 and P74), WGS revealed a nested deletion within the dupli-

cated segment (S2 Fig). Notably, all these four rearrangements were maternally inherited

indicating that the duplication and the deletion are located in cis. In addition, WGS allowed

detection of copy-neutral segments (inversions and insertions); and in total, 37 inversions

were detected within the clustered CNVs (Table 3). The deletions-only group contains a large

number of inverted fragments similar to the deletions-and-duplications group, while the

duplications-only group contains only four duplicated fragments with inverted orientation in

three cases (P209_151, P4855_512 and P5513_206) (Table 3).

Clustered CNVs generated via NHEJ/MMEJ or FoSTeS/MMBIR
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Additional disease causing genes were revealed by WGS

Several OMIM morbid genes were identified in clustered CNVs detected by CMA (S3 Table).

A CNV was assessed as pathogenic or likely pathogenic in 11 cases, as benign in one case, and

in the remaining cases as variants of unknown significance (Table 1). The pathogenicity classi-

fication was based on the American College of Medical Genetics and Genomics (ACMG)

guidelines [29] and included the segregation analysis, amount of OMIM morbid genes or spe-

cific disease-related genes, size of the CNVs and/or if the CNVs had been reported previously

in patients with similar phenotype. None of the CNVs disrupted an OMIM morbid gene but

all CNVs that were classified as likely pathogenic or pathogenic was based on gene dosage sen-

sitivity mechanisms. In four cases (P2046_133, P5513_206, P5513_116 and P1426_301) WGS

enabled detection of further OMIM morbid genes, which could not be revealed by CMA (S3

Table).

Duplications are mostly interspersed and not tandem

Thirteen of the 21 rearrangements consisted of 36 duplicated fragments (Table 1): 17 of these

fragments belong to the duplications-only group (7 individuals) and 19 fragments belong to

the deletions-and-duplications group (6 individuals). In all cases, the WGS data analysis could

detect whether the duplications were tandem (3 fragments) or interspersed (33 fragments).

Notably, the majority of the duplications were interspersed (92%). There was a single tan-

dem duplication in the duplications-only group (P4855_512) and two tandem duplications in

the deletions-and-duplications group (P5371_204 and P2109_176) (Fig 1B). All interspersed

duplications were intrachromosomal and 46% of the duplicated fragments were inverted, indi-

cating random orientation of the duplicates. The duplicates of the interspersed duplications

clustered tightly: 79% of the duplicates were inserted next to another duplicate. P5513_206

represents such a rearrangement that consists of five interspersed duplications, all inserted in a

clustered but seemingly random manner in the same region (Fig 2).

Breakpoint junction characteristics

Of the 83 total BPJs, 63 (19 cases) were resolved to single nucleotide resolution (Table 2). Split-

Vision analyses suggested the following features for the BPJs: novel single nucleotide variants

(SNVs) within 1 kb of the BPJ (absent in gnomAD and SweFreq), microhomology, short inser-

tions and repeat elements. Most of the rearrangements contained at least one of these features

(S2 Table, Table 2). In total, 30 BPJs (48%) contained microhomology stretches ranging from

2 to 32 nucleotides (median = 2) (S2 Table, S5 Fig, S6 Fig). Even though repeat elements were

enriched in BPJs, fusions of similar repeats were only observed in 11 BPJs (13%). The longest

stretch of microhomology was 32 nucleotides (P2109_123) and involved homologous Alu
associated BPs (Fig 4A). Similarly, all the 11 BPs in P2109_176 contained LINE elements

resulting in fusion LINEs at the BPJs (Fig 4B). The most complex case, P1426_301, contained

deletions, duplications, and inversions and harbored 25 BPs (14 BPJs) where 16 (64%) were

located within repeat regions (Fig 3, S6 Fig). In two cases (P4855_512 and P5371_204), two

BPJs harbored novel SNVs within 1 kb of BPJs localized to non-coding regions. Lastly, 10

blunt BPJs were identified in 5 cases (P2046_133, P81, P00, P4855_511, P06) (Table 2, S2

Table, S6 Fig). P2046_133, P81 and P00 belong to the deletions-only group, and P4855_511

and P06 belong to the duplications-only group. No blunt BPJs were found in the deletions-

and-duplications group (Table 2). Comprehensive analysis of the BPJ characteristics surround-

ing the BPJs in all cases and comparisons between the groups are presented in S5 Fig and S6

Fig.

Clustered CNVs generated via NHEJ/MMEJ or FoSTeS/MMBIR
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Table 2. Characteristics of all breakpoint junctions that were solved on single nucleotide level.

Case Category Chromosome Junction Side 1 Side 2 Side 1: Repeat Side 2:

Repeat

MH

(bp)

Ins

(bp)

P2109_190 Deletions only 5 1 16715951 16758649 AluSx MIRb 3 0

2 16736554 16771433 AluJo L1P5 0 3

Patient 72 Deletions only 7 1 70609299 74047984 LTR26 AluSx NA NA

2 72423000 74049001 L2c AluSz NA NA

P2109_302 Deletions only 11 1 89543001 89766001 AT_rich (TATATG)n NA NA

2 89640783 91339107 SATR1 HAL1 3 0

P2109_123 Deletions only 17 1 2220421 2617882 AluSx AluSx1 32 0

2 2484970 2649513 AluSq2 AluSq2 NA NA

P2109_188 Deletions only 21 1 43414906 44797221 THE1B AluSc 0 52

2 44797115 45781411 AluSc L1MDa 0 46

3 45781001 48102000 L1MD2 MLT1I NA NA

Patient 81 Deletions only 4 1 154997275 155050347 L2b MER5A1 0 0

2 155164912 171342995 MER81 L1MC2 0 0

3 158707726 174401005 L2 L1MC4 4 0

4 161297890 166374444 MSTB T-rich NA NA

P2046_133 Deletions only 5 1 389429 154993195 (GGGGA)n L2a 0 0

2 399867 155929947 MIR3 AluJr 3 0

3 141466785 143779195 MER117 (TC)n 0 27

4 144018754 146087033 L2a AT_rich 1 0

5 146847080 155919592 MLT1A0 L1PA7 1 0

6 149533960 157385269 MIRb AluJr 0 0

7 154977468 157385270 MIR AluJr 0 0

Patient 00 Deletions only 7 1 74942505 77756619 (A)n (TTTA)n 0 3

2 77216339 79914091 Tigger1 (TG)n 0 0

3 77226981 77626463 L1MA5 MLT1E1A 1 0

4 77313213 78267535 Charlie7a AluJr 1 0

5 77754229 78236952 (TTTA)n LTR16E1 NA NA

6 77770732 82690202 L2b MLT1E1 5 0

7 78265840 82754314 AluY SVA_B 2 3

Patient 06 Duplications only 2 1 846167 1855037 MLT1B MER31B NA NA

2 1114148 1610546 L1MA7 MLT1K 0 0

P4855_511 Duplications only 2 1 842609 1857566 L1MEg AT_rich 3 0

2 1114148 1610546 L1MA7 MLT1K 0 0

P2109_150 Duplications only 7 1 111281787 114365115 AluSc L1MA4A 0 NA

2 111941768 111963146 L2c L1M4 2 0

P2109_151 Duplications only 14 1 102138899 104966644 L1M1 L4 3 0

2 102589089 105092354 AluSx1 L1MC4a 1 0

Patient 74 Duplications only 16 1 88726889 90023923 AluSz6 MLT1K NA NA

2 89324612 89772550 L1M4 MIR NA NA

P4855_512 Duplications only 21 1 43854243 44846415 MIRb C-rich 3 0

2 44581164 44845646 (CA)n C-rich 2 0

3 44844321 46454415 AluSc8 (TCCTG)n 2 0

P5513_206 Duplications only 14 1 47888602 49718081 AT_rich L1PA15 0 0

2 48264000 61179000 L1MEf AluY 0 0

3 59901890 87383926 L3 L2 1 0

4 59922753 64300950 MLT1J AluSx 0 0

5 76522298 87638698 Charlie8 AluSc8 2 0

(Continued)
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Mutational signatures indicating underlying mechanisms of rearrangement

formation

Molecular signatures at the BPJs further enabled the reconstruction of underlying mutational

mechanisms. For example, blunt joints, absent or short microhomology (1–4 bp) and small

insertions or deletions at the BPJs are characteristic of DNA DSB repair through direct ligation

by NHEJ. In the clustered CNVs studied here, we observed that most of the BPJs involved in

Table 2. (Continued)

Case Category Chromosome Junction Side 1 Side 2 Side 1: Repeat Side 2:

Repeat

MH

(bp)

Ins

(bp)

P2109_162 Deletions and duplications 1 1 238802165 246444835 L1MD3 L2c 3 0

2 244149899 246492103 AluJb L1PA3 2 0

3 245599008 247836549 L2a (CATATA)n 5 0

4 246491796 248600189 AT_rich AT_rich 2 0

P5513_116 Deletions and duplications X 1 26552817 76868256 L2c L1MB4 2 0

2 77229642 77417095 L1M5 L1PBa1 NA NA

P5371_204 Deletions and duplications 13 1 93523111 110102355 MIRb (TA)n 0 8

2 110075934 110081348 L3 L3 2 0

3 111492499 111980568 L1M4 LTR38B 2 0

4 113588473 115000804 MER5A L1MC4a 2 0

P2109_185 Deletions and duplications 5 1 2559532 2587902 (T)n MLT1E1A 0 17

2 7481754 177636532 L1MA3 MIRb 1 0

3 7507896 21097826 MIR LTR67B 0 1

4 7669627 7673762 MER112 MER20 0 12

P2109_176 Deletions and duplications 2 1 186345992 187132941 L2 L1PA7 NA NA

2 186383076 226738875 L1PA8 L1PA2 5 0

3 186383301 187298167 L1P3b HERVL18-int 0 42

4 186383200 188892000 L1PA8 L1PB1 NA NA

5 186383235 187133023 L1P3b L1PA7 NA NA

6 187132942 226652944 L1PA7 AluJr 4 52

7 188892330 225311353 L1PB1 L1MEg 3 1

8 225311193 226718661 L1MEg L1PA2 4 0

P1426_301 Deletions and duplications 21 1 17867977 29944106 AT_rich (TTATA)n 0 2

2 27624991 28304789 L2c AluSg 1 0

3 29651577 32467984 MIR L1PA15 0 8

4 29785938 29809107 AluY (TTTA)n 0 23

5 30426349 34185841 AluY AT_rich 0 14

6 30815785 34656669 L1PA2 AluSq 2 0

7 34178503 47896585 LTR88a AluSz NA NA

8 37539020 46546718 MER1B MIR3 2 0

9 39830239 45423086 AluSg AT_rich 2 0

10 40225591 46563358 MIRb L2a 3 0

11 45504605 47729066 MER21B AluSx NA NA

12 28879383 NA L1MA8 NA NA NA

13 28316917 NA L2a NA NA NA

14 32678337 NA L1MC4 NA NA NA

Details of microhomology and inserted sequences are provided in S2 Table. MH, microhomology; Ins, insertion; NA, not applicable

https://doi.org/10.1371/journal.pgen.1007780.t002
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the deletions-only group showed such signatures (Table 2, S2 Table) pinpointing involvement

of NHEJ. Alternatively, DNA DSBs can also be repaired by alternative NHEJ (alt-NHEJ) mech-

anisms, such as MMEJ which is a more error prone repair pathway highly dependent on

microhomology [17]. MMEJ may result in deletions of the DNA regions flanking the original

BP, and longer stretches of both templated (sequences found within 100 nucleotides upstream

Fig 1. Schematic illustrations of WGS results from three cases representing the three complex CNVs categories:

(1) deletions only, (2) duplications only, and (3) deletions and duplications. (A) Case P2109_123 with

DEL-INV-DEL, (B) Case P4855_512 with DUP-N-DUP, and (C) Case P2109_162 with a complex rearrangement

consisting of inversions, deletions and duplications (DEL-INV-DEL-N-DEL-N-DUP). For case P2109_123 the array-

CGH analysis only identified a single deletion and the complex rearrangement was only seen by the WGS analysis. For

all the array-CGH results are visualized as a plot seen on the left. The individual dots represent specific oligonucleotide

probes and are indicated as black (normal copy number), green (copy number gain), and red (copy number loss)

compared to a reference sample. Genes are shown as blue arrows below. On right side the WGS result is shown,

illustrated as a Circos plots and within the Circos plots as linear plot with copy number status indicated as black

(normal copy number), blue (copy number gain), or red (copy number loss) and inverted segments marked with an

arrow. Linked reads showing connections between chromosomal BPs are illustrated as dashed lines.

https://doi.org/10.1371/journal.pgen.1007780.g001
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or downstream of the junction) and non-templated (seemingly random nucleotides) insertions

at the BPJs. One of the characterized BPJs in P2109_188 has very typical signatures of MMEJ: a

14bp non-templated insertion followed by a 26 bp templated insertion (chr21:45466217–

45466242, (-) strand), followed by another 12 bp non-templated insertion, plus 3 bp and 4bp

microhomologies at the 5’- and the 3’-sides of the BPJ (S3 Fig). Short stretches of microhomol-

ogies (2–3 bp) were also found at other BPJs in the deletions-only group (i.e. P00, P2046_133,

P2109_190, P2109_302). It is important to note that these features are also overlapping with

features consistent with alt-NHEJ mediated by PARP1, CTIP, MRE11, DNA ligase I/III and

polymerase θ (Polθ) [28,30,31], which is associated with short single-strand overhangs after a

DSB. This typically leads to inserts of 5–25 bp before ligation and hence leads to short stretches

of microhomology seen in the BPJ [31], similar to what is seen in MMEJ. In addition, canoni-

cal NHEJ and alt-NHEJ can operate simultaneously in the same cell [32], and this possibility

needs to be taken into consideration as well.

Overall, microhomologies were mostly prevalent at the BPJs of the complex rearrangements

containing duplications (54% and 59% for duplications-only group and deletions-and-duplica-

tions group, respectively) (Table 2, S5 Fig). A model of replication-based mechanisms, for

example multiple template switching, could better explain the formation of these complex

rearrangements (Fig 3B, Fig 4). Such mechanisms are commonly associated with similar fea-

tures as MMEJ, as well as de novo single nucleotide variants around the BPJs [33].

Fig 2. Three different plausible end products in a complex case involving five duplications. In case P5513_206, five duplications were shown to not be tandem, but

inserted in a seemingly random but clustered manner. The exact location of each duplicate could not be determined using WGS only, but three plausible outcomes are

shown. Here we show a schematic drawing of the 11 chromosomal segments involved on human chromosome 14q labelled A-K. In the linear representation the copy

number status is indicated as black (normal) or blue (duplicated). Each BP is shown as a short vertical black line. Above the line the genomic coordinates of identified

BPs is indicated and if repeat elements are disrupted by a BP they are shown below the line. In the three solutions the regions are shown as boxes and copy number

status is indicated as white (normal) and blue (duplicated).

https://doi.org/10.1371/journal.pgen.1007780.g002
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Identical rearrangements on 2p53.3 in two unrelated individuals

Seemingly identical rearrangements on 2p25.3 were identified in individuals P4855_511 (from

Sweden) and P06 (from Denmark), belonging to the duplications-only group based on CMA

results. However, these two cases were later redefined as having duplication with a “nested”

deletion inside the duplicated fragment. An identical blunt BPJ without microhomology (the

Fig 3. A schematic picture of the complex rearrangement of chromosome 21 involving deletions, duplications, and inversions in case P1426_301. On top is a

connectivity diagram (A). The upper bar indicates the position and copy number of the fragment (blue for duplication, and red for deletion) as well as repeats elements

found at the BPs. Below, each box illustrates a fragment involved in the rearrangement (A-Z). The circles represent contigs that are not positioned within GRCh37/hg19,

as well as poorly defined centromeric regions. The lines connecting the boxes and circles illustrate the fusion of the various fragments. At the bottom (B) is a diagram of

the final derivative chromosome. It is not certain where the duplicate of fragment F is inserted.

https://doi.org/10.1371/journal.pgen.1007780.g003
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BPJ of the nested deletion) was detected in both P4855_511 and P06. The duplication junction

was resolved at nucleotide level only in P4855_511 and a 3bp microhomology (TGC) was

detected at the BPJ through split reads in the deep paired-end data. However, for case P06 no

split-read was present for the BPJ showing the duplication in the shallow mate-pair WGS data.

Several attempts were made to amplify the BPJ using breakpoint PCR and Sanger sequencing

without success due to GC-rich sequences in the area. Hence, we could only compare the junc-

tion sequences of one junction, which were identical, including a SNV (rs4971462) in cis
upstream of the junction (S4 Fig). This may suggest that the 2p25.3 could be a rare founder

variant in Europe. However, using the WGS data from P4855_511 and the Affymetrix Cytos-

can HD SNP array data from P06, we analyzed 100 common SNVs surrounding the rearrange-

ment and found that the haplotypes for these variants varied in a way that would be expected

for two unrelated individuals. Hence, it was not possible to assess whether the rearrangement

in these two individuals have occurred through separate events or in a common ancestor. No

evidence suggest that the region is a hotspot for CNV formation, no common repeat structure

was present in the BPJs and we also assessed the junction sequence from the common BPJ (S4

Fig) in the Predict a Secondary Structure Web Server (https://rna.urmc.rochester.edu/

RNAstructureWeb/Servers/Predict1/Predict1.html) and no significant structure was seen.

Remaining rearrangements were all unique.

Finally, the junction architecture may indicate that the nested deletion occurred via non-

replicative mechanisms (e.g. NHEJ), which require no microhomology. Although the tandem

duplication might occur during replication process, we hypothesize that they occurred within

a single cell cycle, as the duplication is co-segregated with deletion in both families.

Alu-Alu and LINE mediated rearrangements

We and others have previously shown that the sequence homology between Alu elements

(average 71%) may facilitate unequal crossover between genomic segments and generate Alu-

Alu mediated CNVs, inversions, translocations and chromothripsis [15,34,35]. In the current

cohort, DEL-INV-DEL rearrangements on 17p13.3 are associated with fusion Alu–Alu ele-

ments at both junctions (P2109_123), suggesting an Alu-Alu mediated mechanism in this

complex rearrangement. Sequence identity between the AluSx_AluSx1 and AluSq2_AluSq2
pairs are 73.3% and 78.6%, respectively. Notably, both AluSx_AluSx1 and AluSq2_AluSq2
pairs are in opposite orientation on the reference genome, which resulted in inversion of the

fragment C (Fig 4A). As the sequence identity of involved Alu pairs is < 90%, it might not be

sufficient for homologous recombination, while MMEJ or FoSTeS/MMBIR could potentially

generate Alu-Alu mediated rearrangements here as previously suggested by other studies [34–

36]. Indeed, 17p13.3 region is known to be Alu rich and consequently many Alu-Alu mediated

CNVs and complex genomic rearrangements associated with multiple disorders have been

reported [35]. Similarly, in P2109_176 involving a combination of deletions, duplications and

other copy-neutral rearrangements on chromosome 2, we observed LINE elements at all 11

BPs, indicating underlying LINE-mediated mechanisms (Fig 4B). Here, we found 3–5 bp

Fig 4. A schematic picture of Alu-Alu and LINE-mediated rearrangements. (A) Case P2109_123 states as an example of an Alu-

mediated DEL-INV-DEL rearrangement. Copy number status is indicated as black (normal copy number) or red (copy number loss), and

inverted segments marked with an arrow. Repeat elements located at the BPs junctions are indicated. In BPJ A-C, an Alu fusion seem to

have formed. B) Case P2109_176 represents LINE-mediated rearrangements. On top is a connectivity diagram. The upper bar indicates the

position and copy number of the fragment (blue for duplication, and red for deletion) as well as LINE elements found at all the BPs. Below,

each box illustrates a fragment involved in the rearrangement (A-L). The lines connecting the boxes illustrate the fusion of the various

fragments, and microhomology is shown on top of connections whenever it was detected (NA: not analysed). At the bottom is a diagram of

the final derivative chromosome.

https://doi.org/10.1371/journal.pgen.1007780.g004
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microhomologies at most of the BPJs, indicating replication based FoSTeS/MMBIR mecha-

nisms likely being involved in this case.

Finally, 14 out of 25 BPs in the most complex case (P1426_301) containing deletions, dupli-

cations, and inversions are located within repeat regions of different classes likely providing

microhomology for multiple template switching (Fig 3).

Discussion

In the current study we present 21 individuals with two or more clustered non-recurrent

CNVs confined to a single chromosome including both chromosomal arms (two cases) or to a

single chromosomal arm (19 cases). WGS enabled us to decipher the true nature of the rear-

rangements including detection of copy neutral variants within or flanking the rearrange-

ments. The individuals had a wide range of clinical symptoms, including congenital

malformations and neurodevelopmental disorders. Dosage of the genes located within the

deleted and/or duplicated fragments and/or the disruption of genes located in the BPJs could

be responsible for the clinical manifestations. In the current cohort, the more exact resolution

of WGS as compared to CMA resulted in a reduction of the number of morbid OMIM genes

affected in three cases (14%) and in an increase in one individual (5%). However, this informa-

tion did not influence the overall assessment of the clinical relevance.

WGS analysis revealed additional complexities such as inversions and interspersed dupli-

cates in most cases, findings that are in line with previous findings in a cohort of autism spec-

trum disorder where 84.4% of large complex SVs involved inversions [3]. In addition, we

detected that most of the interspersed duplications were inserted next to another in a seem-

ingly random manner, similar to the few cases reported before [28].

For ultra-complex chromosomal rearrangements such as the ones seen in P1426_301 and

P00, the large number of genomic pieces with breakpoints often located in repetitive regions

complicates the mapping of the final structure of the derivative chromosome(s). Third-genera-

tion sequencing including Pacific Biosciences SMRT long-read sequencing platform or Nano-

pore MinION sequencing has showed promising results [37,38] for bridging repetitive

sequences and hence overcoming one of the largest limitations with short-read sequencing.

The current study is limited by the fact that we did not try any of these technologies, which

would be the next step needed to completely solve the structure of the derivative chromosomes

in this case (P1426_301). Long-read sequencing might also add information in case

P5513_206 that is presented here with three possible rearrangements of the duplicated

fragments.

By mapping all the BPs and resolving the links between the generated fragments, we

observed several hallmarks of germline chromothripsis and chromoanasynthesis [4,25,39].

First, all the BPs associated with the complex rearrangements were clustered and confined to a

single chromosome. Second, the rearranged fragments within the derivative chromosomes

had random order and orientation. Third, the copy-number states detected in deletions-only

group oscillated between one and two, typical to chromothripsis, while the rearrangements

including duplications were mostly resembling chromoanasynthesis. Fourth, signatures of

NHEJ and MMEJ pathways were mostly detected at the BPJs of the complex rearrangements

included in the deletions-only group, which is compatible with the previous reports describing

BPJs associated with chromothripsis [9,18,19,32]. Even though both chromothripsis and chro-

moanasynthesis are generally of paternal origin [6,40], the current de novo chromosomal rear-

rangements occurred on the maternal and paternal chromosomes to the same extent. Of the

seven de novo cases where we had parental samples, three had characteristics of chromoana-

synthesis and replicative errors and two of those arose on the maternal chromosome. This is in
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contrast to the expectation that replicative error-mediated chromosomal aberrations would be

biased towards spermatogenic origin. In addition, among the four cases with characteristics of

chromothripsis, two were of paternal origin and two of maternal origin. Finally, we confirmed

that Alu- or LINE- mediated mechanisms may also underlie chromothripsis formation.

Most of the reported germline chromothripsis cases are nearly dosage-neutral, possibly due

to embryonic selection against loss of dosage-sensitive genes. However, there are few reports

of heavy imbalances detected by CMA, suggesting chromothripsis event [41–45]. Such cases

need further investigations by paired-end or mate-pair sequencing in order to decipher the

balanced rearrangements involved as well as to understand the underlying mechanisms. Our

approach of applying high-resolution sequencing in such cases with clustered deletions, con-

firmed that additional copy-neutral SVs may coexist. Combined picture of such complex rear-

rangements resembled catastrophic phenomenon of chromosome “shattering”, where some of

the fragments may be lost (deleted), while retained fragments would be resembled by repair

machinery with random order and orientation. The fact that clustered duplications and com-

binations of deletions and duplications typical to chromoanasynthesis revealed both non-tan-

dem and inverted nature of most duplicates, enriched with microhomologies at the BPJs,

further supports the notion that replication based mechanisms, may explain the complex

nature of these derivative chromosomes. In summary, we suggest that seven cases in the cur-

rent study (P2109_190, P72, P2109_302, P2109_123, P2109_188, P81 and P00) represents

chromothripsis, ten cases (P06, P4855_511, P2109_150, P2109_151, P74, P4855_512,

P5513_206, P2109_162, P5513_116, P5371_204) are chromoanasynthesis events and four

cases (P2109_185, P2109_176, P2046_133 and P1426_301) have ambiguous mutational signa-

tures. All four ambiguous cases showed large non-templated insertions in the BPJ (typical to

Polθ-driven atypical chromoanagenesis or retrotransposition-mediated chromothripsis), but

three cases harbored both duplications and deletions (typical to chromoanasynthesis) and one

case contained only deletions (typical to chromothripsis). Of the seven chromothripsis cases,

one case was Alu-Alu mediated (P2109_123) and one was likely mediated by replicative errors

and the DSBs were joined through alt-NHEJ (P2109_188), while remaining cases showed

more consistent signatures of canonical NHEJ or MMBIR. Among the cases involving duplica-

tions or both duplications and deletions, most BPJs showed signatures of replicative errors

with microhomology in the breakpoints, some possibly caused by repeat elements, except in

three cases from the deletions and duplications-group (P2109_185, P2109_176, P1426_301)

with non-templated insertions ranging in 8–52 bp in size and short microhomology (2–6 nt)

in the BPJs. These features are not fully consistent with replicative joining mechanisms such as

FoSTeS/MMBIR, but it is possible that these cases are mediated by replicative errors, and that

Polθ is involved in the stitching of the chromosomes, hence two operating repair machineries

in the same cell.

In two of the cases in our cohort (P5513_116 and P2109_185) the clustered CNVs were

detected on both arms of the chromosomes involved (chromosome X and 5, respectively).

Notably, these two cases show similar patterns, where a terminal duplication of one chromo-

somal arm is inserted in the place of terminal deletion of the other chromosomal arm with an

inverted orientation. A breakage-fusion-bridge cycle process could explain parts of this kind of

rearrangement. Briefly, the process starts when a chromosome loses its telomere and after rep-

lication the two sister chromatids will fuse into a dicentric chromosome [46]. Then, during

anaphase the two centromeres will be pulled towards opposite nuclei, resulting in the breakage

of the dicentric chromosome. Random breakage may cause large inverted duplications. After

the breakage there will be new chromosome ends lacking telomeres resulting in a new cycle of

breakage-fusion-bridge, the cycles will stop once the chromosome end acquires a telomere.

This mechanism has previously been suggested to explain some cases of chromothripsis
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formation [9,13,47]. Here, with telomeric regions of both chromosome arms being involved, it

is likely that the breakage-fusion-bridge cycle has been accompanied by a formation-attempt

of a ring chromosome. However, chromosome analysis and FISH had previously shown that

no ring chromosome was formed in either of these cases. In addition, as mentioned previously,

case P2109_185 showed characteristics of Polθ involvement in the stitching with large non-

templated insertions in the BPJs.

In conclusion, the BP characterization of the derivative chromosomes showed that multiple

mechanisms are likely involved in the formation of clustered CNVs, including replication

independent canonical NHEJ and alt-NHEJ, replication-dependent MMBIR/FoSTeS and

breakage-fusion-bridge cycle, as well as Alu- and LINE-mediated pathways. WGS characteri-

zation adds positional information important for a correct interpretation of complex CNVs

and for determining their clinical significance; and deciphers the mechanisms involved in for-

mation of these rearrangements.

Methods

Ethics statement

The local ethical board in Stockholm, Sweden approved the study (approval number KS 2012/

222-31/3). This ethics permit allows us to use clinical samples for analysis of scientific impor-

tance as part of clinical development. Included subjects were part of clinical cohorts investi-

gated at the respective centers and the current study reports de-identified results that cannot

be traced to a specific individual. All subjects have given oral consent to be part of these clinical

investigations.

Study cohort

The subjects included in this study (n = 21) were initially referred to the Department of Clini-

cal Genetics at the Karolinska University Hospital (n = 13), Kennedy Center (n = 5), Sahl-

grenska University Hospital (n = 2) or Linköping University Hospital (n = 1). All subjects

were part of clinical cohorts investigated at respective centers with CMA due to congenital

developmental disorders, intellectual disability or autism. Karyotypes and phenotypes are pro-

vided in Table 1.

Chromosome microarray analysis

Genomic DNA was prepared from whole blood using standard procedures. CMA was carried

out using either SNP (single nucleotide polymorphism) or oligonucleotide microarrays. Fluo-

rescent in situ hybridization (FISH) analysis or quantitative PCR (qPCR) with Power SYBR

Green reagents (Applied Biosystems, Carlsbad, CA, USA) was employed to verify the struc-

tural variants. FISH-, qPCR-, or array comparative genomic hybridization (aCGH) analysis

was used to investigate parental inheritance when possible.

In 13 cases (P2046_133, P2109_123, P2109_150, P2109_151, P2109_162, P2109_188,

P2109_190, P2109_302, P4855_511, P4855_512, P2109_176, P1426_301, P2109_185), the

CMA was performed with an 180K custom oligonucleotide microarray with whole genome

coverage and a median resolution of approximately 18 kb (Oxford Gene Technology (OGT),

Oxfordshire, UK). Experiments were performed at the Department of Clinical Genetics at Kar-

olinska University Hospital, Stockholm, Sweden, according to the manufacturer’s protocol.

Slides were scanned using an Agilent Microarray Scanner (Agilent Technologies, Santa Clara,

CA, USA). Raw data were normalized using Feature Extraction Software (Agilent Technolo-

gies, Santa Clara, CA, USA), and log2 ratios were calculated by dividing the normalized
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intensity in the sample by the mean intensity across the reference sample. The log2 ratios were

plotted and segmented by circular binary segmentation in the CytoSure Interpret software

(OGT, Oxfordshire, UK). Oligonucleotide probe positions were annotated to the human

genome assembly GRCh37 (Hg19). Aberrations were called using a cut-off of three probes and

a log2 ratio of 0.65 and 0.35 for deletions and duplications, respectively.

For eight cases (P72, P81, P06, P74, P5513_206, P5513_116, P5371_204, P00) the CMA was

performed using an Affymetrix CytoScan HD array and data were analyzed with ChAS soft-

ware (Affymetrix, Santa Clara, CA, USA) using the following filtering criteria: deletions > 5 kb

(a minimum of 5 markers) and duplications >10 kb (a minimum of 10 markers). Patients’

CNV data were reported to ClinVar (P2046_133, P2109_123, P2109_150, P2109_151,

P2109_162, P2109_188, P2109_190, P2109_302, P4855_511, P4855_512, P2109_176,

P1426_301, P2109_185, P5513_206, P5513_116, P5371_204) or to DECIPHER (P72, P81, P06,

P74, P00).

Mate-pair WGS

Mate-pair libraries were prepared using Nextera mate-pair kit following the manufacturers’

instructions (Illumina, San Diego, CA, USA). The subjects were investigated with the gel-free

protocol where 1 μg of genomic DNA was fragmented using an enzymatic method generating

fragments in the range of 2–15 kb. The final library was subjected to 2x100 bases paired-end

sequencing on an Illumina HiSeq2500 sequencing platform.

Paired-end WGS

The PCR-free paired-end Illumina WGS data was produced at the National Genomics Infra-

structure (NGI), Stockholm, Sweden. The WGS data was generated using the Illumina Hiseq

Xten platform, which produced an average coverage of 30X per sample. The average insert size

of the WGS libraries was 350 bp, and each read length was 2x150 bp.

WGS analysis

The WGS data was aligned to GRCh37 (Hg19) using BWA-mem (version 0.7.15-r1140) [48],

and duplicates were marked using Picard tools (http://broadinstitute.github.io/picard/). Struc-

tural variant calling was performed using FindSV (https://github.com/J35P312/FindSV),

which combines CNVnator [49] and TIDDIT [50]. The variant call format (vcf) files of these

two callers were merged and annotated using VEP [51] and filtered against an internal fre-

quency database consisting of 350 individuals. The exact position of the BPs was pinpointed

using split reads (S2 Table; cases P2046_133, P2109_123, P2109_150, P2109_151, P2109_162,

P2109_188, P2109_190, P2109_302, P4855_511, P4855_512, P2109_176, P5513_116,

P5371_204, P1426_301, P2109_185) or Sanger sequencing (cases P00, P06 and P81; Primers

and PCR conditions will be provided upon request).

The WGS data and Sanger reads were analyzed for junction features such as microhomol-

ogy, insertions, single nucleotide variants (SNVs), and repeat elements using blat (https://

genome.ucsc.edu/cgi-bin/hgBlat?command=start) and an in-house developed analysis tool

dubbed SplitVision (https://github.com/J35P312/SplitVision) (S1 Appendix). In short, SplitVi-

sion searches for split reads bridging each BPJ. A consensus sequence of these reads are gener-

ated through multiple sequence alignment using ClustalW [52,53] and assembly using a

greedy algorithm; maximizing the length and support of each consensus sequence. The con-

sensus sequences are then mapped to the reference genome using BWA. The exact BPs as well

as any microhomology and/or insertions at the BPJs are found based on the orientation, posi-

tion and cigar string of the primary and supplementary alignments of the consensus
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sequences. Additionally, SplitVision searches for repeat elements and SNVs close to the BPJs

(<1 kb). Repeat elements are found using the USCS repeat masker [54] and SNVs are called

using SAMtools [55]. Lastly, the SNVs were filtered based on the SweFreq (SweGen Variant

Frequency Dataset) [56] and gnomAD (http://gnomad.broadinstitute.org). The allele fre-

quency threshold was set to 0, removing any previously reported SNVs, and SNVs located in

regions not covered by the SweGen dataset. The quality of the remaining SNVs was assessed

using the Integrative Genomics Viewer (IGV) tool [57].

10X Genomics Chromium WGS

10X Genomics Chromium WGS was performed on sample P00 at NGI, Stockholm, Sweden.

Libraries were prepared using the 10X Chromium controller and sequenced on an Illumina

Hiseq Xten platform. Data was analyzed using two separate pipelines developed by 10X Geno-

mics: the default Long Ranger pipeline (https://support.10xgenomics.com/genome-exome/

software/downloads/latest) and a custom de novo assembly pipeline based on the Supernova

de novo assembler (https://support.10xgenomics.com/de-novo-assembly/software/downloads/

latest). The custom de novo assembler pipelines included mapping of raw Supernova contigs

with the bwa mem intra-contig mode, as well as extraction of split contigs using a python

script (https://github.com/J35P312/Assemblatron).

Data access

The bam files of all the sequenced samples indicating SVs are deposited in European Nucleo-

tide Archive (ENA), (S4 Table). Patients’ CNV data are reported to ClinVar (P2046_133,

P2109_123, P2109_150, P2109_151, P2109_162, P2109_188, P2109_190, P2109_302,

P4855_511, P4855_512, P2109_176, P1426_301, P2109_185, P5513_206, P5513_116,

P5371_204) or to DECIPHER (P72, P81, P06, P74, P00). The details of in-house developed

analysis tool dubbed SplitVision is provided in S1 Appendix (https://github.com/J35P312/

SplitVision).

Supporting information

S1 Fig. Circos plots of all cases. All rearrangements were classified into deletions-only group

(n = 8), duplications-only group (n = 7) and deletions-and-duplications group (n = 6). The

copy number changes are indicated as blue (copy number gain) or red (copy number loss),

and the links show connections between chromosomal BPs.

(EPS)

S2 Fig. Deletions within duplications. CMA revealed two clustered duplications flanked by

normal copy-number fragments (DUP-N-DUP) in four cases (P06, P4855_511, P74,

P2109_150). Rearrangements are illustrated as a Circos plots and within the Circos plots as lin-

ear plot with copy number status indicated as black (normal copy number) and blue (copy

number gain). However, WGS revealed cryptic nested deletions within the duplicated frag-

ments. Thus, the deletion inside of the duplication balanced the copy-number state and

resulted in DUP-N-DUP pattern observed by CMA. Linked reads showing connections

between chromosomal BPs are illustrated as dashed lines. Two solutions of the final order of

the genomic fragments are given, showing whether the tandem duplication is inserted before

(top solution) or after (below solution) the reference region.

(EPS)

S3 Fig. Signatures of MMEJ. One of the characterized BPJs in P2109_188 has very typical sig-

natures of MMEJ: a 14bp non-templated insertion (marked in gray) followed by a 26 bp
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templated insertion (chr21:45466217–45466242, (-) strand, marked in green), followed by

another 12 bp non-templated insertion (marked in gray), plus 3 bp and 4bp microhomologies

at the 5’- (marked in blue) and the 3’-sides (marked in yellow) of the BPJ. Microhomologies

are underlined and are in bold font.

(EPS)

S4 Fig. Identical breakpoint junction sequences in two unrelated 2p25.3 rearrangement

carriers. The 2p25.3 rearrangement breakpoint junctions that was sequenced at nucleotide

level was identical in the two carriers including a SNV in cis, upstream of the junction (dashed

red box).

(EPS)

S5 Fig. Boxplots presenting the distribution of various breakpoint characteristics of the

rearrangements, calculated per group. Groups are divided into deletions only, duplications

only, or deletions and duplications with A) showing the number of breakpoints, B) amount of

breakpoint microhomology, and C) insertions at the breakpoint junctions.

(TIFF)

S6 Fig. Scatter plot and box plots of breakpoint junction characteristics, calculated per

case. A) The number of breakpoints per case, B) Box plots showing the distribution of break-

point microhomology, and C) a boxplot of the distribution of inserted sequence at the break-

point junctions.

(TIFF)

S1 Appendix. Algorithm of the software SplitVision.

(DOCX)

S1 Table. Parental origin investigations in seven de novo cases with available parental sam-

ples.

(XLSX)

S2 Table. Detailed characteristics of all breakpoint junctions that were solved at the nucle-

otide level.

(XLSX)

S3 Table. MIM morbid genes affected by clustered copy number variants (CNVs) and com-

parison of chromosomal microarray (CMA) and whole genome sequencing (WGS) report-

ing.

(XLSX)

S4 Table. Accession numbers for whole genome sequencing data on all cases in the Euro-

pean Nucleotide Archive (ENA).

(XLS)
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