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Summary:

In recent years, next generation sequencing (NGS) has gradually replaced microarray as the major 

platform in measuring gene expressions. Compared to microarray, NGS has many advantages, 

such as less noise and higher throughput. However, the discreteness of NGS data also challenges 

the existing statistical methodology. In particular, there still lacks an appropriate statistical method 

for reconstructing gene regulatory networks using NGS data in the literature. The existing local 

Poisson graphical model method is not consistent and can only infer certain local structures of the 

network. In this paper, we propose a random effect model-based transformation to continuize NGS 

data, and then we transform the continuized data to Gaussian via a semiparametric transformation 

and apply an equivalent partial correlation selection method to reconstruct gene regulatory 

networks. The proposed method is consistent. The numerical results indicate that the proposed 

method can lead to much more accurate inference of gene regulatory networks than the local 

Poisson graphical model and other existing methods. The proposed data-continuized 

transformation fills the theoretical gap for how to transform discrete data to continuous data and 

facilitates NGS data analysis. The proposed data-continuized transformation also makes it feasible 

to integrate different types of data, such as microarray and RNA-seq data, in reconstruction of 

gene regulatory networks.
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1. Introduction

The emergence of high-throughput technologies has made it feasible to measure the 

activities of thousands of genes simultaneously, which provides scientists with a major 

opportunity to infer global gene regulatory networks (GRNs). Accurate inference of global 
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GRNs is pivotal to gaining a systematic understanding of the molecular mechanism, to 

shedding light on the mechanisms of diseases that occur when cellular processes are 

dysregulated, and to further identifying potential therapeutic targets for diseases. Given the 

high dimensionality and complexity of high-throughput data, inference of global GRNs 

largely relies on the advance of computational statistical methods.

Gaussian graphical models.

The traditional methods for learning GRNs include Boolean networks, Bayesian networks 

and differential equation models. See Karlebach and Shamir (2008) for an overview. Since 

these methods are not scalable, they are usually only applicable to small sets of genes. For 

large sets of genes, the GRN can be constructed based on Gaussian graphical models 

(GGMs). The idea underlying GGMs is to use the partial correlation coefficient as a measure 

of dependency of any two variables (referred to as genes in GRNs). A zero partial 

correlation coefficient indicates conditional independence of the two variables. A variety of 

methods have been proposed for constructing GGMs from observed data. A popular method 

is covariance selection (Dempster, 1972), which identifies the non-zero elements in the 

concentration matrix (i.e., inverse of the covariance matrix) because the non-zero entries in 

the concentration matrix correspond to conditionally dependent variables. However, this 

approach cannot be applied to the case of p > n, where the sample covariance matrix is 

singular and thus the concentration matrix can no longer be directly estimated. To tackle this 

difficulty, regularization methods such as nodewise regression (Meinshausen and Bühlmann, 

2006) and graphical Lasso ( Yuan and Lin, 2007; Friedman et al., 2008) have been proposed. 

Nodewise regression uses Lasso (Tibshirani, 1996) as a variable selection method to identify 

the neighborhood of each variable, and thus the nonzero elements of the concentration 

matrix. A neighborhood is the set of predictor variables with nonzero coefficients in a 

regression model estimated separately for each variable. Meinshausen and Bühlmann (2006) 

showed that this method asymptotically recovers the true graph. To avoid estimating a large 

number of regressions, Yuan and Lin (2007) proposed to directly estimate the concentration 

matrix using the regularization method with a l1-penalty. Soon, this method was accelerated 

by Friedman et al. (2008) using a coordinate descent algorithm that was originally designed 

for Lasso regression, and this led to the so-called graphical Lasso algorithm. Quite recently, 

Liang et al. (2015) proposed the ψ-learning method, which works based on an equivalent 

measure of partial correlation coefficients calculated with reduced conditional sets. The 

nodewise regression, graphical Lasso and ψ-learning methods can generally work well for 

Gaussian data, such as the gene expression data measured in DNA microarray.

RNA-seq Data and Poisson Graphical Models.

In recent years, next generation sequencing (NGS) has gradually replaced microarray as the 

major platform in transcriptome studies, say, through sequencing RNAs (RNA-seq). RNA-

seq uses counts of reads to quantify gene expression levels. Compared to microarray data, 

RNA-seq data have many advantages, such as providing digital rather than analog signals of 

expression levels, dynamic and wider ranges of measurements, less noise, higher throughput, 

etc. However, their discreteness also challenges the existing statistical methods. In practice, 

RNA-seq data are often modeled using Poisson (Sultan et al., 2008) or negative-binomial 

distributions (Robinson and Oshlack, 2010; Anders and Huber, 2010), but difficulties often 
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arise in the computation or knowing the properties of the statistics based on these 

distributions.

Let Y = (Y1,…Yp) denote a p-dimensional Poisson random vector associated with a 

graphical model G. It is natural to assume that all the node-conditional distributions, i.e., the 

conditional distribution of one variable given all other variables, are Poisson with the 

distribution given by

P Y j Yk, ∀k ≠ j; Θ j = exp θ jY j − log Y j! +
k ≠ j

θ jkY jYk

− A θ j, θ jk ,

(1)

where Θj = {θj, θjk, k ≠ j}, and A(θj, θjk) is the log-partition function of the Poisson 

distribution. Following from the Hammersley-Clifford theorem (Besag, 1974), the node-

conditional distributions combine to yield the joint Poisson distribution

P Y, Θ = exp
j = 1

p
θ jY j − log Y j! +

j ≠ k
θ jkY jYk − ϕ Θ , (2)

where Θ = (Θ1,…, Θp) and ϕ(Θ) is the normalizing term ensuring the properness of this 

distribution. However, the Poisson graphical model suffers from a major caveat: the 

interaction parameters θjk must be non-positive for all j ≠ k to ensure ϕ(Θ) to be finite and 

thus the distribution P (Y; Θ) to be proper (Besag, 1974; Yang et al., 2012). Therefore, the 

Poisson graphical model only permits negative conditional dependencies, which is a severe 

limitation in practice. As shown in Patil and Joshi (1968), the negative binomial graphical 

model also suffers from the same limitation.

To relax this limitation, Allen and Liu (2013) proposed a local Poisson graphical model 

(LPGM), which ignores the joint distribution of Yj’s, and works by finding a local model for 

each gene using a regularization method based on the conditional distribution (1) and then 

defining the network structure as the union of the local models. To account for the high 

dispersion of the NGS data when the inter-sample variance is greater than the sample mean, 

Gallopin et al. (2013) proposed a hierarchical log-normal Poisson model which assumes Yij 

~ Poisson(λij) with log(λi j) =
k ≠ j

β jkyik + ϵi j for j = 1,…,n, where ϵij is a Gaussian random 

variable, and yik denotes the standardized, log-transformed data. For each variable Yi, the 

local model can be found via a regularization approach for the log-normal Poisson 

regression. Quite a few related models have been proposed along this direction, including 

the truncated PGM, quadratic PGM, sub-linear PGM and square-root PGM. Refer to Yang et 

al. (2013) and Inouye et al. (2016) for the detail. However, these LPGM-based methods are 

not consistent due to their ignorance of the joint distribution of Yj’s. Without the joint 

distribution, the conditional dependence Yk ⊥Y j YV \ k, j  is not well defined and thus the 

Jia et al. Page 3

Biometrics. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



theoretical basis Yk ⊥Y j YV \ k, j θk j ≠ 0 and θjk ≠ 0 of nodewise regression (Meinshausen 

and Bühlmann, 2006; Ravikumar et al., 2009) does not hold, where θkj and θjk are defined 

in (1). Hence, linking the Poisson graphical model to nodewise Poisson regression will not 

lead to a consistent estimate for the underlying network.

In this paper, we propose a random effect model-based transformation for RNA-seq data. 

This transformation transforms count data to continuous data, which can then be further 

transformed to Gaussian data via a semiparametric transformation as prescribed in Liu et al. 

(2009). Then, we adopt the ψ-learning method developed in Liang et al. (2015) to construct 

GGMs for the transformed data. Under mild regularity and sparsity conditions, we show that 

the proposed method is consistent. Transforming count data to continuous data greatly 

facilitates the analysis of NGS data.

The remainder of this paper is organized as follows. Section 2 describes the random effect 

model-based transformation, and gives a brief review for the semiparametric transformation 

of Liu et al. (2009) and the ψ-learning method of Liang et al. (2015). Section 3 illustrates 

the proposed method using simulated data along with comparisons with gLasso, nodewise 

regression, LPGM, and some other existing methods. Section 4 applies the proposed method 

to two real data examples. Section 5 concludes the paper with a brief discussion.

2. Method

The proposed method consists of three steps: (i) data-continuized transformation, (ii) data-

Gaussianized transformation, and (iii) ψ-learning, which are described in sequel as follows.

2.1 Data-Continuized Transformation

To continuize the RNA-seq data, we propose a random effect model-based transformation. 

Let Yij denote the RNA-seq expression of gene i from subject j for i = 1,…,p and j = 1,…,n, 

where p denotes the number of genes and n denotes the number of subjects. We assume that

Y i j ∼ Poisson θi j , θi j ∼ Gamma αi, βi , (3)

where αi and βi are two parameters of the Gamma distribution. It is easy to see that (3) 

forms a random effect model with the gene-specific random effect modeled by a Gamma 

distribution. If we integrate out θij from the joint distribution f Y i j, θi j αi, βi , we will have Yij 

distributed according to a negative binomial distribution N B(r; q) with r = βi and q = αi/(1 + 

αi). Hence, the model (3) is quite flexible, which accommodates potential overdispersion of 

the data.

To avoid an explicit specification for the values of αi and βj, we conduct a Bayesian analysis 

for the model. For this purpose, we let αi and βi be subject to the prior distributions:

αi ∼ Gamma a1, b1 , βi ∼ Gamma a2, b2 ,
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where a1, b1, a2 and b2 are prior hyperparameters. By assuming that αi and βi are a priori 

independent, the full conditional posterior distributions of θij, αi and βi are given as follows:

f αi θi j, βi, yi ∝
αi

a1 − 1

Γn αi
e

αi −b1 + nlogβi +
j = 1
n logθi j ,

f βi αi, θi j, yi ∝ βi
nαi + a2 − 1

e
−βi j = 1

n
θi j + b2

∝ Gamma(nαi + a2,
j = 1

n
θi j + b2),

f θi j αi, βi, yi ∝ θi j
yi j + αi − 1

e
−θi j 1 + βi

∝ Gamma yi j + αi, βi + 1 ,

(4)

where yi = {yij : j = 1; 2,…,n}. Regarding the choice of prior hyperparameters, we establish 

the following lemma, whose proof is given in the supplementary material.

Lemma 1: If a1 and a2 take small positive values, then for all i and j, the posterior mean of 
θij, denoted by E[θij|yi], will converge to yij as b1 → ∞ and b2 → ∞.

Suppose that a MCMC algorithm, e.g., the Metropolis-within-Gibbs sampler (Müller, 1993), 

was used to simulate from the posterior distribution (4). Let θi j
t  denote the posterior samples 

of θij for = 1, 2, …, and let θ i j
T =

t = 1
T

θi j
t /T denote the Monte Carlo estimator of E θi j yi . 

Then, following from the standard theory of MCMC, we have θ i j
T p

E θi j yi  as T → ∞, 

where 
p

 denotes convergence in probability. To ensure the convergence θ i j
T p

yi j hold in a 

rigorous manner, the iteration number T and the prior hyperparameters b1 and b2 need to go 

to infinity simultaneously. To achieve this goal, we let b1 and b2 increase with iterations. Let 

b1
t  and b2

t  denote the respective values of b1 and b2 taken at iteration t, and we set

b1
(t) = b1

(t − 1) + c
tζ

, b2
(t) = b2

(t − 1) + c
tζ

, t = 1, 2, …, (5)

where b1
(0) and b2

(0) are fixed large constants, c > 0 is a small constant, and 0 < ζ ≤ 1. Under 

this setting, the MCMC sampler for (4) forms an adaptive Markov chain for which the target 

distribution gradually shrinks toward a Dirac delta measure defined on (αi, βi, θij) = (0; 0; 

yij). For simplicity in theoretical development (see supplementary material), we assume that 

a random walk proposal is used in simulating from the conditional posterior distribution 
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f αi ⋅ , i.e., the proposal distribution q αi′ αi
t = q αi′ − αi

(t)  depends on αi′ − αi
(t)  only. In 

summary, we have the following lemma, whose proof is given in the supplementary 

material.

Lemma 2: If a random walk proposal is used in simulating from f αi ⋅  and the prior 

hyperparameters are chosen in (5), then θ i j
T p

yi j for all i and j as T ∞, where 

θ i j
T =

t = 1
T

θi j
t /T and θi j

t  denotes the posterior sample of θij generated at iteration t.

Lemma 2 implies that the statistical inference for yij’s can be approximately made using 

θ i j
T ’s as T → ∞. The validity of the approximation can be argued as follows: Let 

𝔽 θ1
(T), …, θ p

(T)  denote the empirical CDF of p-continuized random variables. Let 𝔽(y1, …, yp)

denote the empirical CDF of (Y1,…,Yp). It is easy to see that the convergence θ i j
T p

yi j

implies sup
t ∈ ℝp 𝔽

θ1
(T), …, θ p

(T)(t) − 𝔽 y1, …, yp
(t) p 0 as T → ∞. Further, as the sample size 

n → ∞, sup
t ∈ ℝp 𝔽 y1

, …,yp
(t) − FY1, …, Y p

(t) a . s . 0 holds under some regularity and 

sparsity conditions, where FY1,…,Yp(t) denotes the CDF of Yi’s, and 
a . s .

 denotes almost sure 

convergence. For example, we can assume that for each Yi, the number of variables that Yi 

depends on is upper bounded by n / log(n). In summary, we have 

sup
t ∈ ℝp 𝔽

θ p
(T), …, θ p

(T)(t) − FY1, …, Y p
(t) p 0 as T → ∞ and n → ∞, which implies that a 

consistent estimate can be formed based on the continuized data for each conditional 

probability used for inference of the network structure underlying Y1,…,Yp. That is, the 

conditional independence relations among Y1,…,Yp can be learned from the continuized data 

θ1
(T), …, θ p

(T) in a consistent manner.

2.2 Data Gaussianized transformation

Since GGMs have been extensively studied, we seek for a transformation that transforms the 

continuized data to be Gaussian, while maintaining the conditional independence relations 

among the variables. The semiparametric Gaussian copula transformation, the so-called 

nonparanormal transformation, proposed by Liu et al. (2009) satisfies this requirement. It 

can be described as follows.

Let X = (X1,…,Xp)T be a continuous p-dimensional random vector. It is said that X has a 

nonparanormal distribution if there exist functions f j j = 1
p

 such that Z = f(X) ~ N(μ, ∑), 

where f(X) = (f1(X1),…,fp(Xp))T. We write X ~ N P N(μ, ∑, f). It is known that if fj’s are 

monotone and differentiable, the joint probability density function of X is given by
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PX(x) = 1
(2π)p/2 Σ 1/2exp − 1

2( f (x) − μ)TΣ−1( f (x) − μ

⋅
j = 1

p
f j′(x j) .

(6)

Based on this formula, Liu et al. (2009) argued that if X ~ N P N(μ, ∑, f) and each fj is 

monotone and differentiable, then Xi ⊥ X j XV \ i, j Zi ⊥ Z j ZV \ i, j . With the similar 

argument, we can have that for any triple of disjoint sets 

A, B, C ⊆ V , XA ⊥ XB XC ZA ⊥ ZB ZC . In other words, the nonparanormal transformation 

preserves the conditional independence structure of the original graphical model formed by 

X. Liu et al. (2009) further showed that f j(x) = μ j + σ j Φ−1 (F j(x)) is such a monotone and 

differentiable transformation, where μj is the mean of Xj, σ j
2 is the variance of Xj, and Fj(x) 

is the CDF of Xj. For the high dimensional case where p is greater than and can increase 

with n, Fj(x) can be replaced by a truncated or Winsorized estimator of the marginal 

empirical distribution of Xj in order to reduce the variance of the estimate.

2.3 ψ-Learning for Gaussian Graphical Models

There are several methods for learning the structure of Gaussian graphical models, such as 

gLasso, nodewise regression, and ψ-learning. In this paper ψ-learning is adopted, which, as 

shown in Liang et al. (2015), tends to have better numerical performance and less CPU cost 

than gLasso and nodewise regression. The ψ-learning method consists of three steps:

(a) (Correlation screening) Determine the neighborhood for each vertex (or 

variable) Xi.

(i) Conduct a multiple hypothesis test to identify the pairs of variables for 

which the empirical correlation coefficient is significantly different 

from zero. This step results in a so-called empirical correlation 

network.

(ii) For each vertex Xi, identify its neighborhood in the empirical 

correlation network, and reduce the size of the neighborhood to O(n= 

log(n)) by removing the variables having lower correlation (in absolute 

value) with Xi. This step results in a so-called reduced correlation 

network.

(b) (ψ-calculation) For each pair of vertices i and j, identify a separator Sij based on 

the reduced correlation network resulted in step (a) and calculate Ψ i j = ρ
i j Si j

,

where ρ
i j Si j

 denotes the partial correlation coefficient of Xi and Xj conditioned 

on the variables {Xk : k ∈ Sij}. For a pair of vertices i ≠ j, a set of vertices is 

called a separator of i and j if all paths from vertex i to vertex j have at least one 

vertex in the set.
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(c) (ψ-screening) Conduct a multiple hypothesis test to identify the pairs of vertices 

for which ψij is significantly different from zero, and set the corresponding 

element of the adjacency matrix to be 1.

Under mild conditions, Liang et al. (2015) showed that the ψ-partial correlation coefficient 

is equivalent to the true partial correlation coefficient in determining the structure of GGMs 

in the sense that

Ψ i j = 0 ρi j V \ i, j = 0, (7)

where ρi j V \ i, j  denotes the partial correlation coefficient of Xi and Xj conditioned on all 

other variables in the set V. As implied by (7), the key to the success of the ψ-learning 

method is that it has reduced the computation of partial correlation coefficients from a high 

dimensional problem to a low dimensional problem. In general, the cardinality of the set V \ 

{i,j} can be much higher than the sample size n, while the cardinality of Sij is upper bounded 

by O(n/log(n)). As shown in Liang et al. (2015), the Ψ-learning method is consistent, i.e., 

the network produced by it will converge to the true one as the sample size n → ∞.

The multiple hypothesis tests involved in the correlation screening and Ψ-screening steps 

can be done using an empirical Bayes method developed in Liang and Zhang (2008). The 

advantage of this method is that it allows for the general dependence between test statistics. 

Other multiple hypothesis tests which accounts for the dependence between test statistics, 

e.g., Benjamini et al. (2006), can also be applied here. The performance of multiple 

hypothesis tests depend on their significance levels. Following the suggestion of Liang et al. 

(2015), we set the significance level of correlation screening to be α1 = 0:2 and that of Ψ-

screening to be α2 = 0:05. In general, a high significance level of correlation screening will 

lead to a slightly large separator set Sij, which reduces the risk of missing some important 

variables in the conditioning set. Including a few false variables in the conditioning set will 

not hurt much the accuracy of Ψ-partial correlation coefficients.

2.4 Consistency

In summary, the proposed method consists of three steps: (i) data-continuized 

transformation, (ii) data-Gaussianized transformation, and (iii) Ψ-learning for Gaussian 

graphical models. From Lemma 2 and the followed arguments, we can conclude that the 

network structure of Y1,…,Yp can be consistently learned from the continuized data 

θ1
(T), …, θ p

(T). Liu et al. (2009) showed that the data-Gaussianized transformation preserves 

the network structure underlying the data, and Liang et al. (2015) showed that the Ψ-

learning method is consistent in recovering the underlying network structure. Therefore, the 

consistency also holds for the proposed method; that is, the true gene regulatory relations 

can be recovered from the RNA-seq data using the proposed method when the sample size 

becomes large.
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3. Simulation Studies

To illustrate the performance of the proposed method, we consider some simulation 

examples with the known conditional independence structure. Since the most NGS data tend 

to be zero-inflated and highly over-dispersed, the data were simulated from a multivariate 

zero-inflated negative binomial (ZINB) distribution. The ZINB distribution contains three 

parameters, λ, k and ω, which controls its mean, dispersion and degree of zero-inflation, 

respectively. The algorithm developed by Yahav and Shmueli (2012) was adopted to 

simulate the data, which works via an inverse nonparanormal transformation as follows:

(a) Simulate a random sample of n multivariate Gaussian random variables with the 

known concentration matrix. Denote the random sample by (X1,…,Xp), where 

each variable Xi = (Xi1,…,Xin)T consists of n realizations.

(b) For each variable Xi, find its empirical CDF based on the n realizations and 

calculate the cumulative probability value for each realization Xij.

(c) Generate a random sample of n zero-inflated negative binomial random 

variables with pre-specified parameters λ, k and ω by inverting the cumulative 

probability values obtained in (b).

In our simulations, we set the concentration matrix as follows:

Ci, j =

0.5,
0.25,
1,
0,

if j − i = 1, i = 2, …, (p − 1),
if j − i = 2, i = 3, …, (p − 2),
if i = j, i = 1, …, p,
otherwise.

(8)

This matrix has been used by quite a few authors to demonstrate their GGM algorithms, say, 

Yuan and Lin (2007), Mazumder and Hastie (2012), and Liang et al. (2015). To make the 

simulation similar to the real world, we set the parameters λ, k and ω of the ZINB 

distribution to their estimates from a real dataset, Acute myeloid leukemia(AML) mRNA 

sequencing data, which is available on The Cancer Genome Atlas(TCGA) data portal. We 

estimated these parameters using the function “glm.nb” in R for each gene, and then set the 

simulation parameters to the medians of the estimates: λ = 515; 743, k = 3:304 and ω = 

0:003. For the other parameters, we set n = 100 and p = 200. We then applied the proposed 

method to the simulated data, which went through the steps of data-continuized 

transformation, nonparanormal transformation, and ψ-learning. To measure the performance 

of the method, we plot the precision-recall curve (defined in the supplementary material) in 

Figure 2, which is drawn by fixing the significance level of correlation screening to α1 = 0.2 

and varying the value of α2, the significance level of ψ-screening.

To conduct the data-continuized transformation, the Metropolis-within-Gibbs sampler was 

run for 10000 iterations for this dataset, where the first 1000 iterations were discarded for 

the burn-in process and the remaining iterations were used for inference. The total CPU time 

cost by the sampler was 39.0 seconds on a personal computer with 2.8GHz Intel Core i7. On 

average, it cost less than 0.2 seconds per variable. For this transformation, we set α1 = α2 = 
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1, b1
(0) = b2

(0) = 10000, c = 1 and ς = 1, the default setting of the prior hyperparameters used 

throughout the paper. The left panel of Figure 1 shows the scatter plot of the continuized 

data versus raw counts for one variable, and the right panel shows the Q-Q plot of the 

Gaussianized data for the variable. The scatter plot indicates that the continuized data and 

the raw counts are very close to each other. To have a thorough exploration for the data-

continuized transformation, we reported in Table 2 of the supplementary material the 

posterior mean and standard deviation of αi, βi, θij and the AUC value, i.e., the area under 

the precision-recall curve, for measuring the performance of the proposed method. The 

results indicate again that θij can be very close to yij and our method is robust to the choice 

of (a1, a2, b1
(0), b2

(0)). The data-continuized transformation does not lose much information of 

the raw counts.

For comparison, we have applied the existing methods, including gLasso, nodewise 

regression, Local Poisson Graphical Model (LPGM), Truncated Poisson Graphical Model 

(TPGM) and Sublinear Poisson Graphical Model (SPGM) to the simulated data. For gLasso 

and node-wise regression, the simulated ZINB data first went through the logarithm 

transformation and nonparanormal transformation, which have been widely used in RNA-

seq data analysis, and then the methods were applied. The gLasso and nodewise regression 

methods have been implemented in the R-package huge (Zhao et al., 2015). In our 

applications, the stability approach was used to determine their regularization parameters. 

The stability approach selects the network with the smallest amount of regularization that 

simultaneously makes the network sparse and replicable under random sampling. For 

LPGM, we used the method proposed by Allen and Liu (2013). For SPGM and TPGM, we 

used the method proposed by Yang et al. (2013). The three methods have been implemented 

in the R-package XMRF (Wan et al., 2015). Besides these existing method, we also 

compared the proposed method with the one without data-continuized process, i.e., ψ-

learning with logarithmic and non-paranormal transformations, which is labeled as “Log

+NPN+ψ-Learning” in Figure 2.

The comparison indicates that the proposed method significantly outperforms other meth-

ods, although the improvement mainly comes from ψ-learning. The data-continuized 

transformation does not loss the information of the data, and it provides a justification for 

the empirical use of treating log-NGS data as continuous. Multiple datasets have been tried, 

the results are very similar. Note that LPGM is an extension of the nodewise regression 

method (Meinshausen and Bühlmann, 2006) to multivariate Poisson. Both the LPGM and 

nodewise regression methods are based on the idea of neighborhood selection. This 

experiment also shows that the data-continuized transformation and nonparanormal 

transformation improves the performance of the neighborhood selection method. Based on 

this experiment, we suspect that the graph consistency established in Meinshausen and 

Bühlmann (2006) for nodewise normal regression might not hold for LPGM.

We have also considered several common network structures such as hub, scale-free, small-

world and random. The multivariate Gaussian random variables given these structures can be 

generated by functions provided in “huge” package. Then we continue steps (b) and (c) of 

Yahav and Shmueli’s algorithm to get ZINB samples with the same parameters as used 
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before, i.e., (n, p) = (100, 200), λ = 515; 743, k = 3:304 and ω = 0:003. The results are 

summarized in Figure 3. It shows that the proposed method significantly outperforms all 

other methods for the scale-free, small world and random structures, and performs similarly 

to gLasso and nodewise regression for the hub structure. To have a thorough comparison 

with the existing methods, we also considered the scenario of n > p with the results reported 

in the supplementary material.

4. Real Data Examples

4.1 Liver cytochrome P450s subnetwork

Liver cytochrome P450s play critical roles in drug metabolism, toxicology, and metabolic 

processes. They form a superfamily of monooxygenases critical for anabolic and catabolic 

metabolism in all organisms characterized so far (Nelson et al., 1996; Aguiar et al., 2005; 

Plant, 2007). Specifically, P450 enzymes are involved in the metabolism of various 

endogenous and exogenous chemicals, including steroids, bile acids, fatty acids, 

eicosanoids, xenobiotics, environmental pollutants, and carcinogens (Ortiz, 2005). Through 

experimental work, Yang et al. (2010) determined the human liver transcriptional network 

structure, uncovered subnet-works representative of the P450 regulatory system, and 

identified novel candidate regulatory genes. Our goal is to recover the P450s gene regulatory 

subnetwork, as shown in the left panel of Figure 4, using the RNA-seq data generated at Dr. 

Lamba’s lab. In the plot, the P450 genes and the known P450 regulators are highlighted as 

red circles and blue squares, respectively.

The original dataset consisted of 100 samples, and each sample consisted of 22337 genes. In 

our study, we only considered the genes shown in the left panel of Figure 4. The genes 

“AK097548s”, “BC019583”, “ENST00000301162” and “NM 173466” have been excluded 

from our study, as they are not protein-coding genes and their expression data are not 

available in the original dataset. According to the proposed method, we first applied the 

data-continuized transformation to the RNA-seq data. After the data-continuized 

transformation, we adjusted some effects that potentially affect the distribution of the data, 

including the age, gender and batch of data collection, through linear regression. Then, we 

applied the nonparanormal transformation and Ψ-learning method to the adjusted data. 

Figure 4 shows the resulting subnetwork.

The subnetwork published in Yang et al. (2010) contains 48 genes, and the subnetwork 

produced by the proposed method contains 26 genes which are connected to some other 

genes. Although the two subnetworks contain different numbers of genes, they share very 

similar relations for gene regularations. For example, in the subnetwork by Yang et al. 

(2010), the gene GLYAT connects to the genes ZGPAT, ETNK2, and AKR1D1; gene HAAO 

connects to gene CYP27A1; gene CYP2A7 connects to gene CYP2A13; gene CLU connects 

to SLC27A5; gene ACSM3 connects to EHHADH, and gene CYP4F2 connects to gene 

SLC16A2. All these connections have been recovered in our subnetwork. Although the rest 

connections in the two subnetworks do not match exactly, they show some similar 

dependence. For example, gene CYP2A7 connects to both CYP2A6 and CYP2A13 in the 

subnetwork by Yang et al. (2010), our subnetwork also shows that they are dependent. This 

example indicates the validity of the proposed method.
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4.2 Acute myeloid leukemia mRNA sequencing network

This example illustrates the performance of the proposed method in the small-n-large-p 
scenario. The dataset is the mRNA sequencing data from acute myeloid leukemia (AML) 

patients and available at The Cancer Genome Atlas(TCGA) data portal (http://

cancergenome.nih.gov/). In this study, we directly worked on the raw count data, which 

contains 179 patients and 19990 genes. In preprocessing the data, we filtered out some low 

expression genes: we first excluded the genes with at least one zero count, and then selected 

500 genes with the largest inter-sample variance as suggested by Gallopin et al. (2013). The 

selected genes are more likely linked to the development of acute myeloid leukemia as their 

expression levels are highly variable.

Figure 5 shows the GRN produced by the proposed method for the AML RNA-seq data. 

Through this network, we can identify some hub genes that are likely related to AML. A hub 

gene refers to a gene which has strong connectivity to other genes. Our finding is pretty 

consistent with the existing knowledge. For example, the hub gene MKI67 is a well known 

tumor proliferation marker. The prognostic value of the MKI67 protein expression has been 

reported for many types of malignant tumors including brain, breast, and lung cancer, with 

only a few exceptions for certain types of tumors (Mizuno et al., 2009). Another example is 

the gene KLF6. Humbert et al. (2011) showed the expression patterns of KLFs with a 

putative role in myeloid differentiation in a large cohort of primary AML patient samples, 

CD34+ progenitor cells and granulocytes from healthy donors. They found that KLF2, 

KLF3, KLF5 and KLF6 are significantly lower expressed in AML blast and CD34+ 

progenitor cells compared to normal granulocytes, and that KLF6 is upregulated by 

RUNX1-ETO and participates in the RUNX1-ETO gene regulation. This finding provides 

new insights into the under-studied mechanism of RUNX1-ETO target gene upregulation 

and identifies KLF6 as a potentially important protein for further study in AML 

development (DeKelver et al., 2013). The biological functions of other hub genes, such as 

H3F3B and TMC8, will be further studied.

For comparison, gLasso, nodewise regression and LPGM have been applied to this dataset. 

They were run as for the simulated examples. Nodewise regression and gLasso were run 

using the package huge under their default setting, but the regularization parameter was 

determined using the stability approach. LPGM was run using the package XMRF under its 

default setting. All these methods produced much denser networks than the proposed 

method. To assess the quality of the networks produced by different methods, the power law 

curve (see, e.g., Kolaczyk 2009, pp.80–85) was t to them. A nonnegative random variable X 

is said to have a power-law distribution if

P(X = x) ∝ x−υ, (9)

for some positive constant ν. The power law states that the majority of vertices are of very 

low degree, although some are of much higher degree. A network whose degree distribution 

follows the power law is called a scale-free network and it has been verified that many 

biological networks are scale-free, e.g., gene expression networks, protein-protein 
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interaction networks, and metabolic networks (Barabási and Albert 1999). Figures 6 show 

the log-log plots of the degree distributions of the networks generated by four methods, 

where the curves are fitted by the loess function in R. It shows that the network produced by 

the proposed method approximately follows the power law, while those by gLasso, nodewise 

regression and LPGM do not.

5. Discussion

We have proposed a method for learning gene regulatory networks from RNA-seq data. The 

proposed method is a combination of a random effect model-based data-continuized 

transformation, the nonparanormal transformation, and the ψ-learning algorithm. The 

proposed method is consistent in the sense that the true gene regulatory networks can be 

recovered from the RNA-seq data when the sample size becomes large. The major 

contribution of this paper lies on the data-continuized transformation, which fills the 

theoretical gap of how to transform NGS data to continuous data and facilitates learning of 

gene regulatory networks.

The proposed data-continuized transformation involves an adaptive Markov chain. We 

proved the convergence and the weak law of large numbers for the adaptive Markov chain 

under the framework provided by Liang et al. (2016). A strong law of large numbers (SLLN) 

can potentially be proved for the algorithm under the framework provided by Fort (2011). 

With the SLLN, some stronger theoretical properties might be obtained for the resulting 

networks.

In practice, some authors treated the logarithm of the RNA-seq data as continuous, though 

not rigorous. The proposed method provides a justification for this use, which is necessary 

and important given the popularity of NGS techniques. As discussed in Liang et al. (2015), 

the ψ-learning algorithm provides a general framework for how to integrate multiple sources 

of data in reconstructing Gaussian graphical networks, where it is proposed to use a meta-

analysis method to combine the ψ-partial correlation coefficients calculated from different 

sources of data. Similarly, with the proposed method, we can integrate different types of 

omics data, such as the RNA-seq and microarray data, to improve inference for gene 

regulatory networks. We expect that this method will be widely used in the near future.

Finally, we note that alternative to the LPGM method, an existing method that can 

potentially be used for Poisson graphical modeling is the latent copula Gaussian graphical 

modeling method (Ho , 2007; Dobra and Lenkoski, 2011). The basic idea of this method is 

to introduce Gaussian latent variables in place of discrete random variables in the Poisson 

network inference. Since the method involves imputation for a large number of latent 

variables, it is very slow and can only be applied to the problems with a small set of genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: Scatter plot of the continuized data versus raw counts for one variable. Right: QQ-plot 

of the Gaussianized data for one continuized variable.
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Figure 2. 
Precision-recall curves produced by the proposed method (Cont+NPN+Ψ-learning), log 

transformation-based Ψ-learning (Log+NPN+Ψ-learning), log transformation-based gLasso 

(Log+NPN+gLasso), log transformation-based nodewise regression (Log+NPN+nodewise 

Regression), LPGM SPGM, TPGM for the simulated data with (n, p) = (100, 200).
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Figure 3. 
Precision-recall curves of each method for different type of structures with (n, p) = (100, 

200). Upper left: hub; upper right: scale-free; lower left: small-world; lower right: random. 

Refer to the legend of Figure 2 for the labels.
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Figure 4. 
Left: P450 gene regulatory subnetwork reproduced from Yang et al. (2010), where the 

known regulators and P450 genes are shown as blue rectangles and red ovals, respectively. 

Right: the subnetwork produced by the proposed method.
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Figure 5. 
Gene regulatory network produced by the proposed method for the acute myeloid leukemia 

RNA-seq data with (n, p) = (179, 500).
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Figure 6. 
Log-log plots of the degree distributions of the four networks generated by the proposed 

method (upper left), gLasso (upper right), nodewise regression (lower left), and LPGM 

(lower right).
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