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Abstract

Drug self-administration experiments are a frequently used approach to assessing the abuse 

liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of 

various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. 

The demand curve generated from a self-administration study describes how demand of a drug or 

non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking 

Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform 

the US Food and Drug Administration’s policy on tobacco regulation, because it produces several 

important quantitative measurements to assess the reinforcing strength of nicotine. The 

conventional approach popularly used to analyze the demand curve data is individual-specific non-

linear least square regression. The non-linear least square approach sets out to minimize the 

residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time 

approach does not allow for the estimation of between- and within-subject variability in a unified 

model framework. In this paper, we review the existing approaches to analyze the demand curve 

data, non-linear least square regression, and the mixed effects regression and propose a new 

Bayesian hierarchical model. We conduct simulation analyses to compare the performance of 

these three approaches and illustrate the proposed approaches in a case study of nicotine self-

administration in rats. We present simulation results and discuss the benefits of using the proposed 

approaches.
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1 Introduction

Relative reinforcing efficacy (RRE) is a fundamental concept frequently used in substance 

abuse research.1,2 It describes the reinforcing potency and abuse liability of a substance. A 

self-administration experiment is a valuable tool to assess RRE. Self-administration studies 

have been widely employed to study the reinforcing strength of various substances such as 

psychomotor stimulants and hallucinogens,1,3 food,4 nicotine,5,6 and alcohol.7 The demand 

curve data obtained from a self-administration experiment describe how demand of a drug or 

non-drug reinforcer varies as a function of price.8 According to the law of demand, the 

consumption of a commodity generally decreases when its price increases; as such, 

conceptually, the demand curve is always downward sloping.

The approval of the 2009 Family Smoking Prevention and Tobacco Control Act incentivizes 

research to determine the RRE of nicotine in order to inform the US Food and Drug 

Administration (FDA) about individual characteristics (such as gender, smoking history) in 

response to nicotine-reduction tobacco products, the feasibility of a nicotine-reduction 

policy, and its potential public health impact. Animal self-administration studies provide 

vital evidence to support the FDA’s future policy on tobacco product regulation because 

rodent models of nicotine self-administration (NSA) are the gold standard for assessing 

reinforcing properties of nicotine.6 In addition, human self-administration studies, such as 

cigarette purchase tasks, suffer from issues such as reporting errors, non-compliance, and 

loss of follow-up.

A number of models have been proposed to perform demand curve analysis;9,10 the most 

recent and popularly used model is the exponential demand curve, which has the following 

form

logQ = logQ0 + K(e−αP − 1) (1)

In equation (1), Q is the quantity consumed, Q0 is the amount consumed when the unit price 

P of a good approaches 0. For example, in animal and human research on drug addiction, Q0 

is the level of consumption of nicotine, cigarettes, or other abused drugs, when there is no 

cost or effort required to obtain those commodities. Other parameters in the demand curve 

described in equation (1) are K and α (a measure of demand curve elasticity). Elasticity 

describes the rate of decline in relative log consumption, i.e. how quickly consumption falls 

with increases in price. According to Hursh and Silberberg,9 α is the measure of reinforcing 

strength.

Another two clinically relevant quantities related to the demand curve are Omax and Pmax. 

Omax is the maximum expense (price times consumption) a person is willing to spend for a 

commodity; Pmax is the corresponding unit price. Omax is clinically important because of its 

correlation with clinical addiction indices in both alcohol and nicotine studies.11 It can be 

calculated by the following equation
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Omax = PmaxQ = PmaxQ0eK(e
−αPmax − 1) (2)

Pmax does not have a closed form solution and is obtained by solving the following equation

KαPmaxe
−αPmax = 1 (3)

The conventional method popularly used to estimate exponential demand curve is the 

individual-specific nonlinear least squares regression model (NLIN),9,7,11 which can be 

implemented through GraphPad Prism software. The NLIN method uses a three-step 

approach. First the parameter K in equation (1) is determined based the range of the data. K 
is calculated as the difference of maximum and minimum observed consumptions in the data 

in loge unit and set as a constant across all animals in the data. Second, the individual values 

of α and Q0 are determined by minimizing the residual sum of squares, one-subject-at-a-

time. Finally, the overall α, Q0, Pmax and Omax estimates are calculated as the mean of 

individual α, Q0, Pmax, and Omax estimates obtained from each subject. The 95% confidence 

intervals for α, Q0, Pmax and Omax estimates are obtained by assuming the estimates are 

normally distributed.

There are several concerns in using the conventional approach for exponential demand curve 

analysis: (1) The estimation of Pmax and Omax estimates rely heavily on graphical methods.
8,11 Although graphical methods could be straightforward, they have limitations in that the 

resolution of estimating Pmax and Omax is restricted by the sample rate of price.11 (2) The ad 

hoc estimation of K might have large impacts on the estimations of other parameters. (3) 

Current approaches do not obtain the standard errors for Pmax and Omax in a model-based 

framework. These issues are addressed using alternative approaches considered in this study: 

mixed effects regression and a Bayesian hierarchical model.

A left-censored mixed effects regression method has been considered by Liao et al.12 to 

model the exponential demand curve in settings with zero consumption. In order to obtain 

the standard deviation of Pmax and Omax in the mixed effects model framework, we proposed 

to use the bias-corrected and accelerated bootstrap approach13 due to the skewness of Pmax 

and Omax distribution. On the other hand, the Bayesian approach proposed in this study 

offers a straightforward approach to compute means, standard deviations, and 100(1–α) 

percent equal-tail credible intervals (equal-tail CIs) for Pmax and Omax based on posterior 

distributions. This is particularly crucial because the distribution of Pmax and Omax is often 

skewed. As a result of major developments of computational algorithms,14 the use of 

Bayesian approaches is rapidly increasing.15

In this paper, we discuss statistical inference and compare the performance of the three 

approaches: the NLIN, mixed effects approach via maximum likelihood (ML) estimation 

method, and the proposed Bayesian approach via the Markov chain Monte Carlo (MCMC) 

method, with a focus on small-to-moderate sample sizes.
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In Section 2, we describe a motivating case study that estimated demand curves in rats self-

administering nicotine during progressive unit-dose reduction.5 In Section 3, we describe 

the mixed effects regression and Bayesian hierarchical model. In Section 4, we present the 

implementation of the Bayesian hierarchical model using data from the case study. The 

simulation studies to compare the performance of the three approaches are presented in 

Section 5. Finally, a discussion of various approaches is presented in Section 6.

2 Material and study design

The data were collected from a study designed to model a nicotine-reduction policy in rats 

by arranging progressive decreases in the unit dose of nicotine to the point of extinction of 

self-administration in every subject. The study aimed to examine the gender difference in 

NSA in rats.5 Seven male and seven female Holtzman rats were trained to self-administer 

nicotine during daily 23-h sessions. The price of nicotine—defined as the number of 

responses required per unit dose16—was then increased weekly by reducing the unit dose of 

nicotine until responding fell to within the range of extinction levels. The amount of nicotine 

consumed (mg/kg/day) by each rat was recorded at each unit price. More details about the 

experimental procedures are described in Grebenstein et al.5 The data are represented in 

Table 1, and each value is the mean of three 23-h sessions. The blank cells in Table 1 

indicate that the consumption of nicotine fell to within the range of extinction levels.

3 Statistical methods

3.1 Mixed effects model

Let yij be the log consumption of nicotine for the ith rat at the jth price Pj. In the data under 

the study, the model can be written as follows

yi j = [C0 + CMI(Malei) + ui] + elogK e
−[(α0 + αMI(Malei) + bi)P j] − 1 + εi j (4)

where CM is the difference in the log consumption between male and female rats when the 

price Pj=0; α0 represents the rate of decline; αM captures the group difference of the rate of 

decline between male and female rats. The two random effects ui and bi represent the log 

consumption at price 0 and the rate of decline for each rat, respectively. These random 

effects follow a bivariate normal distribution with mean 0 and a covariance matrix structure 

∑ =
σu

2 ρσuσb

ρσuσb σb
2 , and ρ represents the correlation between the log consumption at price 0 

and reinforcing value. The correlation of the log consumption of nicotine yij across different 

j for a given rat i is modeled through the random effects. Given the random effects ui and bi, 

the error terms εij for a given rat i are independent and were assumed to follow a normal 

distribution with mean 0 and variance σ2. In this model framework for male rats, the log 

consumption at price zero is C0+ CM, and the rate of decline in consumption is α0+αM.
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Table 2 shows the analysis results using NLIN and mixed effects model. The results using 

the NLIN approach have been presented and described in Grebenstein et al.5 The results 

using two approaches yield consistent conclusion; however, the 95% CI estimates using the 

three-step NLIN approach assume that the parameter estimates follow normal distribution. 

This assumption can be violated when sample size is small or when the distributions of the 

estimators are skewed. In addition, the results in Table 2 also suggested that the ad hoc 

estimation of K has considerable impact on the estimations of other parameters using the 

NLIN approach.

In the mixed effects model, when the price is close to 0, indicating that there is no effort 

needed, female rats consume e0.906 = 2.48 mg/kg of nicotine: this is statistically significant 

with 95% CI of (1.93, 3.18). Male rats initially consumed less nicotine in log scale than 

female rats; however, this is not statistically significant, because the parameter estimate for 

CM is −0.25 with 95% CI of (−0.60, 0.10). The reinforcing strength for female rats (α0) is 

1.053 × 10−3 and is statistically significantly different from zero, with a 95% CI of (6.58 × 

10−4, 1.45 × 10−3). Male rats have a lower rate of decline in nicotine consumption than 

female rats; however, this is not statistically significant because the parameter estimate αM is 

−1.93 × 10−4, with a 95% CI of (−7.34 × 10−4, 3.48 × 10−4). The result suggests that there 

was no sex difference in the reinforcing efficacy of nicotine. The overall R2 using the mixed 

effects model is 0.9865.

After obtaining the estimates of K, α0, αM, we calculated Pmax by solving equation (3) and 

then calculated Omax using equation (2). We performed sampling with replacement to obtain 

bootstrap standard deviation for Pmax and Omax and implemented a bias-corrected and 

accelerated approach13 to calculate the 95% CIs, as shown in Table 3. The bias-corrected 

and accelerated approach is a method of obtaining approximate CIs using the percentiles 

from the bootstrap histogram. The time required for bootstrap resampling depends on the 

number of bootstrap iterations and sample size. Using the data from the nicotine study in 

rats described in this paper, one iteration took around 4.4 s to complete using a single-core 

2.8 GHz Intel Xeon X5560 Nehalem EP processor and 1000 iterations took around 73 min 

(4348 s).

3.2 Bayesian hierarchical approach

We used the same notation as described in Section 3.1. Assuming that log consumption yij’s 

for each rat at different price Pj are independently distributed with mean ηij and variance σ2 

= 1/τ. In the data we used in this study, the model can be written as

ηi j = (C0 + CMI(Malei) + ui) + elogK e
−[α0 + αMI(Malei) + bi)P j] − 1

Let π(θ) be the prior joint distribution of C0, CM, ui, logK, α0, αM, bi, τ where θ=(C0, CM, 

ui, logK, α0, αM, bi, τ). The random effects follow a multivariate normal:

ui
bi

MVN
0
0 , ∑ , ∑−1 ∼ Wishart (Ω, p)
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where Ω is a scale matrix, a prior guess for the covariance matrix and p is the degrees of 

freedom. The likelihood can be written as

L(Y |θ) = ∏
i = 1

N
∏
j = 1

M
[ f (yi j |ηi j, τ)]

Thus, the posterior joint distribution of C0, CM, ui, logK, α0, αM, bi, τ given the 

observations is proportional to

∏
i = 1

N
∏
j = 1

M
[ f (yi j |ηi j, τ)]π(C0)π(CM)π(ui)π(bi)π(logK)π(a0)π(aM)π(τ)

Posterior computation was done using MCMC methods14 and carried out using 

downloadable free software JAGS (http://mcmc-jags.sourceforge.net)17 and the rjags 

package in R (http://www.r-project.org/).18 The model code is available upon request. The 

burn-in consisted of 10,000 iterations; 50,000 subsequent iterations were used to compute 

the posterior summaries of the model parameter estimates. Convergence of MCMC was 

assessed using the Gelman and Rubin convergence statistic19 with three chains. The GR 

diagnostics for all parameter estimations are all close 1, which confirms that the chains have 

converged. The posterior credible intervals for C0, CM, α0, αM, and logK are obtained from 

the posterior distributions approximated by the posterior samples by using the MCMC 

chains.

4 Illustration

We assume that yij is normally distributed with mean ηij and variance σ2=1/τ. Non-

informative prior distributions were specified as τ ~ gamma(10−3, 10−3), C0 ~ N(0, 103), CM 

~ N(0, 103), α0 ~ N(0, 103), αM ~ N(0, 103), and logK ~ N(0, 103). The random effects for 

each rat 
ui
bi

 were assumed to follow a bivariate normal distribution:

MVN
0
0 , ∑ , ∑−1 Wishart 0.1 0.005

0.005 0.1 , 3 .

Based on the 5 × 104 MCMC samples, Figure 1 presents the posterior distributions for C0, 

CM, α0, αM, logK, and τ. The posterior distribution of Pmax can be obtained based on 

equation (3) using the 5 × 104 MC samples for α0 and logK. Likewise, Omax was calculated 

using equation (2) from the posterior samples of Pmax, C0, α0, and logK. The values of Pmax 

and Omax and their corresponding standard deviations for male and female rats are shown in 

Table 3 (right panel). The conclusions of analyzing the experimental data using Bayesian 

approach are consistent with the results from NLIN and the mixed effects regression.

Figure 2 presents the posterior distributions for Pmax and Omax for male and female rats, 

respectively. These distributions could not have been obtained by using a mixed effects 

regression approach. Figures 3 and 4 show the demand curve for each rat on log scale, with 
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95% equal-tail credible interval for log consumption of nicotine for each rat. These figures 

indicate that log nicotine consumption for all the rats in the data was well described using 

the Bayesian approach.

In addition, we calculated R2 as the square of the correlation between the observed and 

predicted log consumption. The R2 for three methods are 0.9747, 0. 0.9865, and 0.9866 for 

the NLIN, mixed effects model, and the Bayesian approach, respectively, as shown in Figure 

5. These results are consistent with the conclusion in Grebenstein et al.5 The results further 

support Hursh’s claims that the demand curve offers a useful approach to model drug abuse 

policy in animals and humans.8,16

To further validate the models, we applied leave-one-out cross-validation to assess the 

predicative performance of the models. We implemented two cross-validation approaches. In 

the first approach, we randomly set aside one observation and used the remaining observed 

values to fit models for each rat. Then, we calculated the mean absolute error (MAE) of the 

prediction for the holdout sample. We implemented 1000 cross-validation iterations. The 

MAEs (standard error) are 0.254 (0.0018), 0.209 (0.0014), and 0.203 (0.0013) for NLIN, 

mixed effects model, and the Bayesian approach, respectively. In the second approach, we 

hold out a randomly selected rat at a time and implemented 1000 cross-validation iterations. 

In the leave-a-rat-out-at-a-time approach, the MAEs are 0.551 (0.0054), 0.478 (0.0055), and 

0.485 (0.0044) for NLIN, mixed effects model, and the Bayesian approach, respectively. 

According to the MAEs reported from both cross-validation approaches, the mixed effects 

model and Bayesian approach have comparable predicative performance, and both methods 

outperform the NLIN approach.

5 Simulation studies

We generated 1000 datasets with an even number of rats, half of which were males and the 

remaining half were females. Nicotine consumption measured at 10 various prices for all 

rats. The true values for C0, CM, α0, αM, logK were set at 1, −0.3, 10, −2, 1.8, respectively. 

Five sets of simulation studies were done by varying the sample sizes from 10 rats to 50 rats, 

at an increment of 10 rats each time. The random effects for each rat were generated from a 

bivariate normal distribution, and specifically the random effects were

ui
bi

N
0
0 , 0.1 0.005

0.005 0.1 .

We analyzed the simulated datasets using three approaches: NLIN, mixed effects model with 

ML, and the Bayesian approach via the MCMC method.

The mean relative biases (MRBs) for the three approaches are shown in Table 4. The MRB 

is calculated as the mean difference between the true parameter and the estimated values 

divided by the value of the true parameter. Based on the simulation results, the NLIN 

approach demonstrates relatively large biases compared to the mixed effects and Bayesian 

hierarchical models. With increasing sample size, the biases for logK are larger using the 

NLIN approach. Consequently, due to the bias in estimating logK, the biases for α0, αM also 
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grow large with increasing sample size. In addition, the biases for estimating the reinforcing 

strength of female rats (α0) are the largest among all parameter estimations. On the other 

hand, the estimations for C0, CM are less affected by the bias in estimating logK in the NLIN 

approach; the MRBs for estimating C0, CM are smaller when the sample size increases. 

Compared to NLIN, both mixed effects and Bayesian hierarchical models demonstrate 

relatively small biases (less than 4%) in parameter estimations, and the results for the two 

approaches are similar.

The empirical 95% coverage probabilities and the length of CIs or equal-tail CIs using the 

three approaches were calculated and are shown in Table 5. The empirical 95% coverage 

probability is the percent of the 95% CI or credible intervals (equal-tail CI) covering the true 

parameter based on 1000 Monte Carlo simulations. In the NLIN approach, logK is 

calculated based on the range of consumption; hence, the standard deviation and CIs cannot 

be obtained (shown as NA). As indicated by the simulation results, the NLIN approach 

demonstrates a relatively low 95% CI coverage rate compared to the other two alternative 

approaches. The 95% coverage rates are the lowest for α0. Furthermore, the lengths of CIs 

obtained by the NLIN approach are longer than the other two alternative approaches. The 

simulation results shown in Table 5 suggest that the Bayesian hierarchical approach provides 

better 95% credible interval coverage rates for the estimation of C0, CM. On the other hand, 

for α0, αM estimation, the mixed effect model reports longer CI lengths and hence achieves 

better empirical 95% CI coverage probability.

To compare the robustness of the three methods when model is mis-specified, we simulated 

data with 100 rats under the model below10

logQi j = logl + blogp j − ap j + εi j

i = 1, 2, … 100 and j = 1, 2, … 10. In the above equation, Qij is the consumption for the ith 

rat at the jth price point. The predictive consumptions were obtained using the three models. 

The MAEs of predictive values are 22.128, 11.410, and 11.425 for NLIN, mixed effects 

model, and the Bayesian approach, respectively. The mixed effects model and Bayesian 

approach are much more robust than the NLIN approach when the model is mis-specified. In 

summary, our simulation analyses suggest that the Bayesian model and the mixed-effect 

model have comparable performance and both achieve better performance than NLIN 

approach.

6 Discussion

In this paper, we compared three existing approaches for analyzing demand curve data. In 

the analysis results from animal NSA data analysis, both mixed effects and Bayesian 

hierarchical approach are comparable. In the mixed effects regression framework, a general 

form of the exponential demand function can be expressed as:

yi j = C0 + ∑
k = 1

p
βkXk + ui + elogK e

−(α0 + ∑k = 1
q γkZk + bi)P j − 1 + εi j

Ho et al. Page 8

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this equation, C0 is the original log consumption with price at zero; Xk and Zk are the 

covariates that contribute to the differences of log consumption and rate of decline, 

respectively; βk and γk are the corresponding coefficients. For the Bayesian approach, a 

general form for estimating the exponential demand curve can be expressed as

ηi j = C0 + ∑
k = 1

p
βkXk + ui + elogK e

−(α0 + ∑k = 1
q γkZk + bi)P j − 1 .

The Bayesian approach provides direct statistical inference for two clinical relevant 

quantities: Pmax and Omax through sampling from posterior distributions. Additional bias-

corrected and accelerated bootstrap analysis is required to obtain 95% confidence for Pmax 

and Omax through a mixed effects regression model. The predictive performance using cross-

validation indicated that both Bayesian and mixed effects methods achieve smaller MAEs 

than the NLIN approach.

The computational time required for implementing NLIN, mixed effects, and Bayesian 

model using the data described in this paper are 0.21 s, 4362 s, and 3877 s in a single-core 

2.8 GHz Intel Xeon X5560 Nehalem EP processor. Although the computational time for the 

mixed effect model and Bayesian approach are longer than the conventional NLIN approach, 

the simulation analyses (Tables 4 and 5) indicate that with small-to-moderate sample sizes, 

the popularly used NLIN approach demonstrates relatively large estimation biases and a low 

95% CI coverage rate. The performances of mixed effects regression and Bayesian 

hierarchical approaches are comparable. The Bayesian approach provides posterior 

distributions for all estimated parameters. In addition, the advantages of using the Bayesian 

approach are more pronounced, when the sample size is small. With current advances in 

computing capacities and modern computational algorithms via MCMC, the Bayesian 

method can be easily implemented, and thus should be considered a good alternative when 

estimating the demand curve in public health research.
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Figure 1. 
Posterior distributions for demand curve parameter estimates.
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Figure 2. 
Posterior distributions of Pmax and Omax for male (gray line) and female (black line) rats.
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Figure 3. 
Demand curve for each male rat with 95% credible interval. Black dots represent observed 

value; solid lines are the predicted values from the Bayesian model with 95% credible 

intervals indicated by dotted line.
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Figure 4. 
Demand curve for each female rat with 95% credible interval. Black dots represent observed 

value; solid lines are the predicted values from the Bayesian model with 95% credible 

intervals indicated by dotted line.
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Figure 5. 
Predicted log nicotine consumed vs. observed values for NLIN, mixed effects model, and 

Bayesian approach.
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Table 2.

Demand curve parameter estimates and their corresponding standard errors and 95% CI/equal-tail CI for rats 

during progressive unit dose reduction in the nicotine self-administration case study.

Method

Non-linear least square regression Mixed effects regression Bayesian hierarchical approach

Parameter Estimate (95% CI) SE Estimate (95% CI) SE DF Estimate (95% equal-tail CI) SE

C0 2.69 (1.81, 3.56) 0.36 0.91 (0.66, 1.16) 0.12 12 0.92 (0.69, 1.16) 0.12

CM 0.67 (−0.25, 1.59) 0.41 −0.25 (−0.60, 0.10) 0.16 12 −0.28 (−0.59, 0.04) 0.16

α0 4.40 (2.63, 6.17) 0.72 10.54 (6.58, 14.50) 1.83 12 10.70 (7.19, 13.92) 1.71

αM −0.03 (−2.00, 1.94) 0.89 − 1.93 (−7.33, 3.48) 2.48 12 −2.46 (−6.47, 1.83) 2.11

logK 2.50 NA 1.77 (1.73, 1.82) 0.02 12 1.77 (1.73, 1.82) 0.02

Note: The estimates and SEs are multiplied by 104 in all methods.
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Table 3.

Pmax and Omax estimates and their corresponding standard deviations for the case study.

Method

Parameter
Non-linear least square regression 
Estimate (95% CI)

Mixed effects regression Estimate 
(95% CI)

Bayesian hierarchical approach 
Estimate (95% equal-tail CI)

Pmax for Male rats 293.23 (151.08,435.38) 243.13 (220.00, 364.45) 255.18 (241.72, 422.31)

Pmax for Female rats 240.34 (116.28, 364.40) 198.70 (152.09, 292.60) 209.07 (148.02, 311.23)

Omax for Male rats 172.94 (126.36, 219.52) 153.73 (125.72, 267.47) 159.64 (116.74, 236.37)

Omax for Female rats 183.11 (l24.50, 241.73) 161.66 (117.80, 216.70) 167.29 (129.08, 225.16)
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Table 4.

Mean relative errors for demand curve parameters based on 1000 datasets.

Number of rats in each simulation Parameter Non-linear least square Mixed Effects Bayesian approach

N=10 α0 −0.27 0.0061 0.0106

αM 0.06 0.0086 0.0140

logK 0.12 0.0003 −0.0002

C0 0.18 0.0006 0.0057

CM 0.59 −0.0126 0.0000

N=20 α0 −0.35 −0.0017 0.0009

αM −0.05 −0.0240 −0.0195

logK 0.14 0.0003 0.0000

C0 0.11 −0.0034 −0.0021

CM 0.57 −0.0280 −0.0303

N=30 α0 −0.40 0.0017 0.0029

αM −0.10 0.0109 0.0125

logK 0.15 −0.0001 −0.0003

C0 0.06 0.0087 0.0046

CM 0.63 0.0385 0.0215

N=40 α0 −0.43 0.0020 0.0030

αM −0.16 −0.0006 0.0005

logK 0.16 0.0002 0.0000

C0 0.03 0.0039 0.0055

CM 0.55 −0.0053 −0.0041

N=50 α0 −0.46 0.0005 0.0016

αM −0.21 0.0010 0.0015

logK 0.17 0.0003 0.0002

C0 −0.01 0.0035 0.0044
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Table 5.

Empirical coverage probability of 95% confidence/credible interval and interval lengths based on 1000 

datasets.

Number 
of rats in 
each 
simulation Parameter

nonlinear least square Mixed effects Bayesian approach

Coverage probability CI length Coverage probability CI length Coverage probability Equal-tail CI length

N=10 α0 0.18 3.05 0.97 2.95 0.94 2.55

αM 0.89 3.75 0.97 3.78 0.95 3.27

C0 0.74 0.76 0.88 0.57 0.93 0.66

CM 0.86 1.07 0.88 0.78 0.94 0.92

logK NA NA 0.98 0.07 0.95 0.06

N=20 α0 0.01 2.29 0.96 1.90 0.95 1.77

αM 0.89 2.71 0.96 2.43 0.95 2.26

C0 0.75 0.59 0.88 0.41 0.96 0.45

CM 0.85 0.83 0.89 0.57 0.95 0.63

logK NA NA 0.96 0.05 0.95 0.04

N=30 α0 0.00 1.93 0.96 1.51 0.95 1.44

αM 0.84 2.20 0.96 1.93 0.95 1.83

C0 0.77 0.51 0.87 0.34 0.94 0.37

CM 0.81 0.73 0.88 0.47 0.94 0.52

logK NA NA 0.95 0.04 0.94 0.04

N=40 α0 0.00 1.66 0.94 1.29 0.94 1.24

αM 0.78 1.88 0.96 1.65 0.95 1.58

C0 0.77 0.45 0.88 0.30 0.94 0.32

CM 0.82 0.64 0.89 0.41 0.94 0.45

logK NA NA 0.95 0.03 0.95 0.03

N=50 α0 0.00 1.47 0.95 1.14 0.94 1.10

αM 0.72 1.64 0.96 1.45 0.95 1.41

C0 0.73 0.41 0.87 0.27 0.95 0.29

CM 0.82 0.58 0.90 0.38 0.95 0.40

logK NA NA 0.95 0.03 0.96 0.03
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