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ABSTRACT

Objectives: Electronic trigger detection tools hold promise to reduce Adverse drug event (ADEs) through effi-

ciencies of scale and real-time reporting. We hypothesized that such a tool could automatically detect medica-

tion dosing errors as well as manage and evaluate dosing rule modifications.

Materials and Methods: We created an order and alert analysis system that identified antibiotic medication

orders and evaluated user response to dosing alerts. Orders associated with overridden alerts were examined

for evidence of administration and the delivered dose was compared to pharmacy-derived dosing rules to con-

firm true overdoses. True overdose cases were reviewed for association with known ADEs.

Results: Of 55 546 orders reviewed, 539 were true overdose orders, which lead to 1965 known overdose admin-

istrations. Documentation of loose stools and diarrhea was significantly increased following drug administra-

tion in the overdose group. Dosing rule thresholds were altered to reflect clinically accurate dosing. These rule

changes decreased overall alert burden and improved the salience of alerts.

Discussion: Electronic algorithm-based detection systems can identify antibiotic overdoses that are clinically

relevant and are associated with known ADEs. The system also serves as a platform for evaluating the effects of

modifying electronic dosing rules. These modifications lead to decreased alert burden and improvements in

response to decision support alerts.

Conclusion: The success of this test case suggests that gains are possible in reducing medication errors and

improving patient safety with automated algorithm-based detection systems. Follow-up studies will determine

if the positive effects of the system persist and if these changes lead to improved safety outcomes.
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BACKGROUND AND SIGNIFICANCE

Adverse drug events (ADEs) are a common occurrence, prevalent in

both adult and pediatric populations. As the model of health care

has moved towards prevention, national efforts have been put forth

to curtail this estimated problem, which is estimated to cost a 700

bed hospital $5.6 million dollars per year.1 Government efforts

range from the Food & Drug Administration’s MedWatch program

to report severe adverse drug events to the Agency of Healthcare

Research and Quality’s Centers for Education and Research on

Therapeutics (CERTs) program, which empowers academic centers

across the country to improve the quality of healthcare by reducing

adverse drug events.2–5 Despite large-scale interventions, ADEs con-

tinue to burden the healthcare system by increasing length of stay by

an average of 1.7 days and by increasing the risk of mortality in

patients who experience ADE by 1.9 times over patients who do

not.6 The pediatric population is particularly at risk for adverse

drug reactions, especially those with more complicated medical

problems requiring a greater number of medications.7 In this cohort,

opiates and antibiotics account for more adverse drug events than

any other drug classes.8

To identify, quantify, and mitigate adverse events, systems must

be put in place to detect ADEs. The detection of ADEs can be

accomplished via several methodologies such as voluntary reporting

systems, manual chart review, and the use of manual trigger pro-

grams. Many healthcare organizations employ a combination of

these. Each approach has advantages and disadvantages but most

are resource-intensive, requiring extensive human review of the

patient record. Additionally, the utility of these methods is fre-

quently limited by retrospective review of sampled data.

Broad adoption of electronic health records (EHRs) and Compu-

terized Provider Order Entry (CPOE) has increased the availability

of prescribing and other clinical data. More readily available data

means ADE detection can be automated through electronic trigger

tools which provide efficiencies of scale by surveying the entire

health system and real-time reporting. Successful use of electronic

trigger tools to facilitate detection of ADEs has been previously

demonstrated.9

Errors in medication dosing are the most common type of medi-

cal error in pediatrics. This is due to several factors including

weight-based dosing, the use of different formulations in different

age and developmental groups, etc. The increased complexity of

dosing in children introduces increased risk in an already vulnerable

population. Clinical Decision Support (CDS) has been shown to

decrease medical errors. The most common type of CDS tool used to

prevent prescribing errors is alerting. In the pediatric population,

alerts are most commonly seen in patients <1 month of age, and less

likely to be seen in patients aged 15–18 years of age.10 Alerts are

directed to all stages of the medication process, including prescrib-

ing, ordering, dispensing, and administration.

Reviews of a single year of pediatric antimicrobial stewardship

intervention at the Alfred I. DuPont Hospital for Children found a

rate of 7 antimicrobial interventions per 1000 patient-days among

13 targeted antimicrobials. Of these, 61% of interventions were

made to correct inappropriate antimicrobial dosing.11 This is not

unexpected, as antibiotic dosing can be complex, due to multiple

components in formulations (e.g., amoxicillin-clavulanate), dosing

guidelines based on daily doses that the provider has to convert into

per dose instructions (amoxicillin, 80–90 mg/kg/day, divided into 2

doses), and different dosing based upon clinical indication. Due to

the dose-dependent nature of many antibiotic adverse events (such

as diarrhea or loose stools), one could expect to see harm associated

with overdoses of these medications.

The use of CDS alerts to detect prescribed overdoses has been

previously demonstrated.12 The hypothesis of this study was that an

enhanced CDS-based identification methodology could be devel-

oped to automatically detect overdoses and reduce the noise associ-

ated with medication alerts.

The objectives of this study were to (1) develop EHR-based algo-

rithm that automate the detection of overdoses that reached

patients, (2) demonstrate viability of the system with a use case, (3)

identify safety outcomes associated with identified overdoses, and

(4) enact operational changes that would increase the performance

of the CDS related to antibiotics.

MATERIALS AND METHODS

Setting
Cincinnati Children’s Hospital Medical Center (CCHMC) is a 587-

bed, free-standing children’s hospital with 15 000 employees and

over 800 faculty members. It has over 30 000 admissions, 33 000

surgeries, 900 000 ambulatory encounters, and 125 000 emergency

department (ED) visits annually. All ambulatory clinics operate as

part of the hospital. The institution brought the first ambulatory

clinics live on an integrated EHR (EpicCare VR , Verona, WI, USA) in

late 2007. It brought the remainder of the system live in stages,

including inpatient and perioperative areas in January 2010, and the

final of 38 ambulatory departments in January 2012. The project

team for this study consisted of clinical informaticists, the Director

of Research Informatics Technology Services, pharmacists, clinicians

from the Division of Hospital Medicine, and a project manager.

Dosing decision support configuration
The EHR is configured to use a combination of the Medi-Span

(Wolters Kluwer Health, Philadelphia, PA, USA) drug dosing deci-

sion support rules and supplemented with pediatric-specific, custom

dosing rules created and maintained by the CCHMC Pharmacy. The

rules contain a 10% dosing variance allowance to account for

rounding and do not fire within this variance. Additional details on

the decision support rules can be found in a previous publication.12

Methodological approach
To achieve the objectives of the project, the subsequent steps were

followed. First, using the EHR, we identified candidate overdose

orders by analyzing inpatient-only medication alert data in a pre–

post study design from 2011 to 2014. ED, ambulatory and peri-

operative orders were excluded from this study. We evaluated user

response to dosing alerts to find overdose orders that were not inter-

cepted (or modified) by the CPOE system’s CDS tools. Orders with

an overdose alert that was overridden were examined for evidence

of user modification that occurred after the alert was ignored. Medi-

cation Administration Record (MAR) data was evaluated to identify

possible overdoses that reached the patient and had the potential to
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cause harm. Next, we validated the delivered dose was a true clinical

overdose using pharmacy-derived rules independent of the electronic

dosing rules. We then screened patients who received overdoses for

associated adverse events (diarrhea and loose stool). C. Difficile

toxin testing was examined due to common consideration in the set-

ting of antibiotic administration and diarrhea. Finally, we modified

the dosing rules to improve traditionally high-noise medication

alerts through improved clinical accuracy. We then measured the

resulting effects on alert burden and salience rates of the altered

rules. The steps are described in detail below.

Development of EHR-based algorithms to detect over-

dose orders
EHR-based algorithms were created to detect true medication over-

doses. These algorithms expanded upon our previous work and used

an analytic database of medication orders and alerts.12 MAR data

were added so that orders and alerts that actually impacted patient

care and affected clinical outcomes could be analyzed. Algorithmic

queries were performed in SQL Developer (Oracle Corporation,

Redwood Shores, CA, USA) to determine which candidate orders

may represent overdoses. Some data points were extracted by simple

text parsing routines from the stored text descriptions of the alerts

as discrete, structured data equivalents were not available. Given

that the presence of an overdose alert was used to identify a poten-

tial overdose and prior research has shown that vendor dosing rules

can be highly inaccurate, a clinical overdose screening algorithm

(Table 1) was implemented to validate clinical overdoses. The clini-

cal overdose screening algorithm incorporated formulation-specific

dosing for amoxicillin-clavulanate, as well as defining clinically-

relevant weight-based and total-daily dosing.13

Justification for oral antibiotics as use case
A use case was selected to demonstrate the overdose algorithms’ per-

formance capabilities. The project team selected the following can-

didate medication criteria: (1) medication overdose must be

associated with a detectable adverse event; (2) must be fairly com-

mon medication; and (3) and has dosing complexity that lends itself

to errors. Our project team selected the common oral antibiotics

amoxicillin, amoxicillin-clavulanate, and clindamycin because over-

doses of these medications are associated with known adverse events

that are easily detectable (diarrhea and loose stools),14 are one of

the most commonly prescribed antibiotics in pediatrics, and are

often advised to be dosed on a mg/kg/day regimen (e.g., amoxicillin;

80–90 mg/kg/day, divided every 12 h for acute otitis media).13 In

addition, formulation-dose mismatches of amoxicillin-clavulanate

were relatively common from anecdotal experience, whereby the

incorrect ratio of amoxicillin-clavulanate components is selected by

the prescriber leading to an appropriate dose of amoxicillin, but an

excessive dose of clavulanate. The potential exposure to excessive

clavulanic acid due to inappropriate prescribing was predicted to be

associated with increased incidence of adverse effects. Medication

order and alert data from 2011 to 2014 were used in this study.

Identifying adverse events from the algorithm output
To identify association between adverse events and overdosed medi-

cations we first used the automated algorithm to identify patients

who received overdoses. We then compared the output to lab data

queries to identify patients who were tested for C. difficile infection,

postulating that a clinician ordering this test was encountering diar-

rhea in the context of antibiotic administration. Finally, a manual

chart review of overdosed patients and controls was performed to

gather additional information. Timing of the detected overdose was

confirmed through examination of the MAR. Clinical notes and

nursing flowsheets were then reviewed to look for newly docu-

mented diarrhea or loose stool following the administered overdose.

All C. difficile orders during the study period were included for

patient matching. Presence of a toxin assay order and the result (pos-

itive or negative) were aligned with included patients. Order data

were included if patients had a toxin assay order within 4 weeks

after an overdose administration. Repeat orders within 3 months

were counted as the original assay. If the C. difficile result was

before the antibiotic order, it was not included in the analysis.

Optimization and changes to the medication alert rules
Electronic medication dosing rules (dosing eRules) are typically

more conservative than true clinical practice. Based upon clinical

assessment of prior alerting data, alerts for the study medications

were reviewed for alignment with actually clinical practice and

adjusted by the project team pharmacist to decrease in appropriate

alerting while still encouraging safe prescribing.

These changes included (1) the adjustment of the amoxicillin sin-

gle dose maximum from 875 to 2000 mg; (2) the addition of an

amoxicillin daily dose limit of 4000 mg; (3) the adjustment of the

amoxicillin-clavulanate dosing rules to account for the clavulanate

portion of the drug, which limits both the frequency of administra-

tion as well as the amount of amoxicillin that can be prescribed; and

Table 1. Clinical dosing rules for amoxicillin, amoxicillin-clavulanate, clindamycin

Antibiotic dose limits

Agent and formulation Dosage form Weight- based maximum

daily dose (mg/kg)

Absolute maximum

daily dose (mg)

Amoxicillin Capsules, suspension, or tablets 90 4000

Amoxicillin/Clavulanate 125/31.25/5 mL Suspension 40 1500

Amoxicillin/Clavulanate 200/28.5/5 mL Suspension 45 1750

Amoxicillin/Clavulanate 250/62.5/5 mL Suspension 40 1500

Amoxicillin/Clavulanate 400/57/5 mL Suspension 45 1750

Amoxicillin/Clavulanate 600/42.9/5 mL Suspension 90 3600

Amoxicillin/Clavulanate 500/125 Tablets 40 1500

Amoxicillin/Clavulanate 875/125 Tablets 45 1750

Amoxicillin/Clavulanate 1000/62.5 Tablets 90 4000

Clindamycin Capsules or suspension 30 1800

Clindamycin Injection 40 3600
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(4) the adjustment of the clindamycin single dose maximum from

450 to 900 mg.

Objectives and outcome measures
The primary objective of our study was to develop EHR-based algo-

rithms that automate the detection of overdoses that reached

patients. Secondary objectives included utilizing a use-case to dem-

onstrate viability of the system, safety outcomes related to overdo-

ses, and implementation of operational changes to increase the

performance of the CDS related to antibiotics. Measures to achieve

our objectives, specifically, safety outcomes were loose stool

recorded in the medical chart following administration of an over-

dose and C. diff toxin assay orders and results. Our hypothesis for

this objective was that the selected overdose cases had a higher rate

of adverse events than a randomly selected sample of control

patients receiving the same medications.

Data types and analytic measures
The data types collected in this study included the number of orders

placed, single dose overdose (SDOD) orders placed, and the dosing

alerts including user response (override, cancel, modify) generated

by the EHR. We also collected the number of SDOD orders remain-

ing after alerting, SDOD orders not modified, SDOD orders docu-

mented as being given to patients (MAR). From the EHR, we

extracted the total true overdose orders after clinical validation and

the total true overdoses given to patients. We calculated aggregate

demographic values of patients receiving overdoses including age,

sex, length of stay; distribution of sex and age of patients who

received overdoses; and distribution of overdoses by magnitude

patients received.

Medication order data was obtained from CCHMC’s clinical

relational database for analysis. Additional data obtained through

chart review included provider notes, intake and output flow sheets,

nursing notes, and ED encounter notes. All clinical notes for patients

detected to have an antibiotic overdose or were selected as the con-

trols were evaluated for evidence of diarrhea or loose stool within

72 h of a documented overdosed (antibiotic) administration. Rele-

vant observations included: stool consistency, color, and frequency.

Patients with stool consistency mentioned in their record were

included. Repeat visits were counted as new encounters. A random

sample of patients each year with a medication administration but

without a clinical overdose was included as controls.

The effects of the eRule changes were analyzed in the pre- and

post-modification study periods. Measures of both the absolute

counts and rates of the alerts pertaining to the three study antibiot-

ics, as well as salience rates are reported. Salience rate, described in

earlier work, is the degree to which a user reacted (in a corrective

manner) to an overdose alert and is defined by the following12:

Salience rate¼ Count of alerts heeded

Count of alerts heeded þ Count of alerts overridden

Statistical analysis
Each variable of interest was reported using median (interquartile

range) or n (%) as appropriate. Patients who received overdoses

were compared to controls with respect to continuous outcomes

using the Wilcoxon Mann-Whitney test; Fisher’s exact test or Chi-

square test, as appropriate, were used to examine differences with

respect to categorical outcomes. Frequencies combined across year

were compared between groups (SDOD and non-SDOD) using the

chi-square test for independence. Given the relatively low frequency

of events within group and year, the Cochran-Mantel-Haenszel test

was used to compare annual safety outcome rates between groups.

Groups were compared for each year using Fisher’s exact test, and

Bonferroni-Holm adjustment was performed to account for multiple

comparisons.15 Results with P-values less than the significance level

(i.e., P< .05) were considered statistically significant. Analyses were

implemented using R software for statistical computing.16

RESULTS

Order, overdose alert, and MAR data from the study period (2011–

2014) for the selected study antibiotics were processed as per the

study methodology. The pathways of the order and alerts, as well as

the order end states, were mapped into a flow diagram (Figure 1).

During the analysis, the determination of the definitive end state of

a small proportion of the orders was beyond the scope of the study

due to effort required to accomplish it. Such situations involved

tracking down MAR status related to “Patient/Family Adminis-

tration,” “Given by Other Clinician,” for example. For a variety of

reasons, a small number of orders were unavailable for analysis and

we chose to leave those orders as undetermined but quantified (see

nodes in the Figure 1 labeled as “undetermined,” “possibly deliv-

ered,” and “no weight” nodes). Of the 55 770 orders, 18 162 (33%)

were for amoxicillin, 6371 (11%) were for amoxicillin-clavulanate,

and 31 237 (56%) were for clindamycin. About 1% of the total

orders placed were actual overdoses that reached the patient. Five

hundred and thirty-nine orders were true overdose orders. Of these

539 orders, 276 have 1 documented MAR delivery. The max

number of MAR deliveries documented from one order was 44.

In all, the 539 orders lead to a total of 1965 known overdose

administrations.

The demographics of the patients who received overdoses and

the controls are shown in Table 2. Patients who received overdoses

had longer lengths of stay.

The age and sex distribution of the patients who received at least

one antibiotic overdose are shown in Figure 2, categorized by both

number of orders and number of total doses received. Patients 18

years of age and older were grouped together to ease the analysis.

Figure 3 demonstrates the number of delivered antibiotic overdo-

ses by the order of overdose magnitude. The count of overdoses in

the <10% overdose bin is minimal because our dose-range checking

alert threshold is configured to allow up to a 10% rounding allow-

ance under normal circumstances. Users can conjure dose-range

checking however, which accounts for the data in that bin. The

majority of overdoses were in the 20–39% range. A small but con-

cerning number of overdoses (�50 overdoses) were more than 3

times the single-dose alert upper threshold.

The safety outcomes for the study are shown in Table 3. The

overdose cohort had a greater percentage of loose stool recorded in

chart than controls (P< .0001). Post-hoc analysis of individual years

showed that the overdose cohort had significantly higher percen-

tages of loose stool records, compared to controls. Although annual

trends differed between the 2 cohorts with respect to orders for C.

difficile tests (P¼ .04), post-hoc comparisons by year were not stat-

istically significant after adjustment for multiple testing. Orders for

C. difficile tests were significantly different overall between over-

dose cohort and controls. The numbers of patients with loose stool

recorded in the chart and C. difficile toxin assay orders did not sig-

nificantly differ across years for either group (P¼ .4 and .6, respec-

tively). Figure 4 shows the effects of the dosing alert rule
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modifications. There are clear trends of an increase in alert salience

as the total number of alerts presented to users decreased after modi-

fications of the parameters in the eRules themselves.

DISCUSSION

In this project we were able to detect, through an automated elec-

tronic algorithm, clinically relevant overdoses of several antibiotics.

This was accomplished using combinations of retrospective

ordering, alerting, and MAR data elements. We have augmented

our previous overdose detection work by three main modifications:

(1) the addition of MAR data to determine which medication over-

dose orders actually reached patients; (2) overlaying clinical over-

dose algorithms on top of the orders our CPOE/CDS system thought

were overdoses based on electronic dosing rules; and (3) the addition

of a highly-targeted manual chart review to detect association with

known ADEs. This approach allowed us to simultaneously examine

the performance of the antibiotic dosing rules employed by our

CPOE/CDS system and to link detected overdoses to patient safety

Figure 1. Antibiotic Order Lifecycle Flowchart. Antibiotic medication orders and associated dosing alerts as they progressed from the order to administration

phases. A prescriber must initially select formulation and then dose either via manual entry or pre-set radio button. Order modification can be performed by

either the provider or pharmacy depending on system response. MAR status reflects whether or not an order had an associated administration documented in

the EHR. The overdose validation stage represents the application of our clinical overdose algorithms.

Table 2. Patient demographics and characteristics

Characteristic Patients who received true overdoses CCHMC patient population(during trial time period)

Average (%) Median 95% CI Average (%) Median 95% CI

Average LOS (days)* 9.0 2.6 (7.0-11.0) 5.0 1.8 (4.9-5.0%)

% LOS> 30* (5.73-5.77%) 2.3 (2.3-2.3%)

Average LOS when LOS> 30 days 90.8 70.7 (74.5-107.1) 77.1 54.2 (74.8-79.4%)

Patient age (years) 7.7 6.5 (7.1-8.2) 8.76 7.8 (8.7-8.8%)

Gender (% male) 56.6 (56.5-56.6%) 52.9 (52.9-52.9%)

Race:

American Indian/AlaskaNative 0 (0-0%) 0.1 (0.1-0.1%)

Native Hawaiian/PacificIslander 0 (0-0%) 0.1 (0.1-0.1%)

Asian 0.6 (0.6-0.6%) 1.1 (1.1-1.1%)

Other/Refused/Unknown 6.7 (6.7-6.7%) 6.6 (6.5-6.6%)

Black/African American 18.7 (18.7-18.8%) 18.4 (18.4-18.4%)

Multiple 2.2 (2.2-2.2%) 2.7 (2.7-2.7%)

White or Caucasian 71.8 (71.8-71.8%) 71.1 (71.1-71.1%)

Ethnicity:

Hispanic 4.3 (4.3-4.3%) 4.0 (4.0-4.0%)

Non-Hispanic 94.8 (94.8-94.8%) 95.0 (95.0-95.0%)

Unknown/Refused 0.93 (0.93-0.93%) 1.01 (1.01-1.01%)

Asterisks denotes statistically significant values.
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outcomes, thereby achieving the project’s 4 objectives. Our analytic

database now allows us to follow medication orders through the

entirety of the patient-medication lifecycle, beginning with ordering

of a medication and ending with the administration and monitoring

phases, and determining the outcomes of each order including

whether or not CDS was effective in changing inappropriate pre-

scribing behaviors. This modified overdose detection tool can be

used for safety research, quality improvement, as well as advanced

and agile review of EHR records to determine the clinical circum-

stances around the lifecycle of medication orders.

The specific use case of detecting antibiotic overdoses demon-

strated several interesting clinical and informatics findings. First,

only about 1% of all orders for our three candidate antibiotics were

true overdoses (539 of the original 55 770 orders). Seventy-seven

percent of the overdose-related alerts were overridden, a rate similar

to other studies examining alert override rates among physicians.17–

19 This may be due to the oft-reported phenomenon of alert fatigue,

whereby high false positive rate of alerts leads to inappropriate alert-

ing and decreased mindfulness of physicians using the system.18

After the initial alerts presented to the prescribers were overridden,

it was uncommon for overdose orders to be altered by any other

safety net process. In fact, the most effective mitigation factor for

these orders was if a medication dose was never delivered to the

patient, which occurred about 1/3 of the time. Only 38% of orders

that were alerted as overdoses and delivered to the patient were

determined to be true overdoses when a pharmacist-created over-

dose algorithm was applied. This indicates a substantial gap

between the CPOE dosing rule parameters and clinically acceptable

dosing practice. Prior work by this group has shown that this gap

often exists �50% of the time. The prevalence of dosing rule/prac-

tice gap may contribute even further to alert fatigue, especially in

pediatrics where these gaps are often wider and more common.20

Furthermore, this gap, and its likely contribution to alert fatigue,

reinforces the need to present only clinically relevant overdoses from

alerting systems to end-users and event detection systems.

Our algorithm was successful in detecting an increased associa-

tion between overdoses and loose stools in the overdose cohort

when compared to controls. Our observations in the SDOD group

are classified as possible ADEs (score¼3) according to Naranjo

et al.21 Attribution of causality was limited by the retrospective

Figure 2. Age and sex distribution of patients who received oral antibiotic

medication orders and overdoses.

Figure 3. Number of doses delivered by overdose magnitude. Number of overdoses delivered by order of magnitude. Our system allows for 10% rounding errors

(does not alert for these very minor overdoses). Since the starting point for identifying potential overdoses begins with alerts, this group has very few instances

as depicted in the bar chart.
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nature of our chart review methods. This system could be employed

through addition of a causality algorithm to real-time or near real-

time chart reviews to detect clinically relevant overdoses. Reduced

time to detection of drug overdoses means actions such as real-time

monitoring for relevant adverse events and even preventative or

therapeutic actions could be initiated. Capitalization on the tempo-

ral advantages of an operational overdose detection system could

dramatically improve the safety of patient care considering the prev-

alence of medication errors. From an organizational standpoint,

accelerated detection and action would not only lead to safer patient

care, but could also help lead to decision support and quality

improvement efforts to mitigate risks associated with ADEs much

more quickly than traditional methods of reporting and manual

chart review. As noted above, we altered the dosing rules for the

medications involved in this study to further optimize our decision

support. Considering the potential improvements in medication

safety, patient care, and risk mitigation, this work has the potential

to reduce the burdens associated with adverse drug reactions. The

success of this use case is encouraging for the future development of

more accurate means to detect clinically meaningful medication

errors, identify harm where warranted, and improve alerting and

CDS to prevent these errors from reaching the patient.

Identification and correction of the electronic medication dosing

rules (eRules) is necessary to optimize the currently employed rules-

based CDS systems. We were able to demonstrate that, at least in

the short term, we were able to decrease the alert burden for pre-

scribers while simultaneously increasing the clinical specificity and

salience of the eRules. It is yet to be determined if this increase in

CDS performance for this small corpus of rules will translate to

improved clinical outcomes. At a minimum, we have achieved

greater efficiency in the antibiotic ordering process by eliminating

noisy and useless alerts from the system and saving users time that

can otherwise be spent delivering care to patients. The effect of this

multiplies when considering that the decrease of alerts occurs at sev-

eral levels (prescribers, pharmacists, nursing). Future work in this

area should incorporate more reliable and real-time ADE detection

into alert monitoring to ensure that modifications of dosing rules do

not lead to detrimental changes in prescribing practices or ADEs.

It should also be noted that the ultimate success of this project

relied on an engaged team of clinicians, pharmacists and informati-

cians to draw actionable conclusions from alerting data, perform

chart reviews, and judiciously alter existing drug alerting rules. While

parts of this process (notably the processing of alerting data) can be

automated, applying the lessons learned here to other medications

will require careful resource and effort allocation. For this reason, the

process of identifying candidate medications should include frequency

of ordering and ADEs for the medication, current alert salience and

frequency, and possible methods of ADE detection.

Limitations
This study has several limitations, most notably its dependence on clin-

ical documentation for identification of clinically significant overdose

events. If a provider failed to document details of a patient’s diarrhea

in appropriate and timely manner our review is likely to have missed a

clinically significant overdose event. However, this reliance on docu-

mentation is true for both our overdose and control cohorts and would

not explain the statistical significance between the 2 groups. It should

be noted that the limitations of clinical documentation as a vehicle for

identifying overdoses associated with diarrhea is also affected by length

of stay in this inpatient study. Children ordered clinically significant

overdoses who were transitioned to oral antibiotics just prior to dis-

charge would be difficult to identify using this methodology. Our

review also utilized alerts to detect overdose events. Our dependence

on alerts to detect these events could lead to incomplete event capture

in the case of faulty alert rules or alerting systems. Since this test case

focused on a small number of medications, our group was able to ver-

ify the accuracy and function of dosing rules in place, leading us to

believe all overdose events were captured. Since our work focused on

oral antibiotics, we decided to look for the most common GI-related

side effects. Our narrow focus could have missed other adverse drug

events for these oral antibiotics. Lastly, our group has not yet studied

the clinical outcomes of the modifications to our eRules.

Table 3. Safety outcomes

Outcome Measure 2011 2012 2013 2014 Total

SDOD Cases 110 128 159 142 539

Loose stool recorded in chart (%) 18 (16.3)** 16 (12.5) 20 (12.6)* 25 (17.6) 79 (17.1)††

Clostridium difficile toxin order 7 (6.4) 6 (4.7) 10 (6.3) 4 (2.8) 27 (5.0)†

Clostridium difficile positive toxina 0 (0) 0 (0) 1 (0.6) 0 (0) 1 (0.2)

Non-SDOD Cases 100 100 110 104 414

Loose stool recorded in chart 2 (2.0) 4 (4.0) 4 (3.6) 10 (9.6) 20 (4.8)

Clostridium difficile toxin orders 12 (12.0) 11 (11.0) 8 (7.3) 5 (4.8) 36 (8.7)

Clostridium difficile positive toxina 1 (1.0) 1 (1.0) 1 (0.9) 0 (0) 3 (0.7)

SDOD: Single dose overdose; †P< .01 and †† 0.05>P� 0.01 for overall group differences using Chi-square test; *0.05>P� 0.01 and **P< 0.01 for annual

group comparison using Fisher’s exact test. aStatistical testing not performed due to low number of orders.

Figure 4. Effects of antibiotic rule changes. Time series chart of total alerts

and salience rates for antibiotic rules, pre- and post-modification. After modi-

fication of the corresponding electronic rules, the monthly count of total

alerts decreased while the salience of the alerts increased, indicating the pre-

scribers were heeding the overdose alerts more frequently.
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Future directions
Future directions of this work include alternate methods of overdose

detection which do not suffer from the shortcomings of our alert-based

identification, further refinement in overdose detection, the addition of

an causality algorithm for ADEs associated with overdoses, and better

characterization of the clinical outcomes that result from our rule mod-

ifications. While the success of this test case is encouraging, spread of

this method to other medications will require significant collaborative

work to build a body of clinically significant medication dosing rules.

More tests cases, focusing on medications that offer other dosing chal-

lenges are needed before operationalization can be considered.

CONCLUSION

The success of this test case suggests that gains are possible in reduc-

ing medication errors and improving patient safety with automated

algorithm-based detection systems. Follow-up studies will determine

if the positive effects of the system persist and if these changes lead

to improved safety outcomes.
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