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ABSTRACT

Objective: To develop an open-source information extraction system called Eligibility Criteria Information

Extraction (EliIE) for parsing and formalizing free-text clinical research eligibility criteria (EC) following Observa-

tional Medical Outcomes Partnership Common Data Model (OMOP CDM) version 5.0.

Materials and Methods: EliIE parses EC in 4 steps: (1) clinical entity and attribute recognition, (2) negation detec-

tion, (3) relation extraction, and (4) concept normalization and output structuring. Informaticians and domain ex-

perts were recruited to design an annotation guideline and generate a training corpus of annotated EC for 230

Alzheimer’s clinical trials, which were represented as queries against the OMOP CDM and included 8008 enti-

ties, 3550 attributes, and 3529 relations. A sequence labeling–based method was developed for automatic entity

and attribute recognition. Negation detection was supported by NegEx and a set of predefined rules. Relation

extraction was achieved by a support vector machine classifier. We further performed terminology-based con-

cept normalization and output structuring.

Results: In task-specific evaluations, the best F1 score for entity recognition was 0.79, and for relation extraction

was 0.89. The accuracy of negation detection was 0.94. The overall accuracy for query formalization was 0.71 in

an end-to-end evaluation.

Conclusions: This study presents EliIE, an OMOP CDM–based information extraction system for automatic

structuring and formalization of free-text EC. According to our evaluation, machine learning-based EliIE outper-

forms existing systems and shows promise to improve.

Key words: natural language processing, machine learning, clinical trials, patient selection, common data model, named entity

recognition

INTRODUCTION

Clinical trial eligibility criteria and formalization
As the gold standard for generating medical evidence, randomized

controlled trials are fundamental for advancing medical science and

improving public health. However, recruitment for clinical trials re-

mains a major barrier.1,2 Recruitment follows eligibility criteria (EC),

whose free-text format and lack of standardization have inhibited

their effective use for automatic identification of eligible patients in

the electronic health record (EHR). Formal representation of EC has

been pursued by the biomedical informatics research community for

nearly 3 decades3 to optimize cohort selection and EC knowledge re-

use4 and to support large-scale aggregative analytics5–7 and collabora-

tive clinical research.8,9 Notable systems include Evaluation of

Ontology (EON)10 – ontology for intervention protocols and guide-

lines, agreement on standardized protocol inclusion requirements for
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eligibility,11 eligibility criteria extraction and representation,12 and

an eligibility rule of grammar and ontology.13 Unfortunately, often

these formalizations not only require laborious manual interpreta-

tion of the syntactic rules and semantic concepts in EC, but also

largely lack semantic interoperability with EHR data.

Use of a common data model intended for EHR data to represent EC

shows promise in bridging this interoperability gap. The Observational

Medical Outcomes Partnership (OMOP) Common Data Model (CDM)

(http://www.ohdsi.org/data-standardization/) is ideal for this purpose be-

cause it enables interoperability among disparate observational data-

bases by standardizing data using a common information model and

multiple standard terminologies for pertinent clinical entities, such as

condition, observation, and medication.14 All data analytical tools based

on the OMOP CDM can be easily shared among data owners. For ex-

ample, an open-source tool made available by the Observational Health

Data Sciences and Informatics community15 called ATLAS (http://www.

ohdsi.org/web/atlas) allows researchers to manually define sharable and

structured EC rules as cohort queries against EHR data, formatted us-

ing the OMOP CDM and standard terminologies such as Systematized

Nomenclature of Medicine – Clinical Terms (SNOMED-CT) and Logi-

cal Observation Identifiers Names and Codes (LOINC) to achieve

interoperability between clinical research EC and EHR data. However,

this manual approach is not scalable. An information extraction system

is desired to automate the transformation from EC text to structured

EHR data queries. In this study, we contribute such a system to make

EC computable and interoperable with the rapidly growing

observational databases enabled by the wide adoption of EHRs.16

Natural language processing for biomedical

information extraction
Information extraction (IE) refers to the task of automatically ex-

tracting structured semantics (eg, entities, relations, and events)

from unstructured text.17 Biomedical IE (bioIE) is often performed

on unstructured scientific literature or clinical narratives in EHRs to

prepare structured information input needed by clinical decision

support systems.18–30 BioIE includes 3 major subtasks17: (1) named

entity recognition (NER)25,31; (2) extraction of binary relationships

between named entities, such as problem-treatment relationships25

or protein-protein interactions32; and (3) event identification, which

identifies highly complex relations among extracted entities, such as

gene regulation.33 Methodologies for bioIE fall into 5 categories:

rule-based, knowledge-based, statistics-based, learning-based, and

hybrid.21,34 One of the earliest and most advanced rule-based sys-

tems for clinical text processing is Medical Language Extraction and

Encoding System (MedLEE).18 Learning-based methods have rapidly

advanced in the past 5 years.21 The representative learning-based

methods include conditional random fields (CRFs) and structured

support vector machines (SVMs).35 For example, the best system re-

ported in the Informatics for Integrating Biology and the Bedside

(i2b2) named entity recognition (NER) challenge from de Bruijn

et al.36 used semi-Markov (F1 score 0.85), followed by the system

from Jiang et al.37 using CRF (F1 score 0.84). Relation extraction

has evolved from simple co-occurrence statistics to syntactic analysis

and dependency parsing.17,38 The best-performing system for the

i2b2 relation extraction challenge achieved an F1 score of 0.74.

Meanwhile, deep neural networks have also been increasingly ap-

plied to both general IE and bioIE, represented by the emerging

open IE (openIE) system39 and deep learning for NER40–42 and rela-

tion extraction.43–45 Some recent works on word embedding show

learning of word vectors via neural networks. One of the most popular

embedding techniques is called word2vec.46 Instead of using each word

as a feature, words are represented as vectors that encode rich contex-

tual information. Word embeddings and deep learning techniques have

shown great promise for the NER task for clinical text.47,48

Unfortunately, the above systems were designed for clinical notes in

EHRs or text in the literature. Their adaptability to free-text clinical re-

search EC remains untested. To date, the most specialized natural lan-

guage processing (NLP) parser for automatically structuring EC free text

is EliXR, developed by Weng et al.12 in 2011. Through a rule-based ap-

proach, EliXR recognizes Unified Medical Language System (UMLS)

concepts based on dictionary matching and encodes clinical entities and

relations using OMOP CDM v.4.49 Like most other rule-based bioIE

systems, EliXR exhibits high precision but poor recall due to the existence

of morphological variants50 or poor coverage of concepts or rules.51

Contributions
This study makes 2 primary contributions. First, we designed a novel

annotation guideline for clinical research EC following OMOP CDM

v.5 and constructed a new annotated corpus using this guideline for

training or validating various clinical research EC parsers. Second, we

developed and validated a machine learning–based IE system to auto-

matically formalize clinical research EC. We named this system Eligi-

bility Criteria IE (EliIE). EliIE takes 4 steps to structure EC free text:

(1) named entity recognition and attribute recognition, (2) negation de-

tection, (3) relation extraction, and (4) standardization by concept nor-

malization and output structuring. We validated EliIE’s accuracy for

formalizing EC using the OMOP CDM, which can be used to perform

patient screening in the EHR or enable development of a large knowl-

edge base of structured clinical research EC for knowledge reuse or ag-

gregate analyses. (In this study, we selected Alzheimer’s disease for

methodology illustration. EliIE is able to parse all free-text eligibility crite-

ria text, though the performance of trials in other domains may be weak-

ened. In the future, we plan to extend the use case to more domains.) To

the best of our knowledge, EliIE is the first open-source machine

learning–based IE system specifically designed for clinical research EC.

METHODS

Dataset and annotations
We randomly selected 230 Alzheimer’s disease (AD) trials from Clinical-

Trials.gov.52 AD trials were chosen for methodology illustration, given

that AD is one of the most well-studied diseases in the United States.53

Next, we extracted the EC text from the “eligibility criteria” section of

each trial for annotation. The EC text varies in size from around 100

words to over 1000 words. Example free-text EC is provided below:

– No evidence of major depression.

– Normal B12, rapid plasma reagin and Thyroid Function Tests or

without any clinically significant abnormalities that would be ex-

pected to interfere with the study.

One clinician (AR) and 2 informatics students (TK, GH) de-

signed the annotation guideline for entity and attribution annotation

using an iterative process. First, they studied OMOP CDM v.5.0

(https://github.com/OHDSI/CommonDataModel/blob/master/OMOP

%20CDM%20v5.pdf) and focused on 4 classes of entities: condition,

observation, drug/substance, and procedure or device. The context

for each entity consists of 4 types of attributes: modifiers/qualifiers,

temporal constraints, measurements, and anatomic location.

(Anatomic location is not commonly defined in eligibility criteria for

AD, and thus is not evaluated in this paper. However, this attribute
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is included, as it is an important component of eligibility criteria for

trials on other diseases [eg, myocardial infarction].) The team first

independently annotated 5 trials based on each person’s interpreta-

tion of the CDM definition. Next, the team compared the annota-

tion results and discussed the discrepancies until a consensus was

reached, resulting in revised annotation guidelines. Using the

updated guidelines, the team independently annotated 5 new trials

and repeated the process until there was no discrepancy among an-

notators. In this manner, the guidelines were refined using at least 5

iterations of annotation, discussion, and amendment until eventually

the team reached a stable state of consensus, finalizing the annota-

tion guidelines. One of the challenges in the annotation guideline de-

sign was reaching consensus regarding what constitutes a “qualifier/

modifier”; eg, in the phrase “unstable major depression,” is there

only 1 modifier, “unstable,” or 2, “unstable” and “major”? We fol-

lowed the “longest concept” rule, which is to choose the UMLS con-

cept with the longest length.54 For this example, the longest concept

found in UMLS is “major depression (CUI: C1269683),” therefore the

entity would be “major depression,” and “unstable” is its modifier.

Our guidelines also defined relations between the entities and the

corresponding attributes “modified by,” “has value,” and “has

TempMea” (see relation annotation guideline in supplementary mate-

rials online for details, https://github.com/Tian312/EliIE/tree/master/

Supp%20Materials). All relations are directional, pointing from the en-

tity to its attribute. Entity annotation was completed by 1 clinician

(YT) and 1 informatics student (TK). Relation annotation was com-

pleted by 1 informatics student (TK) and verified by the clinician (YT).

All annotation was completed in Brat, a web-based annotation tool.55

Example annotations in Brat are shown in Figure 1. The annotated cor-

pus includes 8008 entities, 3550 attributes, and 3529 relations.

System modules of EliIE
The workflow of EliIE is presented in Figure 2. It includes preprocess-

ing and 4-phase parsing. These steps are described in detail below.

Preprocessing

The EC text was preprocessed by normalizing the punctuation and

removing criteria not available in the EHR, such as criteria for in-

formed consent or patients’ willingness to participate. To exclude

these criteria, we defined a list of keywords, eg, “informed consent”

and “willing to,” to filter out nonapplicable EC for EHR settings.

The concept annotation guidelines provide further details about our

excluded EC categories.

Phase 1: CRF-based sequence labeling

The tasks of entity recognition and attribute recognition were cast

jointly as a sequence-labeling problem. Seven categories, including 4

types of entities (condition, observation, drug/substance, procedure/

device) and 3 types of attributes (measurement, temporal constraint,

qualifier/modifier), were considered as labels. CRF, an established

method for numerous sequence-labeling problems, has previously

demonstrated outstanding performance for such tasks in the clinical

domain.32 Thus, in our study, CRF was adopted to perform entity

and attribute recognition by its publicly available implementation,

CRFþþ.56 We used classical “BIO” tags to represent the boundary

of terms of interest, ie, entities and attributes. “O” means it is out-

side the target terms. “B” represents the beginning word, and “I”

tags all the inside words. Example tagging output is provided below:

– Subject/O has/O bleeding/B-Condition diathesis/I-Condition.

– Subject/O with/O blood/B-Observation pressure/I-Observation

higher/B-Measurement than/I–Measurement 180/-Measurement

-/I-Measurement 110/I-Measurement mmHg/I–Measurement.

We experimented with different types of features as CRF labels

to identify the ones with the best performance. For each labeler, the

input was a sentence and the output was a BIO-type sequence. The

first system in this study was a CRF labeler, which relied on the ba-

sic set of word-level features, ie, the input words in the sentence and

bigrams. For each word to be labeled, a 1-hot feature vector, which

is a 1�N vector used to distinguish each term in a vocabulary from

every other word, where N is the count of terms in the vocabulary,

the vector consisted of N�1 0 s and one 1 (to represent the target

word). The system based on the “bag of words” as the only features

was the baseline for CRF performance in our study. We then added

other surface syntactic features to the CRF baseline system, such as

part-of-speech tags and lemmas using the Natural Language Toolkit

(NLTK) package.57 To include domain knowledge to recognize enti-

ties, a UMLS-based feature was generated for the system. For each

input criterion, we used MetaMap58 to identify the UMLS concepts

in it and its corresponding sematic types. “BI” (semantic types) and

“O” (outside) labels were used to represent such features. For exam-

ple, the MetaMap result of the criterion “History of myocardial

infarction or cerebrovascular disease” is labeled as follows:

Figure 1. Example annotations using the Brat tool (http://brat.nlplab.org). Entities and attributes from different classes are distinguished by colors; relations are

annotated as arrows between entities and attributes. It is able to generate structured annotation result files using Brat.
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– History/B-[dsyn] of/I-[dsyn] myocardial/I-[dsyn] infarction/I-

[dsyn] or/O cerebrovascular/B-[dsyn] disease/I-[dsyn]

Here, “dsyn” is the shortcut of the semantic type “T047 Disease

and Syndrome.”

We also implemented a feature for each word to generate seman-

tic information for the tokens learned from a large similar context.

A word representation is often a vector. Each dimension’s value cor-

responds to a feature and might even have a semantic or grammatical

interpretation, so we call it a word representation.59 Traditional 1-

hot representations like bag of words (BOW) suffer from data spar-

sity. Words that are rare in the labeled training corpus will be poorly

estimated. Typically, there exist 3 major kinds of word semantic rep-

resentation approaches59: distributional representation (eg, latent

Dirichlet allocation [LDA],60 latent semantic analysis [LSA]61),

clustering-based word representation (eg, Brown-clustering [BC]62),

and word embedding (eg, Word2vec46). In our study, we selected 2

approaches to test on EC texts, BC and Word2Vec. BC is a hierarchi-

cal clustering algorithm that clusters words to maximize the mutual

information of bigrams. It generates hierarchical clusters of all the

words in each corpus, represented by a binary tree whose leaf nodes

are all the words. Word2vec performs vectorized embeddings to

get richer representations of linguistic units, such as words.63 Tang

et al.64 showed that when the 3 kinds of word representation were

evaluated independently, BC achieved the best results in a clinical

NER system. We retrieved the EC text of all the clinical trials from

ClinicalTrials.gov. BC and word2vec were trained on this large

unlabeled corpus to generate word representation. We ran these 2

features on a subset of trials and found that BC outperformed

word2vec in EC texts. Thus, we chose BC as the word representa-

tion feature in our system. Figure 3 gives a detailed description of

features we included to recognize entities and attributes. We then

ran CRF models on the annotated corpus and used 5-fold cross-

validation to evaluate the results.

Phase 2: negation detection

Negation detection is important in determining whether a criterion

is used for inclusion or exclusion purposes. In EliIE, each recognized

clinical entity is assessed for its negation by implementing the NegEx

algorithm65 followed by a set of rules designed for EC text and in-

vented in EliXR49 (https://github.com/Tian312/EliIE/blob/mas

ter/bin/EC_triggers.txt). To evaluate EliIE’s negation detection ac-

curacy, each entity in our annotated corpus was also labeled

“affirmed” or “negated” by annotators.

Phase 3: relation extraction

Once the entity and attribute recognition was completed, we ran the

relation classifier on those recognized terms to identify relations be-

tween entities and their related attributes. To predict relations, all

possible pairwise relations between entities and attributes in 1 crite-

rion were enumerated and classified using SVM with the radial basis

function. The directions of all the relations were predefined from

each entity to its attributes. We implemented the SVM classifier

through LibSVM.66 The features selected to predict relations were

accommodated from.67 The detailed description is shown in

Figure 3, including the class of the head entity, the class of the attrib-

ute, the shortest path between the 2 terms in the dependency tree,

and whether the entity was the only one in its class in this criterion.

Head term and tail term were determined by their classes. We used

the multiclassification mode in LibSVM, using “0” as a label to rep-

resent that there was no relation between this entity and the attrib-

ute, and “1/2/3” to represent 3 kinds of relations. We ran the SVM

classifier using 5-fold cross-validation to select the best parameters.

Phase 4: concept normalization and output structuring

After recognition and extraction of entities and their attributes and

identification of the relations between them, the entities were

encoded by the standard terminologies in OMOP CDM (http://

www.ohdsi.org/web/wiki/doku.php?id¼documentation:vocabulary).

For example, the concept “AD” is encoded by CDM concept id:

378419. To support downstream large-scale analysis, we stan-

dardized the output results in the XML format. An example out-

put format is illustrated in Figure 5.

EVALUATION METRICS

To measure how well EliIE performs overall and for specific tasks, we

designed an evaluation framework including both task-specific and

end-to-end evaluations. In the task-specific evaluation, we used stan-

dard classification metrics: precision, recall, and F1-score, which are

defined below (TP: true positive; FP: false positive; FN: false negative).

F1 ¼ 2 � precision � recall

precisionþ recall

recall ¼ TP

TPþ FN
Precision ¼ TP

TPþ FP
(Eq. (1))

Since our goal was to generate structured queries in EHR, where

clinical entities (eg, condition, drug) were the primary content, we

conducted our end-to-end evaluations focused on clinical entities

(eg, a simple criterion, “Current treatment with antipsychotics and

antidepressants,” includes 2 queries by our entity-based definition:

presence of drug “antipsychotics” with the temporal constraint

“current” and presence of drug “antidepressants” with the temporal

Figure 2. General workflow of EliIE. It includes a filtering step and 4-phase

parsing. The final outputs are stored in an XML file.
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constraint “current”). Therefore, a “true positive query” in the end-

to-end evaluation is counted if and only if a correctly recognized en-

tity (condition, drug, observation, procedure, or device) is correctly

assigned right relation(s) to its correctly recognized attribute(s) (if it

has any), and at the same time, the result of negation detection is ac-

curate. Then we report a final number for accuracy according to the

following definition:

overall accuracy ¼number of true positive queries

total number of queries
(Eq. (2))

Comparison with related systems
Due to the scarce literature on parsing EC text and discrepant data

models used by related systems, we had difficulty identifying compa-

rable systems for EliIE and eventually selected 2 systems for extrin-

sic evaluation. One is an open-source clinical NER system recently

developed and tested in the i2b2 dataset, CliNER.68 Its best F1 score

for the i2b2 corpus is 0.8. The other system is EliXR,12,49 the only

dedicated rule-based EC parser. Both define different entity classes

of varied granularities, introducing difficulty for comparison.

CliNER extracts 3 entity classes defined in the i2b2 challenge:

test, problem, and treatment. Among the 3 classes, the definition of

“problem” is the most similar to the entity class “Condition” in

EliIE. Thus, here we chose the performance of “problem” class in

CliNER for NER baseline evaluation and compared it to the perfor-

mance of “Condition” in EliIE. EliXR implements dictionary match-

ing to recognize UMLS concepts and their attributes and

constraints. We selected a group of semantic types in UMLS describ-

ing disorders, such as “T047: Disease or Syndrome” and “T048:

Mental or Behavioral Dysfunction” (for full list, see Table 2). We

used EliXR to identify concepts that belong to this group of seman-

tic types to compare with the “Condition” entities recognized by

EliIE as the baseline. We further contrasted the raw output from the

3 systems for more qualitative comparison.

RESULTS

All our software source codes and annotation guidelines for EliIE

are available at https://github.com/Tian312/ELIIE.

Annotation
Descriptive statistics of our annotated EC corpus are provided in

Table 1. To assess whether the training corpus was large enough,

we drew a learning curve against the different sizes of the training

corpus using the system with the best performance in our study

(Figure 4). It has been observed that when the size gets close to

200 trials, the results stabilize. Therefore, our training set with

230 trials was sufficient to develop a bioIE system and achieve sta-

ble performance.

Entity and attribute recognition
Interannotator partial agreement for the recognition task was 0.90

by F1, which was the upper bound of the named entity and attribute

recognition task. For each strategy using additional features, we car-

ried out 5-fold cross-validation and reported average performance

in precision, recall, and F1 score. Detailed performance for all strat-

egies is shown in Table 2. We used both exact matching and partial

matching to generate evaluation for the 2 steps in NER, boundary

detection and classification. The best performance of each entity and

attribute class for EliIE is shown in Table 2. The intrinsic baseline per-

formance was based on BOW features only. The best performance

was achieved by using a combination of the features including BOW,

POS, lemma, UMLS-based features, and BC learned from the entire

ClinicalTrials.gov, with precision, recall, and F1 score of 0.84, 0.74,

and 0.79, respectively. When using partial match evaluation, F1 score

reached 0.84. The “Condition” class achieved the best F1 scores,

0.84 for exact matching and 0.89 for partial matching.

The results of 2 baseline systems and the detailed performance of

our best system are shown in the lower part of Table 2. According

to the “Condition” class alone, EliIE (F1 score 0.84) largely outper-

formed both CliNER (F1 score 0.37) and EliXR (F1 score 0.53).

Because of different granularity levels predefined for each tool, we

also examined the partial evaluation, in which EliIE still outper-

formed the 2 baselines.

Negation detection
EliIE employed 192 rules in addition to implementing NegEx for ne-

gation detection and achieved an accuracy of 0.94 for all the gold

standard entities (¼ #correctly predicted entities/8008). Among

those mistakenly predicted, 0.24 (N¼98) were FNs (“negated” pre-

dicted as “affirmed”) and 0.76 (N¼302) were FPs.

Relation extraction
We evaluated the relation extraction task independently by using

gold standard entities and attributes (entities and attributes defined

in annotation texts). Performance is reported in Table 3. The F1

score of all 3 types of relations, “modified by,” “has temporal mea-

surement,” and “has measurement,” were 0.96, 0.76, and 0.92, re-

spectively. The best overall performance (combining all 3 types of

relations) by 5-fold cross-validation achieved a precision of 0.87, a

recall of 0.92, and an F1 score of 0.89. The corresponding precision,

recall, and F1 score for the most complex “has temporal measure-

ment” relation were 0.75, 0.77, and 0.76, respectively.

The end-to-end evaluation

Using Equation 2 in the Methods section, we measured the general

performance of EliIE by reporting an overall accuracy of the TP

queries. Exact matching (the output of each step is exactly the same

as that from the annotation) was used. The final results for both

task-specific and end-to-end evaluation are reported in Table 4. The

overall accuracy of EliIE was 0.71, which means EliIE was able to

correctly formalize 71% of the queries from our test corpus.

Figure 3. Detailed feature description for entity/attribute recognition and rela-

tion extraction.
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DISCUSSION

Performance analysis
Task-specific evaluations indicate that entity and attribute recognition

has room to improve from an F1 score of 0.79. As shown in Table 2,

adding valid features helps improve the overall performance of the

CRF model but also increases the computing complexity and decreases

the efficiency. In the relation extraction step, the performance is satis-

factory for a simple set of features (with F1 score being 0.90). Since

the definition of each type of relation is unambiguous, there is no mis-

classification across different relation classes. Errors are FNs (classes

1, 2, and 3 misclassified into class 0) or FP (class 0 misclassified into 1,

2, or 3). Unlike EHR data that contain many nuances of uncertainty,

EC texts are relatively explicit regarding positive/negative contexts.

EliIE achieves an accuracy of 0.94 in negation detection by simply im-

plementing NegEx and further improves this by adding rules.

Since EliIE is a system composed of multiple subtasks, errors are

propagated from task to task along the parsing pipeline. As reported in

Table 4, the overall accuracy was 0.71, which means that among all the

potential queries in the test free-text EC corpus, EliIE was able to cor-

rectly identify and formalize 71% of them. More work is still needed to

improve EliIE to meet the needs of practices with higher accuracy re-

quirements, but the results of this study show a promising start.

Comparison with 2 baseline systems
In the end-to-end evaluation for EliIE against the 2 counterpart sys-

tems, EliXR12 and CliNER,68 we first compared the performance of

the 3 systems in recognizing the concepts in the class “Condition/

disorder.” As shown in Table 2, for both exact matching and partial

matching, EliIE (F1 score 0.84/0.90) outperformed the 2 counterpart

systems (CliNER, 0.37/0.42; EliXR, 0.53/0.72). Even though EC

text is known to be syntactically simpler compared to other types of

biomedical texts (some are just bullet lists of items),69 it is still se-

mantically complex and has its own style characteristics. The low

performance of CliNER shows that it is impractical to adapt existing

NLP tools trained in clinical notes to parse EC text; specially de-

signed tools for EC text are needed.

Further, we randomly selected some EC text to input into the 3

systems, whose parsing results for 3 example criteria are shown in

Figure 5 and analyzed from the following aspects:

1. Ability to extract concepts not covered by selected vocabularies.

One of the major limitations of all UMLS-based bioIE systems, in-

cluding EliXR, is their inability to recognize concepts not defined

in UMLS. For example, example 2 in Figure 4 is a simple criterion de-

fining 1 standard diagnosis scoring for AD: “GDS-15 score <6.”

However, since there is no concept for “GDS-15” in the UMLS Meta-

thesaurus, EliXR recognized “GDS” instead of “GDS-15.” In con-

trast, EliIE correctly identified the latter based on its frequency of use.

2. Ability to extract constraints and assign clinical relations from

more complex syntax. EliXR is a rule-based system and prede-

fines a set of rules to extract measurements and temporal con-

straints for identified concepts. However, when the syntactic

structure is beyond those rules, EliXR fails. In example 2, since

EliXR failed to identify “GDS-15” as 1 concept, subsequently it

failed to retrieve the measurement constraint “<6” using its prede-

fined rules. Also, in example 3, EliXR recognized “unstable” as an

independent concept for this criterion only because it is a UMLS

concept, and incorrectly assigned the temporal constraint “within

the previous 2 years” to “unable.” However, EliIE, as a learning-

based system, is capable of parsing these constraints correctly.

3. Ability to define modifiers to represent granularity. In both

EliXR and CliNER, there is no class for modifier. In the i2b2

corpus, it includes all modifiers with concepts (https://www.

i2b2.org/NLP/Relations/assets/Concept%20Annotation%20

Guideline.pdf). Thus, as we can see in Figure 4, CliNER recog-

nizes “severe post-treatment hypersensitivity reaction” and

“clinically significant cardiovascular disease” as single concepts.

Table 1. Descriptive statistics of the annotated eligibility criteria

corpus

Measures Counts

Corpus overview

Total no. of trials 230

Total no. of sentences 5634

Average sentence length 12

Entity class

Condition 4136

Observation 1756

Drug/substance 1464

Procedure/device 652

Attribute class

Qualifier/modifier 1715

Temporal constraints 811

Measurement 1025

Relation

Modified by 1096

Has temporal measure 882

Has measurement 1551

Figure 4. Learning curves for recognition tasks by different sizes of training

sizes. The graph on the top describes the learning curves from exact match-

ing evaluation, while the other is partial matching evaluation. Both results

show that when the number of the training data is over 150, the performance

reaches stable status. In the last version of revision, here the legend F-score

should be F1-score.
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However, from examples 1 and 3, when several modifiers para-

tactically modify the same concept, CliNER fails to extract this

kind of information. Thus, in the EliIE annotation guideline, it

defines a “modifier/qualifier” attribute class to constrain the

clinical concepts and achieves good performance.

4. Interoperability with EHR data. In example 2, “GDS-15” is a

common diagnosis score for AD. However, since there was no

proper class defined in the i2b2 corpus for “GDS-15,” CliNER

recognized “GDS-15” and misclassified it as a problem. In com-

parison, our annotation guideline clearly defines it as an instance

of “Observation,” according to OMOP CDM, thus EliIE cor-

rectly extracts “GDS-15” and classifies it in the “Observation”

table. Generally, OMOP CDM is a suitable data model for EC

to achieve interoperability with EHR.

5. Multitask comprehensiveness. EliIE performs entity recognition,

relation extraction, and concept normalization and can be called

a comprehensive bioIE system. In contrast, many existing ma-

chine learning–based NLP tools in the biomedical field, such as

CliNER, can only perform part of the functions and are not

comprehensive bioIE systems.

Overall, rule-based systems are largely constrained by the rules

and vocabularies on which they depend, while existing machine

learning systems trained on public data are not accurate and com-

prehensive enough and lack interoperability with EHRs. As the first

machine learning–based bioIE system specifically designed for EC

Table 2. Performance of all CRF systems for entity and attribute recognition

Feature seta Step 1: Boundary detection Steps 1þ 2: Boundary detectionþClassification

Precision Recall F1-score Precision Recall F1-score

BOW Exact 0.8284 0.6661 0.7384 0.7917 0.6363 0.7054

Inexact 0.9411 0.8137 0.8728 0.8715 0.7536 0.8083

BOWþ POSþLemma Exact 0.8687 0.7393 0.7988 0.8342 0.7100 0.7671

Inexact 0.9480 0.8325 0.8865 0.8894 0.7811 0.8317

BOWþ POSþLemmaþUMLS Exact 0.8644 0.7574 0.8073 0.8341 0.7309 0.7791

Inexact 0.9445 0.8541 0.8970 0.8836 0.7991 0.8392

BOWþ POSþLemmaþUMLSþBC Exact 0.8682 0.7661 0.8137 0.8382 0.7400 0.7861

Inexact 0.9491 0.8558 0.8978 0.8866 0.8037 0.8432

Entity classes Precision Recall F1 score

Inexact Exact Inexact Exact Inexact Exact

*Baseline – CliNER (Problem class) 0.3692 0.3421 0.4809 0.4140 0.4177 0.3746

*Baseline – EliXR (Disorder group) 0.6402 0.4289 0.8138 0.7089 0.7176 0.5345

Condition 0.9071 0.8566 0.8788 0.8209 0.8927 0.8384

Observation 0.83.97 0.8169 0.7378 0.6760 0.7855 0.7398

Procedure/Device 0.8817 0.7951 0.6581 0.6110 0.7537 0.6910

Drug/Substance 0.9027 0.8573 0.7287 0.7179 0.8064 0.7814

Qualifier/Modifier 0.8807 0.8505 0.7412 0.7253 0.8049 0.7829

Temporal Constraints 0.8808 0.8045 0.8239 0.7254 0.8514 0.7629

Measurement 0.8984 0.8101 0.8401 0.7168 0.8683 0.7606

Overall 0.8866 0.8382 0.8037 0.7400 0.8432 0.7861

aFeature notation: BOW: bag of words; POS: part of speech; BC: brown clustering.

The upper table describes the general performance with different feature sets. The lower table shows the detailed results of each class using the best feature set

(BOWþ POSþLemmaþUMLSþBC.

*Here we choose the performance of “problem” entity class in CliNER and concepts that belong to UMLS disorder semantic types identified by EliXR as 2

baselines. We compare 2 baselines with the performance of the “Condition” entity class by EliIE. The full list of semantic types we include is: T020, T190, T049,

T019, T047, T050, T033, T037, T048, T191, T046, T184.

The bold values in feature set (BOWþ POSþLemmaþUMLSþBC) correspond to the overall best performance was achieved using the combination of all the features.

The bold values in Entity classes (Procedure/Device) due to the less occurrence in the trials, Procedure/Device has the worst performance with F1 score of 0.69 among all

the entity classes.

The bold values in Entity classes (Overall) indicate by implementing the system with the best setting (BOWþPOSþLemma+UMLS), the overall performance achieves

precision, recall and F1 score with 0.84, 0.74, and 0.79 respectively.

Table 3. Performance of clinical relation extraction

Relation class Precision Recall F1 score

Modified_By 0.90 0.98 0.94

Has_TempMea 0.75 0.77 0.76

Has_Measurement 0.88 0.95 0.92

Overall 0.87 0.92 0.89

When using the gold standard entities and attributes from annotations, the

relation extraction is able to achieve F1 score of 0.89.

Table 4. EliIE performance summary

Task Measurement Best performance

(exact)

Task-specific

Named entity and

attribute recognition

F1 score (Eq. 1) 0.79

Relation extraction F1 score (Eq. 1) 0.89

Negation detection Accuracy 0.94

End-to-end

Overall accuracy Accuracy (Eq. 2) 0.71
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text and based on a suitable EHR data standard, EliIE achieves

promising performance.

LIMITATIONS

This study has a couple of limitations. First, as previously

pointed out, the lack of annotator agreement was primarily

caused by different concept granularity. We hope the publicly

shared annotation guideline can be used to generate more anno-

tated EC corpora in the future to enable continued improvement

of EliIE. Second, the generalizability of EliIE outside AD and

other neuropsychological diseases is untested. Though different

diseases share common EC and similar syntactic structures help

with parsing, diseases in different fields have their own distinct

characteristics. For example, “anatomical location” is not com-

mon in AD but is frequently used in diseases such as cancers,

which need pathology and radiology reports. So is genetic infor-

mation, as we expect there will be more genetic information be-

cause of the need for precision medicine. Another limitation is

that the “query” defined in our study was simplified and each

query contained only 1 clinical entity with its attributes and rela-

tions. Queries containing interactions among multiple entities

(eg, cohort with disease A only taking drug B) are identified as

several independent “unit queries” with “AND” logic relation (query

“disease A” AND query “drug B”) in EliIE at present. This limita-

tion will be addressed in our future plan.

Figure 5. Example results from ELIIE, i2b2-based CliNER, and EliXR (EliXR output format: identified UMLS CUI {concept; Negation; Uncertain; Temporal; Measure-

ment; Dosage}).
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Future work
Future work will focus on improving the accuracy and portability of

EliIE. First of all, there needs to be clinical relation recognition be-

tween clinical entities. For example, 1 criterion is:

Uncontrolled hypertension with systolic BP �160 and/or dia-

stolic �95 mmHg.

(ClinicalTrials.gov ID: NCT00675090)

EliIE can recognize 1 condition, “hypertension” modified by

“uncontrolled,” and 2 observation entities, “systolic BP” and “dia-

stolic (BP)” constrained by 2 measurements, “�160 (mmHg)” and

“�95 mmHg,” respectively. However, it does not parse how those 3

clinical entities correlate with one another. Similarly for database

query, we need information about the logical operator among 3 con-

cepts (eg, AND/OR) to further define a cohort. Thus, to improve

EliIE, in addition to understanding relations between entities and at-

tributes, predicting relations among entities will be our next task.

Moreover, we will apply EliIE to parse trials in other diseases be-

yond AD. Finally, further studies are warranted to evaluate EliIE’s

portability to other text.

CONCLUSIONS

Our study proposes the first machine learning–based open-source

bioIE system, called EliIE, to structure and formalize clinical re-

search EC into OMOP CDM. It achieves competent performance

when compared to baseline systems. Our study demonstrates the ef-

fectiveness of machine learning methods and the need for a corpus

specifically constructed for EC text. We also share an annotation

guideline to enable the development of more shared annotated cor-

pora for clinical research of EC in the future.
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