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Abstract
Background Orthopaedic wear particles activate the
NLRP3 inflammasome to produce active interleukin 1b
(IL1b). However, the NLRP3 inflammasome must be
primed before it can be activated, and it is unknown
whether wear particles induce priming. Toll-like receptors
(TLRs) are thought to mediate particle bioactivity. It

remains controversial whether pathogen-associated mo-
lecular patterns (PAMPs) and/or alarmins are responsible
for TLR activation by wear particles.
Questions/purposes (1) Does priming of the NLRP3
inflammasome by wear particles depend on adherent
PAMPs? (2) Does priming of the NLRP3 inflammasome
by wear particles depend on TLRs and TIRAP/Mal? (3)
Does priming of the NLRP3 inflammasome by wear par-
ticles depend on cognate TLRs? (4) Does activation of the
NLRP3 inflammasome by wear particles depend on ad-
herent PAMPs?
Methods Immortalized murine macrophages were stimu-
lated by as-received titanium particles with adherent bac-
terial debris, endotoxin-free titanium particles, or titanium
particles with adherent ultrapure lipopolysaccharide. To
study priming, NLRP3 and IL1b mRNA and IL1b protein
levels were assessed in wild-type, TLR4-/-, TLR2-/-, and
TIRAP/Mal-/- macrophages. To study activation, IL1b
protein secretion was assessed in wild-type macrophages
preprimed with ultrapure lipopolysaccharide.
Results Compared with titanium particles with adherent
bacterial debris, endotoxin-free titanium particles induced
86% less NLRP3 mRNA (0.056 0.03 versus 0.356 0.01
NLRP3/GAPDH, p < 0.001) and 91% less IL1b mRNA
(0.02 6 0.01 versus 0.22 6 0.03 IL1b/GAPDH, p <
0.001). ProIL1b protein level was robustly increased in
wild-type macrophages stimulated by particles with ad-
herent PAMPs but was not detectably produced in mac-
rophages stimulated by endotoxin-free particles.
Adherence of ultrapure lipopolysaccharide to endotoxin-
free particles reconstituted stimulation of NLRP3 and IL1b
mRNA. Particles with adherent bacterial debris induced
79% less NLRP3mRNA (0.096 0.004 versus 0.436 0.13
NLRP3/GAPDH, p < 0.001) and 40% less IL1b mRNA
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(0.096 0.04 versus 0.156 0.03 IL1b/GAPDH, p = 0.005)
in TLR4-/- macrophages than in wild-type. Similarly, those
particles induced 49% less NLRP3 mRNA (0.22 6 0.10
versus 0.43 6 0.13 NLRP3/GAPDH, p = 0.004) and 47%
less IL1b mRNA (0.08 6 0.02 versus 0.15 6 0.03 IL1b/
GAPDH, p = 0.012) in TIRAP/Mal-/- macrophages than in
wild-type. Particles with adherent ultrapure lipopolysac-
charide induced 96% less NLRP3 mRNA (0.012 6 0.001
versus 0.27 6 0.05 NLRP3/GAPDH, p = 0.003) and 91%
less IL1b mRNA (0.03 6 0.01 versus 0.34 6 0.07 IL1b/
GAPDH, p < 0.001) expression in TLR4-/- macrophages
than in wild-type. In contrast, those particles did not induce
less NLRP3 and IL1b mRNA in TLR2-/- macrophages.
IL1b protein secretion was equivalently induced by par-
ticles with adherent bacterial debris or by endotoxin-free
particles in a time-dependent manner in wild-type macro-
phages. For example, particles with adherent bacterial de-
bris induced 99%6 2% ofmaximal IL1b secretion after 12
hours, whereas endotoxin-free particles induced 92% 6
11% (p > 0.5).
Conclusions This cell culture study showed that adherent
PAMPs are required for priming of the NLRP3 inflam-
masome by wear particles and this process is dependent on
their cognate TLRs and TIRAP/Mal. In contrast, activation
of the NLRP3 inflammasome by titanium particles is not
dependent on adherent PAMPs. Animal and implant re-
trieval studies are needed to determine whether wear par-
ticles have similar effects on the NLRP3 inflammasome
in vivo.
Clinical Relevance Our findings, together with recent
findings that aseptic loosening associates with poly-
morphisms in the TIRAP/Mal locus, support that adherent
PAMPs may contribute to aseptic loosening in patients
undergoing arthroplasty.

Introduction

Aseptic loosening caused by polymeric and metallic wear
particles [7] is the most common long-term reason for re-
vision surgery after total joint arthroplasty despite the ad-
vent of crosslinked polyethylene [5]. Particles stimulate
macrophages to release proinflammatory cytokines, which
induce osteoclast differentiation and osteolysis [30, 33, 40,
57]. Interleukin 1b (IL1b; Table 1), along with IL1a, IL6,
and TNFa, mediates particle-induced osteoclast differen-
tiation in vitro [71]. IL1Ra, which antagonizes both IL1a
and IL1b, reduces particle-induced osteolysis in mice [75]
and a IL1Ra polymorphism is associated with aseptic
loosening in patients [29], suggesting that IL1b plays a
major role in aseptic loosening.

The Nod-like-receptor-protein-3 (NLRP3, also known
as NALP3) inflammasome processes inactive proIL1b to
active IL1b [26]. The inflammasome consists of a sensor

protein (NLRP3), an adaptor (apoptosis-associated-speck-
like-protein [ASC]), and an effector protease (caspase-1).
The NLRP3 inflammasome is regulated by a two-
checkpoint system known as priming and activation (Fig.
1). Priming involves transcription and translation of
NLRP3 and proIL1b. Priming can be induced by
pathogen-associated molecular patterns (PAMPs) such as
lipopolysaccharide and lipoteichoic acid and other in-
flammatory mediators that also stimulate the NF-kB sig-
naling pathway [8, 12, 26, 44, 52, 58]. Activation of the
NLRP3 inflammasome involves assembly of the complex
and processing of proIL1b to IL1b. Activation can be in-
duced by ATP, nonorthopaedic particles, and numerous
other stimuli [8, 12, 26, 39, 44, 52, 67]. Caspase-1, the
effector protease of all known inflammasomes, contributes
to particle-induced osteolysis [13]. The NLRP3 inflam-
masome processes IL1b in response to orthopaedic par-
ticles [3, 13-15, 42, 49, 50, 63, 68]. However, those studies
focused on activation of the NLRP3 inflammasome in
preprimed macrophages and did not examine whether the
particles can prime the NLRP3 inflammasome, which is
important because priming is a prerequisite for activation
[8, 12, 26, 44, 52, 58].

Table 1. Abbreviations

Abbreviation Description

GAPDH Glyceraldehyde 3-phosphate
dehydrogenase

IL1a Interleukin-1a

IL1b Interleukin-1b

IL6 Interleukin-6

MyD88 Myeloid differentiation primary
response 88 protein

NF-kB Nuclear factor k-light-chain-enhancer
of activated B cells

NLRP3 Nod-like-receptor-protein-3

PAMP Pathogen-associated molecular
pattern

Pro-IL1b Pro-interleukin-1b

Ti Titanium

TIRAP/Mal Toll-interleukin 1 receptor domain
containing adapter protein/Myd88
adapter-like protein

TIRAP/Mal-/- Toll-interleukin 1 receptor domain
containing adapter protein/Myd88
adapter-like protein knockout

TLR Toll-like receptor

TLR-2-/- Toll-like receptor 2 knockout

TLR-4-/- Toll-like receptor 4 knockout

TNFa Tumor necrosis factor-a

uLPS Ultrapure lipopolysaccharide

WT Wild-type
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Priming the NLRP3 inflammasome can be induced by
stimulation of toll-like receptors (TLRs) [8, 12, 26, 44, 52,
58], which are also associated with aseptic loosening [30,
45, 70]. Polymorphisms in the TLR pathway associate with
aseptic loosening [48] and TLR-positive macrophages are
increased in periprosthetic tissue of patients with aseptic
loosening [45]. TLRs can be activated by exogenous
PAMPs [1] or endogenous danger signals known as alar-
mins or danger-associated molecular patterns [11, 51]. For
example, particle-induced osteolysis in mice is dependent
on adherent PAMPs, their cognate TLRs (TLR2 and
TLR4), and Toll-interleukin 1 receptor domain-containing
adapter protein/Myd88 adapter-like protein (TIRAP/Mal),
a member of the MyD88 family of adaptor proteins that is
uniquely specific to TLR2 and TLR4 [9, 10, 32]. The re-
quirement for a PAMP-TLR cognate pair supports the
conclusion that alarmins are not sufficient and therefore
adherent PAMPs are needed to induce TLR activation in
cell culture and mouse models of particle-induced osteol-
ysis [9, 32]. Consistent with that conclusion, the idea that
bacterial PAMPs contribute to aseptic loosening has re-
ceived considerable interest [30, 31, 38, 47, 56, 69, 74] but
remains controversial [30, 45, 61, 69, 70, 74]. It is un-
known whether adherent PAMPs are needed for ortho-
paedic particles to prime and/or activate the NLRP3
inflammasome, because the previous studies on wear par-
ticles and the NLRP3 inflammasome did not compare the
effects of particles with and without adherent PAMPs [3,
13, 14, 42, 49, 50, 61, 63, 68].

This study was therefore designed to determine whether
orthopaedic particles can prime the NLRP3 inflammasome
and whether priming and/or activation of the NLRP3
inflammasome by orthopaedic particles depend on adher-
ent PAMPs, their cognate TLRs, and TIRAP/Mal. Spe-
cifically we asked: (1) Does priming of the NLRP3

inflammasome by wear particles depend on adherent
PAMPs? (2) Does priming of the NLRP3 inflammasome
by wear particles depend on TLRs and TIRAP/Mal? (3)
Does priming of the NLRP3 inflammasome by wear par-
ticles depend on cognate TLRs? (4) Does activation of the
NLRP3 inflammasome by wear particles depend on ad-
herent PAMPs?

Materials and Methods

Study Design

We first validated the current cell culture model system by
determining whether it reproduces previous studies
showing that stimulation of IL1b secretion by wear par-
ticles depends on the NLRP3 inflammasome and on ad-
herent PAMPs. To address the first study question, we
compared priming in response to titanium particles with
adherent bacterial debris and endotoxin-free titanium par-
ticles (Fig. 2). To address the second question, we com-
pared priming by wild-type, TLR2-/-, TLR4-/-, and
TIRAP/Mal-/- macrophages in response to titanium particles
with adherent bacterial debris (Fig. 2). To address the third
question, we compared priming in response to titanium par-
ticles with adherent ultrapure lipopolysaccharide by wild-
type, TLR2-/-, and TLR4-/- macrophages (Fig. 2). To address
the final question, we compared activation by preprimed cells
in response to titanium particles with adherent bacterial debris
and endotoxin-free titanium particles (Fig. 2).

Titanium Particles

As-received titanium particles (catalog number 00681, lot
F06Q16; Johnson Matthey, Royston, UK) have substantial
adherent bacterial debris (34 EU/109 particles) [32, 59].
Endotoxin-free titanium particles (< 0.3 EU/109 particles)
were prepared by removing > 99% of the endotoxin from
the as-received particles as we previously described [59].
Titanium particles with adherent lipopolysaccharide (33
EU/109 particles) were prepared by incubating endotoxin-
free titanium particles with 50 mg/mL ultrapure lipopoly-
saccharide (tlrl-eblps; InvivoGen, San Diego, CA, USA)
for 4 days in phosphate-buffered saline (PBS) containing
1.1 mM calcium chloride [4, 32]. Those particles were then
washed 10 times in PBS with calcium chloride to remove
any unbound, soluble lipopolysaccharide. The final wash
was confirmed to be endotoxin-free, documenting removal
of unbound lipopolysaccharide. Endotoxin in the particle
suspensions was measured using a chromogenic Limulus
amebocyte lysate assay (50-647U; Lonza, Basel, Switzer-
land) as we previously described [55]. Thus, false-negatives
resulting from assay inhibition were eliminated by assaying

Fig. 1 This diagram illustrates the pathways responsible for
priming (blue) and activation (green) of the NLRP3 inflamma-
some. See text for details.
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particle suspensions spiked with known amounts of endo-
toxin [55]. b-glucan blocker (Lonza) was used to eliminate
false-positives resulting from b-glucan [55]. As-received
particles, endotoxin-free particles, and particles with adherent
ultrapure lipopolysaccharide were used for all experiments.

Cell Culture

Immortalized wild-type, NLRP3-/-, and TIRAP/Mal-/-

macrophages were a gift from Dr Katherine Fitzgerald
(University of Massachusetts Medical School). Immortal-
ized TLR2-/- and TLR4-/- macrophages were obtained from
BEI Resources (Manassas, VA, USA). The macrophage

lines were immortalized as previously described and ac-
curately reflect the phenotype of freshly isolated macro-
phages [9, 35, 54]. Cells were maintained in Minimal
Essential Medium (Hyclone, South Logan, UT, USA) with
10% heat-inactivated fetal bovine serum (Hyclone), non-
essential amino acids (Mediatech, Manassas, VA, USA),
L-glutamine (Mediatech), streptomycin (Mediatech), and
penicillin (Mediatech). Macrophages were plated at 2.5 x
105 cells/cm2 in 24-well culture plates (Falcon, Tewksbury,
MA, USA) for mRNA and enzyme-linked immunosorbent
assay (ELISA) experiments or in six-well plates (Falcon)
for Western blot experiments.

To study priming of the NLRP3 inflammasome, cells
were stimulated with 1 x 108 particles/cm2 of titanium

Fig. 2 This diagram illustrates the overall study design. See text for details.
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particles with adherent bacterial debris, titanium particles
with adherent ultrapure lipopolysaccharide, endotoxin-free
titanium particles, 4 mg/mL ultrapure lipopolysaccharide
as a positive control, or a negative control (culture medium
supplemented as previously described). Priming the NLRP3
inflammasome was determined by measuring NLRP3 and
IL1b mRNA by real-time polymerase chain reaction and
proIL1b protein by Western blot (described subsequently).

To study NLRP3 inflammasome activation, cells were
preprimed with 4mg/mL ultrapure lipopolysaccharide for 4
hours. Cells were washed three times with PBS and sub-
sequently stimulated with titanium particles with adherent
bacterial debris, endotoxin-free titanium particles, 5 mM
ATP as a positive control, or a negative control (culture
medium supplemented as described previously). Activa-
tion of the NLRP3 inflammasome was determined by
measuring secreted IL1b protein by ELISA.

Measurement of Specific mRNAs

Total RNA was isolated using the Promega SV Total RNA
Isolation System and measured spectrophotometrically
(Nanodrop™; Thermo Fisher Scientific, Waltham, MA,
USA). Two hundred nanograms of total RNA were con-
verted to cDNA using the Superscript First Strand cDNA
Synthesis Kit (Invitrogen, Carlsbad, CA, USA). Real-time
polymerase chain reaction (PCR) was performed using
SYBR™ Green (BioRad, Hercules, CA, USA) with the
following primers: NLRP3 forward 59-gcaacctcca-
gaaactgtggt-39, reverse 59-tgggtccttcatcttttcaca-39; IL-1b
forward 59-gaccccaaaagatgaaggg-39, reverse 59- aggtgct-
catgtcctcatcc-39; GAPDH forward 59-atgggaagctggtcat-
caac-39, reverse 59-gtggttcacacccatcacaa-39. To exclude
false-positives from genomic DNA, 39 termini of the PCR
primers overlap exon-exon junctions [16], except for the
GAPDH amplicon, which is encoded within a single exon.
All primers were validated by sequencing of PCR ampli-
cons. Gene expression was determined from a standard
curve [18] and normalized to GAPDH levels. Specificity of
each reaction was verified by melt curve analysis and
agarose gel electrophoresis.

Measurement of IL-1b Proteins

Culture supernatants were harvested, and cells were lysed
with RIPA buffer (Thermo Fisher, Waltham, MA, USA)
and both were stored at -80° C. IL1b ELISAs were per-
formed on supernatants (Biolegend, SanDiego, CA, USA).
For Western blots, proteins of cell lysates were separated
on 15% polyacrylamide gels (Lonza) and transferred onto
polyvinylidene fluoride membranes (BioRad) at 24 V for 1
hour at 4° C. The membranes were then blocked with 5%

nonfat milk in Tris-buffered-saline for 1 hour at room
temperature and incubated with primary antibody over-
night at 4° C followed by a secondary antibody for 1 hour at
room temperature. Thereafter, membranes were incubated
with chemoluminescent solution (Prime-ECL™; GE
Healthcare, Chicago, IL, USA). Membranes were washed
with Tris-buffered saline with 0.1% Tween (Sigma, St
Louis, MO, USA) before administration of a secondary
antibody and chemoluminescent solution. Membranes
were imaged digitally (Kodak Image Station In-Vivo FX,
Rochester, NY, USA). All Western blots are representative
images of three independent experiments.

Primary antibodies were murine antihuman IL1b (3ZD,
dilution-1:40,000; National Institutes of Health, Bethesda,
MD, USA) and goat antimurine actin (Santa Cruz Bio-
technology, Dallas, TX, USA; sc-1615, dilution-1:5000).
Secondary antibodies conjugated to horseradish peroxidase
were goat antimurine IgG and donkey antigoat IgG (Santa
Cruz Biotechnology; sc-2005 and sc-2020, dilution-1:5000).

Statistics

All quantitative data represent means6 SD from n = 3 to 5
independent experiments. Each experiment included trip-
licate cell culture wells per group, each assayed in tripli-
cate. Because data passed normality as assessed by the
Shapiro-Wilk test and equal variance as assessed by the
Brown Forsythe test, analysis was by two-way analysis of
variance with one-sided post hoc Bonferroni corrections
(Prism; GraphPad Software, La Jolla, CA, USA). Signifi-
cance is denoted by *p < 0.05, **p < 0.01, *** p < 0.001.
Error bars represent SD.

Results

Validation of Cell Culture Model System for
Investigation of Effects of Wear Particles on the
NLRP3 Inflammasome

Compared with the vehicle control, particles with adherent
bacterial debris stimulated robust secretion of IL1b by
wild-type macrophages (Fig. 3; mean difference 97.6% of
maximal secretion [95% confidence interval {CI},
96.6-98.6], p < 0.001). In contrast, NLRP3-/- macrophages
secreted 93% less IL1b in response to particles with ad-
herent bacterial debris (Fig. 3 [95% CI, 85-100], 7.4% 6
4.6% versus 100% of maximal secretion, p < 0.001).
Moreover, endotoxin-free particles induced 94% less IL1b
secretion by wild-type macrophages than particles with
adherent bacterial debris (Fig. 3 [95% CI, 91-96], 6.3% 6
1.7% versus 100% of maximal secretion, p < 0.001). These
results are consistent with previous studies showing that
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secretion of mature IL1b in response to wear particles
depends on the NLRP3 inflammasome [3, 13-15, 42, 49,
50, 63, 68] and on adherent PAMPs [2, 9, 10, 17, 19] and
therefore validated our cell culture model system for in-
vestigation of priming and activation of the NLRP3
inflammasome by orthopaedic wear particles.

Priming of the NLRP3 Inflammasome by Wear
Particles Depends on Adherent PAMPs

NLRP3 and IL1b mRNAs were robustly expressed in
macrophages stimulated by particles with adherent bacterial
debris, but not in macrophages stimulated by endotoxin-free
titanium particles (Fig. 4A-B). For example, compared with

titanium particles with adherent bacterial debris at the 2-hour
time point, endotoxin-free titaniumparticles induced 86% less
NLRP3 mRNA (Fig. 4A; 0.05 6 0.03 versus 0.35 6 0.01
NLRP3/GAPDH, mean difference 0.30 [95% CI, 0.21-0.40],
p < 0.001) and 91% less IL1b mRNA (Fig. 4B; 0.026 0.01
versus 0.22 6 0.03 IL1b/GAPDH, mean difference 0.20
[95% CI, 0.11-0.30], p < 0.001). ProIL1b protein level was
robustly increased in wild-type macrophages stimulated by
particles with adherent PAMPs but was not detectably pro-
duced in macrophages stimulated by endotoxin-free particles
(Fig. 4C). Adherence of ultrapure lipopolysaccharide to
endotoxin-free particles reconstituted stimulation of NLRP3
mRNA (Fig. 5A; 0.27 6 0.05 versus 0.02 6 0.001
NLRP3/GAPDH, mean difference 0.25 [95% CI, 0.21-0.30],
p < 0.001) and IL1b mRNA (Fig. 5B; 0.34 6 0.07 versus
0.056 0.004 IL1b/GAPDH, mean difference 0.29 [95% CI,
0.22-0.36], p < 0.001). Together, these results show that
priming of the NLRP3 inflammasome by wear particles
depends on adherent PAMPs.

Priming of the NLRP3 Inflammasome by Wear
Particles Depends on TLR4 and TIRAP/Mal

Particles with adherent bacterial debris induced 79% less
NLRP3 mRNA (Fig. 5A; 0.096 0.004 versus 0.436 0.13
NLRP3/GAPDH, mean difference 0.34 [95% CI,
0.17-0.51], p < 0.001) and 40% less IL1bmRNA (Fig. 5B;
0.09 6 0.04 versus 0.15 6 0.03 IL1b/GAPDH, mean
difference 0.06 [95% CI, 0.02-0.10], p = 0.005) in TLR4-/-

macrophages than in wild-type macrophages. Similarly,
those particles induced 49% less NLRP3 mRNA (Fig. 5A;
0.22 6 0.10 versus 0.43 6 0.13 NLRP3/GAPDH, mean
difference 0.21 [95% CI, 0.05-0.38], p = 0.004) and 47%
less IL1bmRNA (Fig. 5B; 0.086 0.02 versus 0.156 0.03
IL1b/GAPDH, mean difference 0.07 [95% CI, 0.03-0.11],
p = 0.012) in TIRAP/Mal-/- macrophages than in wild-type
macrophages. In contrast, deletion of TLR2 did not
detectably reduce NLRP3 expression (Fig. 5A; 0.306 0.06
versus 0.436 0.13 NLRP3/GAPDH, mean difference 0.13
[95% CI, -0.06 to 0.33], p = 0.13) or IL1b expression (Fig.
5B; 0.25 6 0.12 versus 0.15 6 0.03 IL1b/GAPDH, mean
difference 0.10 [95% CI, -0.04 to 0.24], p = 0.13) in re-
sponse to particles with adherent bacterial debris. Together,
these results show that priming of the NLRP3 inflamma-
some by wear particles depends on TLR4 and TIRAP/Mal.

Priming of the NLRP3 Inflammasome by Wear
Particles Depends on Cognate TLRs

Particles with adherent ultrapure liposaccharide induced
96% less NLRP3 mRNA (Fig. 5A; 0.012 6 0.001 versus
0.276 0.05 NLRP3/GAPDH, mean difference 0.26 [95%

Fig. 3 IL1b protein secretion depends on the NLRP3 inflam-
masome and adherent PAMPs. Wild-type and NLRP3-/- mac-
rophages were treated with a vehicle control (blue triangles),
endotoxin-free titanium particles (green squares), or titanium
particles with adherent bacterial debris (red circles) for 8 hours.
IL1b was measured in supernatant using ELISA. All values are
shown as percent of maximal IL1b secretion in that experi-
ment, which are the wild-type macrophages stimulated by ti-
tanium particles with adherent bacterial debris. N = 3
independent experiments were performed. Each experiment
included triplicate cell culture wells per group, each assayed in
triplicate. Error bars represent SD. Statistical significance was
determined by one-sided analysis of variance. ***p < 0.001. Ti =
titanium; NLRP3 = Nod-like-receptor-protein-3.
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CI, 0.06-0.46], p = 0.003) and 91% less IL1bmRNA (Fig.
5B; 0.03 6 0.01 versus 0.34 6 0.07 IL1b/GAPDH, mean
difference 0.31 [95% CI, 0.16-0.44], p < 0.001) expression
in TLR4-/- macrophages than in wild-type macrophages. In
contrast, those particles did not induce less NLRP3 mRNA
(Fig. 5A; 0.31 6 0.14 versus 0.27 6 0.05
NLRP3/GAPDH, nonsignificant [NS]) or IL1b mRNA
(Fig. 5B; 0.55 6 0.15 versus 0.34 6 0.07 IL1b/GAPDH,
NS) in TLR2-/- macrophages when compared with wild-
type macrophages. Together, these results show that
priming of the NLRP3 inflammasome by particles with
adherent uLPS depends on the cognate TLR4, but not on
the noncognate TLR2.

Activation of the NLRP3 Inflammasome by Wear
Particles Does Not Depend on Adherent PAMPs

IL1b protein secretion was equivalently induced by par-
ticles with adherent bacterial debris or by endotoxin-free
particles in a time-dependent manner in wild-type macro-
phages that had been preprimed with lipopolysaccharide
(Fig. 6). For example, particles with adherent bacterial

debris induced 99%6 2% of maximal IL1b secretion after
12 hours, whereas endotoxin-free particles induced 92%6
11% (mean difference 7 [95% CI, -36 to 23], p > 0.5 at all
time points). Activation induced by the endotoxin-free
particles is unlikely the result of residual lipopolysaccha-
ride from the prepriming step because the vehicle control
group did not induce detectable activation (Fig. 6; 0.83 6
0.03 versus 99%6 2% of maximal IL1b secretion after 12
hours, mean difference 98 [95% CI, 95-101], p < 0.001).
Together, these results show that activation of the NLRP3
inflammasome by wear particles does not depend on ad-
herent PAMPs.

Discussion

Previous studies showed that orthopaedic wear particles
can activate the NLRP3 inflammasome to process proIL1b
to bioactive IL1b but did not examine whether the particles
can prime the NLRP3 inflammasome, which is a pre-
requisite for activation [8, 12, 26, 44, 52, 58]. Moreover, it
was unknown whether adherent PAMPs are needed for
orthopaedic particles to prime and/or activate the NLRP3

Fig. 4 A-C Priming of the NLRP3 inflammasome depends on adherent PAMPs at the mRNA
(A-B) and protein (C) levels. Wild-type macrophages were treated with either endotoxin-free
titanium particles (A-B, green squares) or titanium particles with adherent bacterial debris
(A-B, red circles). Markers of priming (NLRP3 and IL1b mRNA and pro-IL1b protein) were
measured in cell lysates at indicated time points and the mRNA values were normalized to
GAPDH mRNA. N = 3 independent experiments were performed (A-B). Each experiment
included triplicate cell culture wells per group, each assayed in triplicate. Error bars represent
SD. Statistical significance was determined by one-sided analysis of variance. *p < 0.05, **p <
0.01, ***p < 0.001 with comparisons made between titanium particles with adherent bacterial
debris and endotoxin-free titanium particles at each indicated time point. Pro-IL1b protein
was detected by Western blot (C). The pictured gel is representative of three independent
experiments. Ti = titanium; NLRP3 = Nod-like-receptor-protein-3; mRNA = messenger RNA;
GAPDH = glyceraldehyde 3-phosphate dehydrogenase.
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inflammasome, because the previous studies did not com-
pare the effects of particles with and without adherent
PAMPs [3, 13-15, 42, 49, 50, 63, 68]. Our aim was

therefore to evaluate whether orthopaedic particles prime
the NLRP3 inflammasome and whether priming and/or
activation are dependent on adherent PAMPs. Our results
document that adherent PAMPs are required for particles to
prime the NLRP3 inflammasome and that this process is
dependent on their cognate TLRs and TIRAP/Mal (Fig. 7).
In contrast, our results document that activation of the
NLRP3 inflammasome by particles is not dependent on
adherent PAMPs (Fig. 7).

One limitation is that any cell culture study may not
reflect the in vivo situation. For example, the NLRP3
inflammasome might be primed in vivo in a subset of
macrophages by alarmins released either constitutively or
in response to particle-induced tissue damage [51]. Wear
particles would then be expected to activate the NLRP3
inflammasome in those macrophages even in the absence
of PAMPs. Such a mechanism may account for our pre-
vious results that endotoxin-free titanium particles induce
approximately 50% as much osteolysis in murine calvaria
as is induced by titanium particles with adherent bacterial
debris [32]. However, osteolysis induced by endotoxin-
free particles is not affected by deletion of TLR2 or TLR4,
either alone or together [32]. Thus, if alarmins contribute to
particle-induced osteolysis in murine calvaria, they do so

Fig. 5 A-B Priming of the NLRP3 inflammasome depends on
adherent PAMPs, their cognate TLRs, and TIRAP/Mal. Wild-type
(red circle), TLR4-/- (green square), TLR2-/- (purple triangle), and
TIRAP/Mal-/- (brown diamond) macrophages were treated with
vehicle control, endotoxin-free titanium particles, titanium
particles with adherent bacterial debris, or titanium particles
with adherent uLPS for 2 hours. NLRP3 and IL1b mRNA were
measured in cell lysates and themRNA values were normalized
to GAPDH mRNA. N = 5 independent experiments were per-
formed. Each experiment included triplicate cell culture wells
per group, each assayed in triplicate. Error bars represent SD.
Statistical significance was determined by one-sided analysis
of variance. *p < 0.05, ** p < 0.01, ***p < 0.001.

Fig. 6 Activation of the NLRP3 inflammasome does not de-
pend on adherent PAMPs. Wild-type macrophages were
primed with uLPS for 4 hours and subsequently treated with
a vehicle control (blue triangle), endotoxin-free titanium par-
ticles (green squares), or titanium particles with adherent
bacterial debris (red circles). IL1b protein was measured in
culture supernatants at the indicated time points using ELISA.
All values are shown as percent of maximal IL1b secretion in
that experiment. N = 3 independent experiments were per-
formed. Each experiment included triplicate cell culture wells
per group, each assayed in triplicate. Error bars represent SD.
Statistical significance was determined by one-sided analysis
of variance. p > 0.5 at all time points when comparing titanium
particle with adherent bacterial debris and endotoxin-free ti-
tanium particles at each indicated time point. Ti = titanium.
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independently of TLR2 and TLR4. A second limitation is
that the PAMP removal process [59] may alter particle
surface chemistry and thereby impair cellular responses
[70]. However, no differences are detected in shape, size,
or surface chemical composition [22, 59]. Moreover,
changes in chemical properties (hydrophobicity, oxidation,
ionization, charge, etc) would likely be reversible during
the extensive PBS washes that follow PAMP removal [59].
In addition, other methods of PAMP removal that would be
expected to have different effects on surface chemistry also
substantially reduce particle bioactivity [17, 22, 64, 65,
73]. Finally, results that adherence of lipopolysaccharide
[28, 32, 37, 64] or lipoteichoic acid [32, 53] reconstitutes
the bioactivity and TLR dependence of particles strongly
argues against an impaired response resulting from surface
chemistry. Some authors have claimed that the particles
with adherent lipopolysaccharide expose macrophages to
levels of lipopolysaccharide found during sepsis [61, 62].
However, those authors did not note that most of the li-
popolysaccharide is removed from the particle suspensions
during the extensive PBS washes [59]. A third limitation is
the sole use of titanium particles, because polyethylene is
the predominant wear debris in most patients with aseptic
loosening [7, 60]. Investigation of polyethylene particles in
cell culture is not feasible because they float in culture
media, preventing interactions with the macrophages.
However, adherent PAMPs increase the bioactivity of all
types of orthopaedic particles [30, 31, 37, 53, 61, 62], in-
cluding polyethylene [30, 32, 76]. Moreover, titanium and
polyethylene particles produce indistinguishable responses
in the mouse calvarial model [43, 46, 72] and in patients
with aseptic loosening [34].

The initial experiments in this study showed that IL1b
secretion in response to titanium particles depends on the
NLRP3 inflammasome and adherent PAMPs. Those
results are consistent with previous studies that docu-
mented dependence of IL1b secretion in response to wear

particles on the NLRP3 inflammasome [3, 13-15, 42, 49,
50, 63, 68] and on adherent PAMPs [2, 9, 10, 17, 19] and
therefore validated our cell culture model system for in-
vestigation of priming and activation of the NLRP3
inflammasome by orthopaedic wear particles.

This study found that inflammasome priming by or-
thopaedic particles depends on adherent PAMPs, their
cognate TLRs, and TIRAP/Mal. The following evidence
documents that alarmins are insufficient to activate TLRs
and prime the NLRP3 inflammasome and that this process
is dependent on adherent PAMPs. First, we found that
endotoxin-free particles, in contrast to particles with ad-
herent bacterial debris, are unable to prime the NLRP3
inflammasome. Those results are consistent with previous
findings that adherence of lipopolysaccharide [9, 28, 32,
37] or lipoteichoic acid [32, 53] substantially increases
stimulation by particles of mRNAs encoding IL1b or
NLRP3. Second, noncognate TLRs do not contribute to
priming by particles with adherent PAMPs as would be
expected if alarmins were sufficient for TLR-dependent
priming [30]. For example, we found that priming by
particles with adherent ultrapure lipopolysaccharide is not
affected by deletion of the noncognate TLR2 but is potently
inhibited by deletion of either the cognate TLR4 or
TIRAP/Mal. Thus, if alarmins are released in response to
the particles, they are not sufficient and adherent PAMPs
are needed to activate TLRs during priming of the NLRP3
inflammasome. Similarly, alarmins are not sufficient to
activate TLRs during particle-induced cytokine production
or particle-induced osteolysis [9, 32]. Alarmins may
nonetheless contribute to aseptic loosening either by acting
together with PAMPs to activate TLRs or by mechanisms
independent of TLRs [25, 30]. Our results may appear to
conflict with reports that orthopaedic particles that lack
adherent PAMPs can activate the NLRP3 inflammasome
[3, 13-15, 42, 49, 50, 63, 68]. However, priming with
soluble PAMPs was needed in those studies to allow ac-
tivation by the particles. One study reported that cobalt-
chrome particles activate the NLRP3 inflammasome in the
absence of priming [61]. However, that study relied on
macrophages pretreated with 12-O-tetradecanoylphorbol-
13-acetate (TPA, also known as PMA) or thioglycolate,
either of which potently prime the NLRP3 inflammasome
[6, 23, 41].

The findings described in the previous paragraph that
inflammasome priming by orthopaedic particles depends
on adherent PAMPs, their cognate TLRs, and TIRAP/Mal
further supports the controversial hypothesis that bacterial
PAMPs contribute to aseptic loosening. Multiple other
lines of evidence also support that hypothesis [30, 31, 38,
47, 56, 69, 74]. Clinically, antibiotics can reduce aseptic
loosening [24, 30], and PAMPs are found in periprosthetic
tissue from patients with aseptic loosening [36, 55]. Pos-
sible PAMP sources include bacterial flora in the

Fig. 7 This diagram illustrates the current working model.
Priming of the NLRP3 inflammasome by wear particles
depends on adherent PAMPs and their cognate TLRs (blue).
Activation of the NLRP3 inflammasome by wear particles does
not depend on adherent PAMPs (green). See text for details.
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gastrointestinal tract and oral cavity from which bacteria
and PAMPs episodically translocate to the systemic cir-
culation, potentially reaching the implant [30]. Subclinical,
low-grade bacterial biofilms on implant surfaces are an-
other possible source of PAMPs [20, 21, 30, 38, 47, 56, 66,
74], and the presence of biofilms strongly correlates with
increased osteolysis [66]. Additionally, TLR pathway
polymorphisms associated with aseptic loosening [48] and
increased TLR-positive macrophages were reported in
periprosthetic tissue of patients with aseptic loosening [45].
In cell culture and the murine calvarial model of particle-
induced osteolysis, titanium particle-induced inflammation
and osteolysis are partially dependent on TLR2 and TLR4
but only if their cognate PAMPS are adherent to the particles
[32]. Our current results extend those previous findings to
inflammasome processing of proIL1b and thereby further
support the hypothesis that bacterial PAMPs contribute to
aseptic loosening [30, 31, 38, 47, 56, 69, 74].

In contrast to priming, activation of the NLRP3
inflammasome does not depend on adherent PAMPs, as
demonstrated by equivalent secretion of IL1b protein by
preprimed macrophages subsequently stimulated by either
endotoxin-free titanium particles or titanium particles with
adherent bacterial debris. Thus, it is possible that particles
with and without adherent PAMPs can work together by
sequentially priming (PAMP-dependent) and then acti-
vating (PAMP-independent) the NLRP3 inflammasome.
Of all the macrophage responses induced by wear particles
that have been studied [9, 10, 22, 28, 30-32, 37, 38, 47, 53,
56, 69, 72, 74, 76], cell death [22, 64] and activation of the
NLRP3 inflammasome are the only ones that are not in-
creased by adherent PAMPs. Intriguingly, cell death can
also activate the NLRP3 inflammasome [27]. Future
studies should therefore determine whether cell death
contributes to activation of the NLRP3 inflammasome by
orthopaedic wear particles.

This cell culture study showed that orthopaedic wear
particles with adherent PAMPs can prime the NLRP3
inflammasome and that the particles can then activate the
NLRP3 inflammasome independently of adherent PAMPs.
Future animal and implant retrieval studies are needed to
determine whether wear particles have similar effects on
the NLRP3 inflammasome in vivo. Nonetheless, the cur-
rent results add further support to the controversial concept
that bacterial PAMPs may contribute to aseptic loosening.
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