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Background. Linezolid exhibits remarkable sterilizing effect in tuberculosis; however, a large proportion of patients develop 
serious adverse events. The congener tedizolid could have a better side-effect profile, but its sterilizing effect potential is unknown.

Methods. We performed a 42-day tedizolid exposure-effect and dose-fractionation study in the hollow fiber system model of 
tuberculosis for sterilizing effect, using human-like intrapulmonary pharmacokinetics. Bacterial burden was examined using time to 
positivity (TTP) and colony-forming units (CFUs). Exposure-effect was examined using the inhibitory sigmoid maximal kill model. 
The exposure mediating 80% of maximal kill (EC80) was defined as the target exposure, and the lowest dose to achieve EC80 was iden-
tified in 10 000-patient Monte Carlo experiments. The dose was also examined for probability of attaining concentrations associated 
with mitochondrial enzyme inhibition.

Results. At maximal effect, tedizolid monotherapy totally eliminated 7.1 log10 CFU/mL Mycobacterium tuberculosis over 42 days; 
however, TTP still demonstrated some growth. Once-weekly tedizolid regimens killed as effectively as daily regimens, with an EC80 
free drug 0- to 24-hour area under the concentration–time curve-to-minimum inhibitory concentration (MIC) ratio of 200. An 
oral tedizolid of 200 mg/day achieved the EC80 in 92% of 10 000 patients. The susceptibility breakpoint was an MIC of 0.5 mg/L. The 
200 mg/day dose did not achieve concentrations associated with mitochondrial enzyme inhibition.

Conclusions. Tedizolid exhibits dramatic sterilizing effect and should be examined for pulmonary tuberculosis. A tedizolid dose 
of 200 mg/day or 700 mg twice a week is recommended for testing in patients; the intermittent tedizolid dosing schedule could be 
much safer than daily linezolid.
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breakpoint.

Linezolid has been shown to have dramatic sterilizing effect 
in patients with tuberculosis (TB), even when it is the only 
effective drug in the treatment of patients with extensively 
drug-resistant TB (XDR-TB) [1–3]. Unfortunately, this effi-
cacy comes at the cost of high toxicity rates, encountered in 
>35% of patients treated with the standard doses [1, 3, 4]. 
Recently, a new oxazolidinone, tedizolid (formerly DA-7157; 
prodrug DA-7218), was licensed for use against gram-posi-
tive bacterial skin and soft tissue infections [5]. In the hollow 
fiber system model of intracellular pulmonary Mycobacterium 
avium disease, tedizolid maximal kill (Emax) was higher than 
with linezolid [6, 7]. Similarly, for intracellular Mycobacterium 
tuberculosis (Mtb) infection that is typical of disseminated 
pediatric disease and comprises up to 20% of cavitary bacillary 

subpopulations in adult-type disease, tedizolid at optimal 
exposures had >4 log10 colony-forming units (CFU)/mL Mtb 
kill compared to linezolid optimal exposure after 4 weeks in 
the hollow fiber system model of tuberculosis (HFS-TB) [8]. 
However, in adult-type tuberculosis, 80% of bacteria are extra-
cellular [9]. Here, we investigated the efficacy of tedizolid 
against extracellular semidormant bacteria at pH 5.8, whose 
kill defines sterilizing effect [10–12].

In theory, tedizolid has several advantages over linezolid in 
the treatment of chronic pneumonias. First, the epithelial lin-
ing fluid concentration (ELF)–to-plasma ratio and the alveolar 
macrophage, 0- to 24-hour area under the concentration–time 
curve (AUC0–24)–to-plasma ratio are 40-fold and 20-fold for 
tedizolid vs 0.14-fold and 3.3-fold for linezolid, respectively 
[13, 14]. However, the true extents of penetration into TB cav-
ity lesion of each drug are unknown. On the other hand, while 
linezolid is only 30% protein bound, tedizolid is 90% protein 
bound, which could reduce the potency of tedizolid [14]. 
Moreover, the effect of an acidic pH on tedizolid efficacy is 
unknown. Here, we utilized the HFS-TB to mimic the human 
intrapulmonary concentration–time profile of tedizolid to 
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identify optimal exposures for Mtb sterilizing effect under these 
conditions [15–18]. We then used these results to identify the 
dose of tedizolid that could be used for treatment of tuberculo-
sis. This approach has been found to be accurate in identifying 
clinical doses, exposures, and response later shown in tubercu-
losis patients [16–19].

METHODS

First, we searched PubMed for all tedizolid minimum inhibi-
tory concentration (MIC) studies published up to 31 December 
2017. The following Medical Subject Heading (MeSH) terms 
and strategy were used: “minimum inhibitory concentration” 
OR “MIC” OR “susceptibility” AND “Mycobacterium tubercu-
losis” AND “tedizolid” OR “DA-7218” OR “TR-701”. Next, we 
searched for tedizolid tuberculosis pharmacokinetic/pharma-
codynamic studies using the MeSH headings “tedizolid” and 
“tuberculosis.” There was no exclusion of articles by language.

Mtb H37Rv (American Type Culture Collection strain number 
27294) was purchased from American Type Culture Collection 
(Manassas, Virginia). Prior to each experiment, Mtb from stock 
was grown as described in a number of previous publications 
[20–22]. Tedizolid, the active moiety of the prodrug tedizolid 
phosphate, was synthesized by BOC Sciences (Shirley, New 
York). Hollow fiber cartridges were purchased from FiberCell 
Systems Inc (Frederick, Maryland). The BACTEC 960 mycobac-
terial growth tube indicator system (MGIT) and supplies were 
purchased from Becton Dickinson (Franklin Lakes, New Jersey).

The tedizolid MIC was identified using the MGIT and macro-
broth dilution methods [23]. In sterilizing effect HFS-TB exper-
iments, Mtb was transformed from logarithmic growth phase 
(log-phase growth) to semidormant bacteria state using the 
methods described elsewhere [18, 24]. Twenty milliliters of the 
semidormant Mtb culture was inoculated into the peripheral 
compartment of each of the 22 HFS-TB units conditioned with 
media acidified to pH 5.8 using citric acid [18]. The systems 
either had daily administration of tedizolid AUC0–24 exposures 
of 6, 12, 24, 31, 78, 95, and 143 mg × hour/L or once a week 
administration with cumulative weekly exposures of 95, 124, 
and 424 mg × hour/L. The nontreated control systems received 
no drug treatment. There were 2 HFS-TB replicates per dose. 
On day 0 of the study, central compartments were sampled at 
0 hour (before administration of the drug) and at 1, 6, 10, 18, 
21, and 23.5 hours after drug administration to measure the 
tedizolid concentration [6]. We sampled the peripheral com-
partment of each HFS-TB on days 0, 7, 14, 21, 28, 35, and 42 
and processed the samples as described in previous publication 
to enumerate the total Mtb burden [18, 20–22]. To determine 
the tedizolid-resistant subpopulations Middlebrook 7H10 agar 
was supplemented with 3 times the tedizolid MIC and incu-
bated for up to 6 weeks before CFUs were counted.

To measure tedizolid concentrations in samples obtained 
from the central compartment of each HFS-TB, we used a 

well-validated method, described in detail previously [6, 8]. The 
observed concentrations were then modeled using ADAPT 5 
software [25]. Steps used for pharmacokinetic modeling were 
as described in the past [18, 21, 26]. The relationship between 
effective concentration (EC) and bacterial burden was modeled 
using the inhibitory sigmoid Emax model in ADAPT 5 and in 
GraphPad Prism version 7 (La Jolla, California) software. We 
used 2 readouts of bacterial burden: Mtb log10 CFU/mL, and 
time to positivity (TTP) in days. The pharmacokinetics/phar-
macodynamics (PK/PD) parameter, either AUC0–24/MIC ratio, 
or peak concentration to MIC (Cmax/MIC), or percentage time 
concentration persists above MIC (%TMIC), or trough/MIC was 
examined vs bacterial burden using the inhibitory sigmoid Emax 
model, and the model with the highest r2 was chosen as linked to 
outcome. We defined the exposure associated with 80% of max-
imal kill (EC80) as the target exposure to be achieved for Emax.

We performed Monte Carlo experiments (MCEs) of 10 000 
adult patients with TB to identify the minimal dose of tedizolid 
that could achieve or exceed the EC80. For population pharma-
cokinetic parameter estimates entered in subroutine PRIOR of 
ADAPT, we used values identified from the study of Flanagan 
et al [27]. The parameters (between individual variability as % 
coefficient of variation) were an absorption constant of 1.99 
hour-1 (194%), clearance of 6.69 L/hour (30%), central volume 
of 69.0  L (18%), peripheral volume of 13.6 L (18%), and an 
intercompartmental clearance of 0.96 L/hour (30%). The ELF-
to-plasma ratio of 40 and protein binding of 90% were used to 
calculate a free drug penetration ratio from plasma of 4 [14]. 
For the tedizolid MIC distribution, we used results of our liter-
ature search, which identified the study by Vera-Cabrera et al 
[28]. We examined the target attainment probability of how well 
the dose of 50 mg, 100 mg, and 200 mg would achieve the EC80 
in the lung of patients with TB, at each MIC. Cumulative frac-
tion of response was then summated over the MIC distribution, 
as discussed elsewhere in this supplement [24].

RESULTS

In the literature search we identified only 1 relevant study, per-
formed in mice by us [29]. The study did not perform dose-rang-
ing experiments for tedizolid, or dose-scheduling experiments, 
but had examined the drug at a single dose in combination with 
bedaquiline and pretomanid. There were no publications of 
tedizolid use in TB patients. In the second literature search for 
the largest distribution of tedizolid MICs in Mtb, we found the 
study by Vera-Cabrera et al in 2006 of 95 clinical Mtb isolates 
plus H37Rv, in which MICs were identified using microbroth 
dilution assay concentrations of 0.015–64 mg/L: the MICs for 
50% of the isolates (MIC50) and 90% of the isolates (MIC90) were 
0.25 mg/L and 0.5 mg/L, respectively [28]. In experiments with 
our laboratory strain of Mtb H37Rv, we identified an MIC of 
0.25 mg/L with both MGIT and microbroth dilution assays, on 
2 separate occasions for each assay.
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Tedizolid pharmacokinetics achieved in the HFS-TB was 
best described using a 1-compartment pharmacokinetic model, 
based on Akaike information criteria, Bayesian information 
criteria, and parsimony. The pharmacokinetic model predicted 
vs observed concentrations were as shown in Supplementary 
Figure 1. The clearance was 0.013 ± 0.008 L/hour, and volume 
was 0.249 ± 0.24 L, which translates to a half-life of 13.2 hours.

Time-kill curves for the different tedizolid total concentra-
tions (AUCs) are shown in Figure 1. Figure 1A shows AUC vs 
response for each dosing schedule, starting with the CFU/mL 
readout. For the daily dosing schedule, exposures between an 
AUC0–24 of 31  mg × hour/L and 78  mg × hour/L marked the 
transition to a steep sterilizing effect curve. For the largest once-
weekly dose, which is the cumulative weekly (ie, 168 hours) 
AUC0–168 of 424 mg × hour/L, equivalent to a daily AUC0–24 of 
60 mg × hour/L, the microbial kill fell below limits of detection 
for the CFU/mL assay by day 42, which would indicate complete 

eradication of Mtb in the HFS-TB replicates. However, using the 
more sensitive TTP readout, shown in Figure 1B, there was still 
growth of Mtb in those systems, demonstrating that extinction 
of the bacterial population had not been achieved with mono-
therapy in 42 days. Nevertheless, the same pattern of sterilizing 
effect seen with CFU/mL was seen with TTP. Intermittent dos-
ing was effective; the HFS-TB replicates treated with tedizolid 
AUC0–168 of 424 mg × hour/L administered once a week had the 
highest TTP of all at the end of the experiment, which means 
that intermittently administered tedizolid can achieve dramatic 
sterilizing effect.

Supplementary Table  1 shows that the highest r2 for PK/PD 
index vs bacterial burden based on the inhibitory sigmoid Emax 
model fits. The table shows that whether bacterial burden was 
expressed as log10 CFU/mL or TTP, the PK/PD index linked 
with efficacy was the AUC0–24/MIC ratio. Thus, unequivocally, 
tedizolid free AUC0–24/MIC was the PK/PD driver for sterilizing 

Figure 1. Tedizolid time-kill curves in the hollow fiber system model. Tedizolid doses are shown as area under the concentration–time curve either daily or for the whole 
week in the once-weekly doses. It can be seen that even with a once-weekly dosing schedule, a steep sterilizing effect slope was achieved. A, Shows the results as colo-
ny-forming units (CFU)/mL. B, Shows results using time to positivity, which, because of greater sensitivity of assay, demonstrates that no systems were totally sterilized by 
day 42, unlike the CFU/mL results. Abbreviations: AUC, area under the concentration–time curve; CFU, colony-forming units.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy626#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy626#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy626#supplementary-data
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effect. The relationship between AUC0–24/MIC and log10 CFU/mL 
burden is shown in Figure 2A. The EC50 varied from an AUC0–24/
MIC of 70.22 on day 7 to 125.7 on day 28, consistent with obser-
vations with other antituberculosis drugs in the past [20, 30]. The 
relationship between AUC0–24/MIC and bacterial burden at end 
of study, on day 42, was described by the equation: 
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Based on this, the EC80, we calculated a free (f) AUC0–24/MIC of 
134. The relationship between TTP and fAUC0–24/MIC is shown 
in Figure 2B. Day 42 results revealed an EC50 of 166 (95% con-
fidence interval [CI], 78.08–153.9), and an H of 2.53 (95% CI, 

.08–5.13), which translates to an EC80 of 200 (r2 = 0.93). This 
latter fAUC0–24/MIC of 200 was adopted as the target exposure 
for optimal sterilizing effect.

We, performed 10 000-patient MCE to identify the dose best 
able to achieve the EC80 fAUC0–24/MIC of 200, based on the MIC 
distribution of Vera-Cabrera et al [28]. With the clinical dose 
of 200  mg/day, we identified a serum mean  ±  standard devi-
ation AUC0–24 mg/L of 31.0  ±  6.6 in the 10 000 patient simu-
lation, which similar to the steady-state serum AUC0–24 mg/L 
values of 29.2 ± 6.2 and 25.6 ± 8.4 reported for this dose to the 
US Food and Drug Administration (http://www.accessdata.
fda.gov/drugsatfda_docs/label/2014/205435s000lbl.pdf). This 
validates that our MCE-identified concentrations that are clin-
ically meaningful [31]. Figure 3A shows that for the doses of 
100 mg/day, target attainment probability (TAP) was 100% in 
patients with Mtb isolates that had MIC ≤0.125 mg/L, and then 
fell below 90% one tube dilution higher. In patients treated with 
tedizolid 200 mg/day, the TAP was 100% until the highest MIC 
of 0.5 mg/L, at which point it fell to 84%. The cumulative frac-
tion of response, which is the proportion of patients achieving 
EC80, calculated by taking an expectation over the MIC distri-
bution, is shown for each dose in Figure 3B. The figure shows 
that the cumulative fraction of response in patients treated 
with tedizolid 100 and 200  mg/day was 46.63% and 92.17%, 
respectively. This means that 200 mg/day tedizolid is the dose 
to be explored for sterilizing effect in patients. Alternatively, the 
dose could be given as 700 mg twice a week or 1400 mg once 
a week and would still achieve the same cumulative fraction of 
response as the 200 mg/day.

DISCUSSSION

There is need for newer compounds that have sterilizing effect 
in patients with drug-susceptible TB, MDR-TB, and XDR-TB, 
with several antibiotics being repurposed for that use [3, 32–36]. 
Oxazolidinones, in the form of linezolid, have demonstrated 
great promise in that direction. Here, we provide evidence that 
the congener tedizolid has good sterilizing effect even as mono-
therapy in the HFS-TB. In comparison to first-line antitubercu-
losis drugs in the same model system, the sterilizing effect kill 
rates in the same system were better than isoniazid, pyrazina-
mide, ethambutol, and standard-dose rifampin as monotherapy 
[18, 21, 37–39]. In the accompanying article, we have shown 
that tedizolid also had good efficacy against intracellular Mtb, 
which means that tedizolid may be effective against different 
bacillary subpopulations encountered in pulmonary cavities 
and in children with disseminated disease [8]. Thus, at a min-
imum, tedizolid could be able to replace linezolid in MDR-TB 
and XDR-TB regimens. However, clinical verification of this 
sterilizing effect is still required.

Second, we identified the optimal exposure of tedizolid 
for sterilizing effect, which was an AUC0–24/MIC of 200, or a 
cumulative weekly AUC0–168/MIC of 1400. This would also be 

Figure  2. The relationship between tedizolid exposure and bacterial burden. 
Inhibitory sigmoid maximal kill modeling for each of the weekly sampling days, 
chosen because the most intermittent dose was once every 7  days. A, Results 
showing colony-forming units/mL inhibition with increasing area under the concen-
tration–time curve (AUC)/minimum inhibitory concentration. B, On the other hand, 
time to positivity (TTP) decreases with increased bacterial burden, so that the “inhi-
bition” is upside down with higher TTP with increasing AUC. This is reflected with 
a negative Hill slope (H) in the resultant equations. Abbreviations: AUC, area under 
the concentration–time curve; CFU, colony-forming units; MIC, minimum inhibitory 
concentration.

http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205435s000lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205435s000lbl.pdf
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optimal for intracellular Mtb kill, based on the target expos-
ure AUC0–24/MIC of 188 we identified for that subpopulation 
in separate experiments [8]. Based on MCE, we identified the 
oral tedizolid dose of 200 mg a day as the candidate for clinical 
trials. Since this is an AUC/MIC-driven drug, intermittent ther-
apy such as 700 mg twice a week would be as effective as daily 
doses, allowing for intermittent tedizolid regimens. Indeed, our 
experiments demonstrated efficacy even with once-weekly dos-
ing. This would allow combination of this drug for intermittent 
therapy regimens, without compromising efficacy. Intermittent 
dosing is a great advantage for TB treatment programs.

Third, we have found that toxicity of oxazolidinones such as lin-
ezolid is AUC driven with an inhibitory concentration (IC50) for 
mitochondrial inhibition of 94 mg × hour/L; however, tedizolid 
AUC0–24 of 90 mg × hour/L was not associated with such a mito-
chondrial enzyme inhibition signature [8, 40]. The tedizolid dose 
of 200 mg a day or 700 mg twice a week achieves an AUC of 90 mg 
× hour/L over 3.5 days, lower than tedizolid AUC0–24 of 90 mg × 
hour/L each day that did not generate a mitochondrial toxicity 
signal [8]. Song et al and Brown et al have proposed that linezolid 
toxicity is driven by trough concentration [41, 42]. In a recent 
study, Milosevic et  al demonstrated rapid reversal of tedizolid 
toxic effects upon discontinuous administration and found that an 
intermittent dosing schedule was what contributed to the drug’s 
lower toxicity [40]. If so, our proposed twice-weekly dosing sched-
ules could be advantageous as regards to safety without com-
promising efficacy. However, the clinical safety of our proposed 
tedizolid dosing scheme over the longer durations of therapy that 
are used to treat tuberculosis still needs to be established.

Finally, our MCEs allow us to establish a proposed tedizolid clin-
ical susceptibility breakpoint, which was an MIC of 0.5 mg/L at the 
dose of 200 mg/day. This value is virtually the same as that identified 
using both clinical response, epidemiologic cutoff values, and PK/

PD approaches in a variety of mundane gram-positive cocci [43]. 
We propose the same as that tentative clinical breakpoint in TB. The 
approach that uses the HFS-TB followed by MCE has had a good 
track record in identifying MICs above which patients fail combin-
ation therapy in tuberculosis [17, 31, 44–46]. Thus, there is a good 
probability that this will be the final clinical breakpoint.

Our study has its own limitations. The first limitation is use of only 
1 laboratory strain of Mtb in the HFS-TB experiments. However, 
in the accompanying article, tedizolid was also tested in HFS-TB 
of H37Ra, while MICs were also identified in Mtb CDC1551, Mtb 
SS18b, and HN878, which were also within the range of MIC dis-
tributions of the clinical isolates identified in our literature search 
[8, 28]. Indeed, the MIC distribution we identified in our literature 
search means that tedizolid is likely to be effective against >90% of 
clinical strains. The second limitation is that we did not detect any 
tedizolid resistance in the current experiment. This could either be 
that no drug resistance arose, or more likely that our assay of tedizolid 
3 times the MIC on Middlebrook agar did not work. However, des-
pite these limitations, our data are adequate for demonstrating that 
tedizolid has excellent sterilizing effect against Mtb.

In conclusion, we identified the optimal exposure target of tedizolid 
for sterilizing activity against Mtb, the susceptibility breakpoint for the 
optimal dose, and the possibility of intermittent dosing without com-
promising efficacy. Clinical trials have been designed to combine a 
tedizolid once-daily 200-mg dose, and a once-weekly dose regimen 
in combination with other antibiotics with a long half-life in the treat-
ment of MDR-TB, XDR-TB, and drug-susceptible TB.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.

Figure 3. Target attainment of different doses in Monte Carlo simulations. A, Target attainment probabilities (TAPs) of the different oral tedizolid doses at each minimum 
inhibitory concentration (MIC). The MIC distribution ranged from 0.125–0.5 mg/L for 95 isolates [28]. This MIC distribution and the high epithelial lining fluid concentra-
tion–to-plasma ratios [14] were advantageous with regard to high TAP. At the dose of 200 mg a day, the TAP falls from 100% at an MIC of 0.25 mg/L to 84% at an MIC of 
0.5 mg/L. B, After summation at each MIC, the cumulative fraction of response for each dose on a “normogram” reveals that the dose of 200 mg would achieve sterilizing 
effect exposure target in >92% of patients and a dose of 300 mg per day would achieve the sterilizing effect exposure in 99.9% of 10 000 patients. Abbreviation: MIC, min-
imum inhibitory concentration.
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