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ABSTRACT

The placenta is critical for all aspects of fetal development. Bisphenol A (BPA) and phthalates are endocrine disruptors with
ubiquitous exposure in pregnant women—their effects on the placenta is an area of growing research interest. Therefore,
our objectives were to (1) summarize research related to the effects BPA or phthalates on placental outcomes in animal and
cell models, and (2) evaluate the challenges for using such models to study the impacts of these chemicals on placental
endpoints. Overall, studies in cells and animal models suggest that BPA and phthalates impact placental hormones, some
epigenetic endpoints, increase inflammation and oxidative stress, and decrease cell viability and nutrient transfer.
However, few animal or cell studies have assessed these outcomes at concentrations relevant to humans. Furthermore, it is
unclear whether effects of BPA/phthalates on the placenta in animal models mediate fetal outcomes, as most studies have
dosed after the earliest stages of placental and fetal development. It is also unclear whether effects of these chemicals are
sex-specific, as few studies have considered placental sex. Finally, while there is substantial evidence for effects of mono-
(2-ethylhexyl) phthalate (the major metabolite of di-(2-ethylhexyl) phthalate), on placental endpoints in cells, little is
currently known about effects of other phthalates to which pregnant women are exposed. Moving forward, these
limitations will need to be addressed to help us understand the precise mechanisms of action of these chemicals within the
placenta, and how these reported perturbations impact fetal health.
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Bisphenol A (BPA) and phthalates are endocrine disrupting
chemicals found in food packaging and personal care/house-
hold products (Mervish et al., 2014; Schettler, 2006). Although
life-course exposures to these chemicals can adversely impact
health, pregnancy is an especially sensitive window, and epide-
miological studies demonstrate that pregnant women have
widespread exposure to these chemicals (Fisher et al., 2015; Yan
et al., 2009). In placental mammals, the establishment and
maintenance of a successful pregnancy, and the offspring’s life-
long health, rely on finely tuned developmental trajectories of

placental and fetal tissues (reviewed in Godfrey, 2002 and
Jansson and Powell, 2007). As we have reviewed elsewhere
(Strakovsky and Schantz, 2018), recent human studies
suggest associations between BPA or phthalate exposures and
numerous placental molecular endpoints. These include
hormone-related mRNA expression (Adibi et al., 2010, 2017),
micro-RNA expression (LaRocca et al., 2016; Zhong et al., 2018),
long noncoding RNA expression (Machtinger et al., 2018), and
DNA methylation (Grindler et al., 2018; LaRocca et al.,, 2014,
Nahar et al., 2015; Zhao et al., 2015, 2016). Furthermore, there is
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evidence that phthalate exposure in humans is also associated
with changes to placental anthropometry (length, breadth, sur-
face area, and thickness) (Zhu et al., 2018). However, the current
literature in humans is still limited in its ability to pinpoint spe-
cific mechanisms by which these chemicals target the human
placenta to cause these effects and to ultimately impact placen-
tal function.

These knowledge gaps are due, in part, to the challenges in
assessing phenotypic and molecular endpoints within the large
and heterogeneous human placenta, with studies showing that
even the most careful sampling schemes to assess gene expres-
sion can result in great within-placental variability (Adibi et al.,
2009). Other challenges for making mechanistic evaluations
within the human placenta thus far have included the following:
(1) the fact that chemical exposures have been assessed at vari-
ous points in pregnancy, whereas placental tissues are typically
only available at birth, and (2) lack of reliable information about
the role of fetal sex in modifying associations of exposures with
placental molecular endpoints. As will be discussed throughout
this review, there are undoubtedly challenges for modeling pla-
cental outcomes in experimental animal and cell models.
Nevertheless, given the difficulties that exist in human placental
sampling, such models are invaluable for unraveling the mecha-
nisms of action of environmental chemicals within the placenta.
The primary goal of this review is to address these challenges
and opportunities for modeling placental structural, functional,
and molecular outcomes in response to BPA and phthalates.

ANIMAL MODELS

Given the challenges in both human exposure assessment and
placental sampling, animal models are important for assessing
the underlying mechanisms behind the associations observed
in humans. First, unlike in humans, the small size of the rodent
placenta allows for histological evaluation of whole placentas
as well as for site- and structure-specific molecular analysis in
response to chemical exposures. Second, rodent models provide
excellent opportunities for sex-specific evaluations of the
placental-fetal unit, given that each rodent pup develops with
its own placenta. As will be described below, important factors
to consider when designing such models include the structural,
functional, and epigenetic differences between species, expo-
sure window, chemical dose, and placental sex, among others
(Tables 1 and 2).

Animal Model Selection

Although the rodent is the most-widely utilized animal model
in studies assessing the effects of BPA and phthalates on the
placenta, there are important developmental and structural dif-
ferences between human and rodent placentas (reviewed in
Carter, 2007) (cited and reviewed in Figure 1). These differences
include placental hormone synthesis and function (Figure 1A),
trophoblast invasion, remodeling of spiral arteries that carry
blood and nutrients to the fetus, the timing and process of
decidualization and placental development, the formation and
branching of villi (Figure 1B), and the fetal: placental weight ra-
tio, which is driven by fundamental species differences in
maternal-fetal blood flow (Figure 1C).

Despite these differences, there are numerous reasons for
using rodent models to study the effects of environmental
chemicals on the placenta. First, like humans, rodents develop
a single discoid placenta. Humans and rodents also both have a
hemochorial placenta, in which fetal chorionic villi are directly
bathed by maternal blood (Figure 1D). In regard to epigenetic
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regulation, aspects of placental imprinting differ between
rodents and humans (Monk et al., 2006). However, given that ge-
nomic imprinting is important for both human and rodent pla-
cental development (Frost and Moore, 2010), rodent studies
have been useful for assessing the capacity of environmental
chemicals to disrupt placental imprinting. Other useful models
of human placental development also exist, and include nonhu-
man primates and sheep. However, few studies using these
models have assessed the effects of endocrine disruptors on
placental endpoints (except 1 study in sheep discussed later),
therefore here, we have focused primarily on currently available
studies in rodents.

Exposure Timing

Developmental toxicity studies targeting specific windows of fe-
tal organ development are valuable for gaining insight into fetal
organogenesis. However, the role of the placenta in mediating
these outcomes is difficult to assess if dosing begins after the
earliest stages of implantation and placental development/tro-
phoblast invasion (as early as gestational day [GD] 3.5 in mice)
(Yamanaka et al., 2006). Furthermore, these studies do not accu-
rately model exposures in humans, as women are exposed to
BPA and phthalates on a daily basis, prior to and throughout
pregnancy.

Of the studies described here, only one began dosing prior
to mating, whereas others started on GD 0 or 1, or much later
(Tables 1 and 2). However, there is evidence for window-
specific effects of phthalates on placental pathology. A recent
study in ICR mice dosed with high-dose (500 mg/kg) di-(2-ethyl-
hexyl) phthalate (DEHP) found decreased placental weight and
diameter (males only) and decreased blood sinusoid area and
cell proliferation (males and females analyzed together) only in
dams dosed at GD7-12, but not GD0-6 or GD13-17 (Shen et al.,
2017). Timing of exposure is especially significant when assess-
ing placental epigenetic endpoints, as the earliest rapid stages
of placental cell differentiation occur under strict epigenetic
control (Maltepe et al., 2010). In JF1 mice, neither BPA (0.2mg/
kg/day) nor DEHP (750mg/kg/day) gavaged from GDS8.5 to
GD12.5 had major effects on loss-of-imprinting or the expres-
sion of imprinted genes (Kang et al., 2011). BPA also had no ef-
fect on either placental or embryonic loss-of-imprinting in
pregnant C57BL/6 dosed from GDS5.5 to GD12.5 (Susiarjo et al.,
2013). However, when the C57BL/6 mice were dosed with BPA
beginning two weeks prior to mating until GD9.5 or GD12.5,
BPA disturbed loss-of-imprinting, altered the mRNA expression
of several imprinted genes, reduced placental CpG and average
global DNA methylation, and decreased DNA methylation of 1
imprinted gene (Susiarjo et al, 2013). Although germline
imprints (those passed to future generations) resist the first
wave of active demethylation immediately following fertiliza-
tion (Sanz et al., 2010), the earliest regulation of placental
imprinting occurs, in part, independently of DNA methyltrans-
ferase 1 (DNMT1) mechanisms that regulate extra-placental
imprinting (Court et al., 2014). These early dynamic processes
may be especially sensitive to disruption by environmental
chemicals. Therefore, given the role of epigenetics in regulating
transcription, downstream translation, and ultimately placen-
tal development, it is critical that studies assessing the effects
of chemicals on the placenta begin dosing prior to mating or
immediately following fertilization.

Bisphenol dose and compound selection. Animal studies assessing
nonplacental endpoints suggest a nonmonotonic dose-
response for BPA, likely reflecting effects on both endocrine and
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A. Placental Hormones

| |

B. Trophoblast Invasion and Decidualization

HUMANS: placenta expresses steroidogenic genes throughout pregnancy (sen-zimra
etal. 2002) and expresses ,BCG (Maston and Ruvolo 2002).

MICE: placenta does not appear to express steroidogenic genes in the second half
of gestation (Ben-zimra et al. 2002).

RODENTS: placenta releases lactogens (Freemark et al. 1993), but does not appear to
express ,BCG (Maston and Ruvolo 2002).

Placental growth hormone: regulates maternal IGF-1 release — controls maternal

metabolic adaptation to pregnancy together with placental lactogen (Lacroix et al. 2002;
Newbern and Freemark 2011).

Estrogen: supports fetal growth — increases placental angiogenesis & fetal nutrient
transfer (albrecht and Pepe 2010); involved in implantation & parturition (padmanabhan and
Laloraya 2016; Vannuccini et al. 2016).

hCG: numerous roles in placental development, including promoting progesterone
production (cole 2010).

Progesterone:

Increases maternal food intake (Douglas et al. 2007).

Suppresses maternal immune response to fetus by supporting the shift from
TH1 (cell-mediated) immune activity to TH2 (humoral) activity (challis et al. 2009).
HUMANS: produced by the placenta; concentrations much higher than in mice.

MICE: produced by the corpus luteum throughout gestation.
(Malassine et al. 2003).

Trophoblast invasion:

HUMANS: deep (Adamson et al. 2002).
MICE: shallow.

RAT: myometrial invasion and arterial remodeling much more similar to humans
than to mice.

(Vercruysse et al. 2006).

Villi formation and branching:

HUMANS - as early as 13 days post-coitum (genirschke and Kaufmann 1995).
MICE - not until embryonic day 8.5 (Murray et al. 2010) when the embryo fuses with
the chorion (Rossant and Cross 2001).

Decidualization:

HUMANS: during the late secretory phase of the menstrual cycle in preparation
for pregnancy.

RODENTS: in response to implantation at 4-5 days of pregnancy.

(Fonseca et al. 2012).

C. Fetal:Placental Weight Ratio

D. Structure and Classification

HUMANS: approximately 6:1; RATS - 10:1 (Leiser and Kaufmann 1994).
MICE: reported as 11:1 to 14.5:1 (coan et al. 2008).

Ability to produce more fetus per gram of placenta likely due to:

Rodents’ placental countercurrent blood exchange (kaufmann and Davidoff 1977).
Differences in placental passive solute permeability between humans and
rodents (sibley 2009).

Differences in the number of trophoblast layers between fetal and maternal
blood (3 in the mouse and rat, and 1 in humans) (Leiser and Kaufmann 1994).

HUMANS and RODENTS: discoid.
* Other species have alternate structures (zonary in cats and dogs, cotyledonary
in cow and sheep, diffuse in pigs and horses).

HUMAN and RODENTS: hemochorial (Grosser Classification, or the number of

intermediate layers) - fetal chorionic villi are directly bathed by maternal blood

(PrabhuDas et al. 2015)

* In other species, fetal tissues of the placenta are not directly exposed to
maternal blood (epitheliochorial in horses and ruminants or endotheliochorial
in dogs and cats (Leiser and Kaufmann 1994).

Figure 1. Species differences (specifically focusing on humans and rodents) in A, placental hormones, B, trophoblast invasion and decidualization, C, the fetal: placen-
tal weight ratio, and D, placental structure and classification (Adamson et al., 2002; Albrecht and Pepe, 2010; Benirschke and Kaufmann, 1995; Ben-Zimra et al., 2002;
Challis et al., 2009; Coan et al., 2008; Cole, 2010; Douglas et al., 2007; Fonseca et al., 2012; Freemark et al., 1993; Kaufmann and Davidoff, 1977; Lacroix et al., 2002; Leiser
and Kaufmann, 1994; Malassine et al., 2003; Maston and Ruvolo, 2002; Murray et al., 2010; Newbern and Freemark, 2011; Padmanabhan and Laloraya, 2016; PrabhuDas
et al., 2015; Rossant and Cross, 2001; Sibley, 2009; Vannuccini et al., 2016; Vercruysse et al., 2006).

non-endocrine pathways. Placental studies, however, have thus
far utilized relatively high doses and limited dose-response
curves. Despite this, several studies do suggest a dose-response
relationship for BPA. For example, in ICR mice, most effects on
placental mRNA and protein expression were observed only at
the higher BPA doses (200 and 20 mg/kg vs 2mg/kg) (Tan et al.,
2013). In a study using CD-1 mice, 0.5 versus 50 mg/kg/day BPA
also had dose-dependent effects on placental size, size of the
spongiotrophoblast layer, total areas of maternal blood spaces,
and embryonic labyrinthine capillaries. In this study, of all
genes affected by 0.5 or 50 mg/kg BPA (compared with control),
only 77 were shared between the 2 treatment groups, with
0.5mg/kg BPA generally having a larger effect than 50 mg/kg.
The 2 BPA doses also led to different significantly enriched
KEGG pathways and different affected protein hubs (Tait et al.,
2015). BPA has also been shown to dose-dependently affect epi-
genetic endpoints in other tissues (Ho et al., 2015), and while the
Susiarjo et al. study demonstrated dose-dependent effects on
placental imprinting and DNA methylation, and included a
lower dose of BPA (estimated 10 ug/kg bw/day), additional stud-
ies are warranted using wider ranges of doses, including those
more in line with human exposures (estimated to be well <1-
2pg/kg bw/day in the general population; Teeguarden and
Hanson-Drury, 2013).

Only one animal study has assessed the effects of bisphe-
nols other than BPA. Interestingly, a study in sheep found that
bisphenol S (BPS), which is currently being used as a replace-
ment for BPA in many products, altered the expression of
syncytialization-related proteins/mRNA and decreased the
number of trophoblast-derived binucleate cells, whereas the
same dose of BPA had no effect on these outcomes (Gingrich
et al., 2018). Pregnant women are exposed to various bisphenols
(Kolatorova et al., 2018; Wan et al., 2018), so additional studies in
animals may be warranted to investigate the effects of these
compounds on the placenta.

Phthalate dose and compound selection. Animal studies assessing
effects of phthalates on placental endpoints are also limited,
have utilized relatively high doses, and have primarily focused
on 1 phthalate, DEHP. In pregnant CD-1 mice, DEHP (125, 250, or
500 mg/kg/day) had dose-dependent effects on total placental
and labyrinthine area, whereas all DEHP doses altered placental
weight, spongiotrophoblast area, small-branched fetal vessels,
proliferation in several placental zones, and the mRNA expres-
sion of numerous genes (Zong et al., 2015). In Sprague Dawley
rats, DEHP (750 or 1500 mg/kg/day) dose- and zone-specifically
induced placental mRNA and protein expression of Ppara and
Pparg, the expression of several fatty acid transport-related
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genes/proteins, and placental content of several long-chain
polyunsaturated fatty acids. However, both doses induced cyto-
chrome p4504A1 (CYP4A1) mRNA and protein, and reduced lab-
yrinthine cyclooxygenase (COX)-2 protein and prostaglandin
formation from placental homogenates (Xu et al., 2008). It is
likely that the lack of a dose-response in these studies was due
to the high phthalate doses used in these experiments, which
were chosen because previous studies had used similar doses,
and not because they were relevant to human exposures.
Authors discussed that approximate plasma concentrations of
mono-(2-ethylhexyl) phthalate (MEHP) (the major metabolite of
DEHP) in healthy women at term are 2.05 * 1.47 pg/ml (refer-
enced from Latini et al., 2003). However, authors of this animal
study discussed unpublished results showing that 750 and
1500 mg/kg DEHP treatment led to maternal MEHP plasma con-
centrations of 65 or 136 ug/ml (respectively). Given that these in-
ternal doses are greatly out of the range of human exposures,
additional studies using lower concentrations of DEHP are
needed to corroborate these findings.

Two more-recent studies reported placental outcomes in re-
sponse to phthalates other than DEHP, but also at relatively
high doses. In Wistar rats, 500 mg/kg DBP dosed to the FO gener-
ation decreased placental weight in F1, F2, and F3 generations,
accompanied by numerous reproductive and developmental
disturbances in offspring (Mahaboob Basha and Radha, 2017).
Another study in Wistar rats found that all doses (20, 100,
500 mg/kg) of di-n-hexyl phthalate (DHP) or dicyclohexyl phthal-
ate (DCHP) decreased placental protein expression of PCNA,
PPARyY, ERa, ERB, and AR. However, effects on placental weight,
diameter, and length differed by chemical and dose, as did most
pathological findings within the trophoblasts, spongiotropho-
blast, and basal zone (Ahbab et al., 2017). Although this study in-
cluded a dose-response curve, even the lowest concentration
(20 mg/kg) may not be relevant to human exposures, as urinary
MCHP (the major metabolite of DCHP) was below the level of de-
tection for most people in the recent NHANES (CDC, 2017), and
little is known about human DHP exposure.

Based on these findings, studies with more extensive dose-
response curves that are more in line with human exposures
will be essential to begin unraveling the mechanisms responsi-
ble for associations of phthalates and BPA exposures with pla-
cental outcomes in humans. This task is complicated by species
differences in toxicokinetics, exposure, metabolism, and elimi-
nation rates of both BPA and phthalates (Doerge et al., 2011;
Rusyn et al., 2006; Silva et al., 2007; Thayer et al., 2015). In
humans, exposure is estimated based on internal doses of par-
ent compounds or excretion of their metabolites. In animals,
however, doses of parent compounds are known, but not the
circulating or excreted concentrations of chemicals and their
metabolites. Establishing exposure “dose” in humans is difficult
given the multiple exposure pathways for BPA and phthalates
and the paucity of data on human pharmacokinetics of these
compounds. Therefore, in future animal studies, assessment of
circulating and excreted concentrations of chemicals and their
metabolites will be critical to allow exposure/dose comparisons
between humans and model animals.

Sex-specific placental outcomes. The placenta develops from both
maternal and fetal tissues, and consequently has sexually di-
morphic responses to environmental and dietary cues
(Rosenfeld, 2015). Studies in humans do suggest sex-specific
associations between exposure to BPA or phthalates and pla-
cental outcomes (Adibi et al., 2017; LaRocca et al., 2014).
However, of the animal studies described here, only 2

specifically discussed “placental sex.” In ICR mice, 200 mg/kg
DEHP decreased placental weight and diameter in male but not
female placentas (Shen et al., 2017), whereas 2.5 ng/kg/day BPA
differentially affected placental mRNA expression depending
on placental sex, either in magnitude or direction (Imanishi
et al., 2003). As previously discussed, rodent models are espe-
cially useful for assessing sex-specific associations between pla-
cental and fetal outcomes, as each pup develops with its own
placenta. Given the reported sexually dimorphic associations of
BPA/phthalates with placental outcomes in humans and some
previous animal studies, future animal models should leverage
the rodent fetal-placental unit to assess sex-specific placental
effects of BPA and phthalates.

IN VITRO SYSTEMS

Cell culture experiments are indispensable for establishing
mechanisms of action of BPA and phthalates on placental func-
tion. In placental in vitro models, these functional/phenotypic
endpoints include standard measures of cell health (viability,
proliferation, necrosis), and placenta-specific measures of func-
tion and development (apoptosis, migration, invasion, and dif-
ferentiation). Similar to cancer, appropriate placental
development is characterized by increased migration, invasion,
differentiation (Knofler and Pollheimer, 2013), and apoptosis
(which is exaggerated in instances of placental disease; Sharp
et al., 2010), thereby providing phenotypic readouts for the
effects of BPA and phthalates. As will be discussed in following
sections, similar to animal models, chemical concentration and
length of exposure are critical for assessing effects of these
chemicals, as is model selection. Models utilized in currently
available studies include classic immortalized cell lines, as well
as more physiologically relevant placental primary cultures to
more-accurately model placental exposures (Tables 3 and 4).

Cell Models

Models assessing the impacts of environmental chemicals on
placental molecular signaling have included immortalized cell
lines, primary trophoblasts, cytotrophoblasts, microsomes, cho-
rionic villi explants, and placental macrophages. For both im-
mortalized and primary cells, the differences between their
signaling and physiological responses to treatments represent
fundamental differences in physiological functions of cells from
which they are derived (Bilban et al., 2010). For example, in hu-
man HTR-8/SVneo placental cells, BPA had no effect on cell via-
bility or proliferation, whereas a range of BPA concentrations
decreased cell migration and invasion, reflecting the invasive
nature of these first-trimester-derived trophoblasts (Spagnoletti
et al., 2015). The invasive nature of HTR-8/SVneo cells was con-
firmed in another study, showing that BPA increased MMP-9
(but not MMP-2) protein, involved in cell invasion and migration
(Lan et al., 2017), and both proteins were increased by BPA in
BeWo cells, a first-trimester-derived trophoblast choriocarci-
noma cell line (Wang et al., 2015).

Differences in gene transcription underlie the functional dif-
ferences between placental cell lines and cell types, and may
likely regulate their response to environmental chemicals. For
example, in both JEG-3 choriocarcinoma immortalized cells and
PL30 cells derived from third-trimester placentas, BPA
concentration-dependently inhibited CYP19 gene expression,
but the baseline expression of CYP19 appeared to be much
greater in JEG-3 than in PL30 cells, reflecting the innate differen-
ces of an important hormonal regulator between these cells
(Huang and Leung, 2009). A microarray study in several
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SV40-transformed placental cell lines showed that BPA altered
25 miRs in 3 A cells and 60 miRs in HTR-8 cells, without signifi-
cant changes in TCL-1 cells (Avissar-Whiting et al,, 2010).
Authors suggested that these contrasting responses to BPA are
likely due to stage-specific differences between cell lines, as
HTR-8 cells are derived from first trimester extravillous cells
from the termination of a normal pregnancy and 3 A cells from
first trimester villous cells, whereas TCL-1 cells come from third
trimester villous cells. Although this is a possible explanation,
the maintenance and growth of these cells often varies depend-
ing on the supplier and even from lab-to-lab, so additional sys-
tematic studies may be needed to confirm these findings in
primary cell lines.

The mechanisms by which BPA targets the placenta are still
largely unknown, but there is some evidence that different cells
may uniquely interact with specific toxicants. The estrogen-
related receptor gamma (ERRy1), a receptor that binds BPA with
high affinity, has been suggested to drive the preferential accu-
mulation of BPA within the placenta (Takeda et al., 2009). In one
study, the baseline mRNA expression of ERRy1 was higher in
JEG-3 and human isolated extravillous cytotrophoblasts than in
BeWo cells. Importantly, the expression of ERRy1 was 20-25 and
50-fold higher in first and third trimester placentas, respec-
tively, when compared with JEG-3 cells. Other ERRy subtypes
(ERRy2 and ERRy3) were not expressed at all in JEG-3 or BeWo
cells, but were expressed in first-trimester placentas.
Furthermore, in JEG-3, but not BeWo cells, BPA concentration-
dependently decreased a marker of DNA synthesis rate partly
through ERRy (Morice et al., 2011). These studies in a variety of
cell models suggest that, as with well-known cell models of can-
cer initiation, progression, and metastasis, future placental
studies must select cell models based on their genetic and de-
velopmental characteristics. For example, immortalized cells
from first trimester placentas (eg, HTR-8, BeWo, JEG-3) may be
better suited for studies related to invasion and vascularization,
whereas third trimester immortalized cells (eg, TCL-1) or pri-
mary cells from term placentas may be best when assessing
effects on placental nutrient transfer or hormonal signaling.

BPA Concentration and Treatment Length

BPA’s nonmonotonicity and mechanism-of-action require
careful selection of both treatment concentrations and timing.
For example, in human placental chorionic villi explants, BPA
increased a proinflammatory cytokine associated with immune
adaptations in pregnancy after 24 h of treatment, but the effect
was absent at 48 h (Mannelli et al., 2014). In primary cytotropho-
blasts from term placentas of uncomplicated pregnancies
treated with 0.0002 to 0.2 pg/ml BPA, apoptosis was induced by
0.02-200 ug/ml BPA, but not by the 2 lower concentrations,
whereas necrosis and tumor necrosis factor o (TNF-z) mRNA
and protein were induced by the lower BPA concentrations.
Conversely, several higher concentrations of BPA had no effect
on TNF-o mRNA, decreased TNF-q protein, and decreased necro-
sis (Benachour and Aris, 2009). In primary cultures of human
placental trophoblasts, 11-B-dehydrogenase isozyme 2 (11f-
HSD2) activity, protein content, and gene expression were also
concentration-dependently increased by BPA (increased by
0.25-2.0 pg/ml but not 0.1pg/ml BPA) (Rajakumar et al.,, 2015).
Another study in placental explants showed that in term but
not first trimester placental villus cultures, 48-h treatment with
1nM but not 100nM BPA decreased the ABCG2 protein, which
transports a variety of compounds in human placental syncy-
tiotrophoblasts (Sieppi et al., 2016), highlighting the importance
of both chemical concentration and developmental timing.
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Similarly, in immortalized cells, the mRNA and protein ex-
pression of CRH in JEG-3 cells was increased by 25 and 50 uM
BPA, but not by 1 or 5 uM BPA (Huang et al., 2012). In addition, in
JEG-3 cells, BPA had both time- and concentration-dependent
effects on aromatase activity, increasing activity at some con-
centrations and treatment windows and decreasing activity at
others (Nativelle-Serpentini et al., 2003). In BeWo cells, BPA in-
creased cell proliferation at 1 and 10 uM, whereas other concen-
trations (0.01, 0.1, and 100 pM) had no impact on proliferation,
and the highest concentration (1000 uM) decreased proliferation.
These outcomes were accompanied by dose-specific effects on
E-cadherin mRNA and protein, but relatively consistent effects
across doses on invasion and markers of invasion (MMP-9,
MMP-2, TIMP-1, and TIMP-2 protein) (Wang et al, 2015).
Similarly, in HTR-8/SVneo cells, BPA had both concentration-
and time-specific effects on cell migration and concentration-
specific effects on markers of invasion (MMP-9 and TIMP-3
protein) (Lan et al., 2017). Taken together, these studies confirm
the concentration- and time-dependent nature of BPA’s effects
on downstream targets and highlight the importance of select-
ing physiologically relevant concentrations and treatment
lengths for investigating potential mechanisms of action of BPA
using in vitro models. Specifically, many of these studies support
the nonmonotonicity of BPA—where effects on some pathways
were only observed at lower or higher concentrations, whereas
other pathways were targeted by the lowest and highest, but
not middle BPA concentrations. This suggests that while both
low and high concentrations of BPA impact placental pathways,
BPA’s mechanisms of action may differ at the 2 ends of the
dose-response curve. These data also reinforce the need for ex-
tensive dose-response curves that first: include the expected
range of exposure in humans and second: allow for the interpre-
tation of BPA concentration-specific mechanisms-of-action
within the placenta.

Phthalate Concentration and Treatment Length

Numerous in vitro studies have assessed the effects of MEHP,
the major DEHP metabolite, on placental cellular endpoints. For
example, CRH and COX-2 regulate parturition in humans and
have been linked with preterm birth, and in human placental
cytotrophoblasts, only higher concentrations of MEHP (100 uM
and 150 uM) increased the expression of these proteins (Wang
et al., 2016). In HTR-8/SVneo cells treated with a range of MEHP
concentrations, only the highest concentration (180uM) in-
creased ROS production, oxidative DNA damage, and apoptosis,
whereas both 90 and 180 uM concentrations induced the mRNA
expression of prostaglandin-endoperoxide synthase 2 (PTGS2/
COX-2) (Tetz et al.,, 2013). In THP-1 cells (human monocyte cells
derived from an infant with acute monocytic leukemia), this
group later showed that only the highest concentration (180 pM,
after 24h of treatment, not 2-8h) induced prostaglandin E2 re-
lease (Tetz et al., 2015). A more recent study in HTR-8/SVneo
cells showed that invasion was decreased and TIMP-1 protein
increased by 10, 100, and 200 uM MEHP, but not by the lowest
concentration (1uM), whereas MMP-9 activity was only de-
creased at 100 and 200 uM MEHP (Gao et al., 2017). In addition, in
HTR-8/SVneo cells, 50, 100, or 180 uM MEHP induced ROS pro-
duction, but the most pronounced effects were at the highest
concentration and primarily after 72h. In another study, 50 uM
MEHP had no effect on miR-16 (which authors discussed is al-
tered in pregnancy pathologies), whereas 100pM MEHP in-
creased miR-16 at 4 and 48 h, and 180 uM increased miR-16 at all
timepoints (4, 8, 24, 48h) (Meruvu et al., 2015). The same group
later showed that intracellular ROS production in HTR-8/SVneo
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cells was increased by a range of MEHP concentrations, but the
expression of several miRs was only increased at higher con-
centrations (100 or 180uM), with the exception of miR-17-5p
(Meruvu et al., 2016). These concentrations correspond to 30 and
54 pg/ml MEHP (respectively), whereas pregnant women have
been shown to have much lower median plasma concentrations
of 0.68 = 0.85 pg/ml (Latini et al., 2003), and ranging from 0.17 to
6.74 ng/ml (Li et al., 2013). These studies suggest that most MEHP
concentrations affect transcription and translation, but that cel-
lular phenotypic changes are typically only observed at higher
MEHP concentrations. It is possible that the expected chronic
low-dose MEHP exposure in humans can be modeled in cells
with short-term treatment at higher concentrations. However,
it is more likely that as with BPA, MEHP’s mechanisms-of-
action differ at the extremes of the concentration curve.
Therefore, in order to understand the mechanisms by which
MEHP affects the placenta, more studies are warranted assess-
ing a variety of endpoints using broader and more human-
relevant concentration curves.

As previously described, pregnant women are exposed daily
to an array of phthalates. However, few cell studies have
assessed outcomes in response to DEHP metabolites other than
MEHP. However, 2 in vitro studies treated rat HRP-1 placental
cells with DEHP or 2 of its metabolites, MEHP and 2-ethylhexa-
noic acid (EHA). DEHP and both metabolites had concentration-
and time-specific effects on the expression of placental fatty
acid uptake and metabolism-related genes. All 3 also increased
the uptake rates of several essential fatty acids, whereas only
MEHP and EHA increased arachidonic acid transport, and only
DEHP increased DHA transport (Xu et al., 2005). In a follow-up
study in HRP-1 cells, DEHP, MEHP, and EHA also had unique
effects on the overall contents of several lipid classes (Xu et al.,
2006).

Another current limitation in the field is that only 2 in vitro
studies thus far have investigated phthalates other than DEHP
and its metabolites. One assessed the structure-activity rela-
tionship of 100 uM of 11 diphthalates and 3 monophthalates on
progesterone and estradiol production in JEG-3 cells. Estradiol
production was only decreased by DCHP and BBOP, whereas 5
diphthalates decreased progesterone production, with no
effects of monophthalates on either hormone (Table 4) (Xu et al.,
2016), suggesting that the ability of phthalates to inhibit aroma-
tase and 3p-hydroxysteroid dehydrogenase 1 (33-HSD1), and to
decrease estradiol and progesterone production is highly de-
pendent on their chemical structure. Another study treated JEG-
3 cells with 0.01-500 uM DMP, DBP, BBP, and DEHP. None of the
phthalates affected ROS production, but DMP increased aroma-
tase activity at concentrations >50uM, DBP and BBP decreased
aromatase activity at 1C50=104 and 167 uM (respectively),
whereas DEHP had no effect on aromatase activity (Perez-
Albaladejo et al., 2017). Phthalate mixtures used in other experi-
mental models have shown their distinct phenotypic effects
compared with DEHP alone (Zhou et al, 2017a,b). Such
approaches in placental studies will be valuable for establishing
these chemicals’ mechanisms of action when present as com-
plex mixtures, as they are in humans.

CONCLUSIONS AND FUTURE DIRECTIONS

Placental Actions of BPA and Phthalates
As summarized in Tables 14, studies assessing effects of BPA
or phthalates on placental outcomes in experimental animal

and cell models have focused on hormones, epigenetics, inflam-
mation/oxidative stress, cellular damage, and nutrient transfer.

BPA and phthalates are known endocrine disruptors, and
there is substantial evidence that BPA can disrupt placental hor-
mones, their receptors, or regulatory enzymes, whereas studies
related to the effects of phthalates on placental hormones are
more limited. In addition to hormones, placental nutrient trans-
fer capacity is the best-characterized measure of placental effi-
ciency (Burton and Fowden, 2012). Therefore, more studies are
warranted in all models to investigate the effects of BPA and
phthalates on placental energy metabolism, and fetal nutrient
supply.

Although there is great interest in the role of epigenetics in
placental development, additional data are needed related to
the ability of BPA and phthalates to disrupt placental epigenetic
signaling in experimental models. Currently, evidence for the
ability of BPA or phthalates to induce placental inflammation or
oxidative stress comes primarily from cell models; given that
oxidative stress and inflammation are proposed to mediate
associations of BPA or phthalate exposure with pregnancy out-
comes (Ferguson et al., 2017; Veiga-Lopez et al., 2015; Watkins
et al., 2015), more studies in animal and cell models are war-
ranted to investigate these mechanisms. Finally, there is sub-
stantial evidence from experimental models that BPA and
phthalates cause frank damage to placental vasculature, struc-
ture, and function. However, these findings should be substan-
tiated in animal models using concentrations of both chemicals
that are in line with human exposures.

Summary of Animal and Cell Models

Given the challenges in human placental sampling (Figure 2),
various experimental models have been employed to address
mechanisms of placental disruption by BPA and phthalates.
However, these studies vary in their design and measured out-
comes, and few accurately reflect human exposures to these
chemical. Therefore, both animal and cell models would benefit
from use of more extensive BPA/phthalate doses and concentra-
tions (Figure 2). Furthermore, exposures in animal models
should ideally begin prior to decidualization, and treatment in
cell models should be timed appropriately, with more extensive
time ranges. Assessing sex-specific outcomes in animal models
is also critical, as is the selection of precisely applicable cell
models. In the case of phthalates, future animal and cell studies
should assess exposure to a wider variety of phthalates (beyond
DEHP and its metabolites), and at more relevant doses, with the
ultimate goal of modeling more complex exposures to the mix-
tures of phthalates that occur in humans. Finally, given broad
outcome selection in animal and cell models, a useful approach
moving forward would be to design mechanistic animal and cell
studies that parallel placental endpoints altered in humans in
response to BPA and phthalates. Such approaches will be indis-
pensable in helping to unravel the mechanisms involved in pla-
cental toxicity and the placenta-mediated effects of EDCs on
fetal development.
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Figure 2. An integrated approach between human, animal, and cell studies will be needed to determine the precise effects of environmental exposures on the placenta.
To accomplish this, as illustrated in the figure, numerous factors should be carefully considered when establishing animal and in vitro models, and using findings from
animal or in vitro studies to inform questions in humans. Furthermore, these factors should be taken into account when drawing conclusions regarding mechanisms

of action of BPA and phthalates from the currently available literature.
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