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Background. Resistance to all first-line antibiotics necessitates the use of less effective or more toxic “reserve” agents. Gram-
negative bloodstream infections (GNBSIs) harboring such difficult-to-treat resistance (DTR) may have higher mortality than phe-
notypes that allow for ≥1 active first-line antibiotic.

Methods. The Premier Database was analyzed for inpatients with select GNBSIs. DTR was defined as intermediate/resistant in 
vitro to all ß-lactam categories, including carbapenems and fluoroquinolones. Prevalence and aminoglycoside resistance of DTR 
episodes were compared with carbapenem-resistant, extended-spectrum cephalosporin-resistant, and fluoroquinolone-resistant 
episodes using CDC definitions. Predictors of DTR were identified. The adjusted relative risk (aRR) of mortality was examined for 
DTR, CDC-defined phenotypes susceptible to ≥1 first-line agent, and graded loss of active categories.

Results. Between 2009–2013, 471 (1%) of 45 011 GNBSI episodes at 92 (53.2%) of 173 hospitals exhibited DTR, ranging from 
0.04% for Escherichia coli to 18.4% for Acinetobacter baumannii. Among patients with DTR, 79% received parenteral aminoglyco-
sides, tigecycline, or colistin/polymyxin-B; resistance to all aminoglycosides occurred in 33%. Predictors of DTR included urban 
healthcare and higher baseline illness. Crude mortality for GNBSIs with DTR was 43%; aRR was higher for DTR than for carbape-
nem-resistant (1.2; 95% confidence interval, 1.0–1.4; P = .02), extended-spectrum cephalosporin-resistant (1.2; 1.1–1.4; P = .001), 
or fluoroquinolone-resistant (1.2; 1.0–1.4; P = .008) infections. The mortality aRR increased 20% per graded loss of active first-line 
categories, from 3–5 to 1–2 to 0.

Conclusion. Nonsusceptibility to first-line antibiotics is associated with decreased survival in GNBSIs. DTR is a simple bedside 
prognostic measure of treatment-limiting coresistance.
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 Antimicrobial resistance is estimated to cause 23 000 deaths annu-
ally in the United States [1] and 700 000 worldwide [2]. Plasmid-
mediated transfer of resistance and nosocomial transmission of 
gram-negative (GN) bacteria, particularly Enterobacteriaceae, 
Pseudomonas aeruginosa, and Acinetobacter baumannii have 

led to widespread dissemination [3], outbreaks, and untreatable 
infections [4]. Existing surveillance systems track antimicrobial 
resistance within and across antibiotic categories [5]. However, 
estimating the burden of clinically meaningful coresistance and 
its relationship to outcome remains challenging.

In 2008, the US Centers for Disease Control and Prevention 
(CDC) and the European Centre for Disease Prevention and 
Control classified nonsusceptibility to ≥1 agent in ≥3 antimicro-
bial categories as multidrug resistant (MDR), and susceptibility 
limited to ≤2 categories as extensively drug-resistant (XDR) [6]. 
Although epidemiologically useful [7], assessment as XDR can 
entail cumbersome in vitro testing of up to 17 unique antibiotic 
categories [6]. Furthermore, requiring resistance to only 1 agent 
per category [8] and weighting all antibiotics equally regardless 
of efficacy and toxicity limits the bedside applicability of MDR 
and XDR as categories. Despite denoting escalating resistance, 
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MDR and XDR infections have not consistently been associated 
with different patient outcomes [7, 9–11].

A practical approach to antimicrobial resistance in GN bacteria 
might focus on treatment-limiting resistance to all first-line agents, 
that is, all β-lactams, including carbapenems and β-lactamase inhib-
itor combinations, and fluoroquinolones, which can be described 
as difficult-to-treat resistance (DTR). Although strains susceptible 
to only 1 or 2 first-line agents also present challenges for choosing 
empiric therapy, DTR signifies no active first-line agents and an 
even higher level of resistance. Nonsusceptibility to all first-line, 
high-efficacy, low-toxicity agents very often leads to both discordant 
empirical regimens and subsequent reliance on less effective and/
or more toxic “reserve” agents. For example, aminoglycosides and 
colistin/polymyxin-B are both nephrotoxic and poorly penetrate 
abdominal and pulmonary sites. Tigecycline blood levels are low 
relative to minimal inhibitory concentrations, and tigecycline use is 
associated with increased mortality rates [12–14].

GN bloodstream isolates are an important surveillance target 
for monitoring resistance, because cultures from nonsterile sites 
are less likely to represent true infections [15]. Using data from 
a well-distributed sample of US hospitals, we determined the 
5-year prevalence of DTR among GN bloodstream infections 
(GNBSIs), associated risk factors and the effect of nonsuscepti-
bility to first-line agents on in-hospital mortality rates.

METHODS

Data Source and Study Population

A retrospective cohort study was conducted using inpatient 
encounters (hospitalizations) from 2009to 2013 at 173 US hos-
pitals reporting microbiology data with antimicrobial suscep-
tibility results in the Premier Healthcare Database. Included 
patients had ≥1 blood culture isolate belonging to 1 of 5 GN 
bacterial taxa: Escherichia coli, Enterobacter spp., Klebsiella spp., 
P. aeruginosa, or A. baumannii complex. The Office of Human 

Subjects Research at the National Institutes of Health waived the 
need for institutional review board evaluation, because analy-
ses were limited to existing deidentified data using a commer-
cially available data source compliant with the Health Insurance 
Portability and Accountability Act.

DTR Definition and Relationship to CDC-defined Resistance Phenotypes

Experts in infectious diseases, critical care, microbiology, and 
epidemiology developed DTR consensus criteria for each bac-
terial taxon of interest (Table  1). A  similar classification of 
resistance to the 4 major antibiotic classes (penicillins, ceph-
alosporins, carbapenems, and fluoroquinolones) was previ-
ously published by the Robert Koch Institute as part of German 
infection control guidelines [16]. Susceptibility results for ≥1 
carbapenem, ≥1 extended-spectrum cephalosporin, and ≥1 
fluoroquinolone were required to determine DTR status. CDC 
surveillance definitions were also used to classify isolates into 
individual resistance phenotypes: carbapenem resistant (CR), 
extended-spectrum cephalosporin resistant (ECR) or fluo-
roquinolone resistant (FQR) [17]. The relationship between 
DTR and MDR, XDR, and pandrug-resistant categories is 
schematically represented in Figure 1 but not analyzed further. 
Susceptibility interpretations were as reported by each institu-
tion; individual institutional standards around susceptibility 
testing were not available (see Supplementary Methods).

Study Design and Analysis

The prevalence of CR, ECR, and/or FQR was estimated from 
total GNBSIs with requisite susceptibility testing for that 
respective drug category. DTR prevalence estimates used sev-
eral denominators: isolates with any susceptibility results, iso-
lates from hospitals with continuous reporting, and isolates 
meeting minimum testing criteria. Isolates could contribute to 
estimates for >1 resistance category. A GNBSI episode encom-
passed all isolates of the same bacterial taxon within a 30-day 

Table 1. Phenotypic Definitions of Difficult-to-Treat Resistance and Centers for Disease Control and Prevention-defined Individual Resistance Phenotype 
Among 5 Taxa of Gram-negative Bloodstream Infections

Definitions Agents Included Defining Criteria

2015 CDC definitions

Carbapenem resistanta Imipenem, meropenem doripenem ertapenemb Resistance to ≥1 carbapenem (Escherichia coli, Klebsiella spp, 
Enterobacter spp); intermediate or resistant to ≥1 carbapenem 
(Pseudomonas aeruginosa, Acinetobacter baumannii)

Extended-spectrum 
cephalosporin-resistantc 

Ceftazidime, cefepime, ceftriaxone,c 
cefotaximec

Resistance to ≥1 extended-spectrum cephalosporin

Fluoroquinolone resistanta Ciprofloxacin, levofloxacin, moxifloxacinc Resistance to ≥1 fluoroquinolone

Proposed definition

Difficult-to-treat resistance Intermediate or resistant to all reported agents in carbapenem, β-lactam, and fluoroquinolone categories (includ-
ing additional agentse when results available)

Abbreviation: CDC, Centers for Disease Control and Prevention.
aBased on 2015 CDC definitions.
bApplicable for Enterobacteriaceae only.
cNot applicable for P. aeruginosa.
dDTR assessment requires in vitro testing against ≥1 carbapenem, ≥1 extended-spectrum cephalosporin, and ≥1 fluoroquinolone.
eIntermediate or resistant to piperacillin-tazobactam and ampicillin-sulbactam (A. baumannii only) and intermediate or resistant to aztreonam (not applicable for A. baumannii). These drugs 
were only included in the assessment of DTR when results were reported. 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
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period. Healthcare-associated DTR was defined as any GNBSI 
occurring >3 calendar days after hospital admission, or earlier in 
patients from a healthcare facility and/or receiving hemodialy-
sis. Comorbid conditions and source of bacteremia were defined 
using International Classification of Diseases, Ninth Revision 
coding and the Elixhauser index [18] (Supplementary Table 1). 
The outcome was adjusted for the predicted mortality risk using 
the 3M All Patient Refined Diagnosis Related Group risk of 
mortality assignments [19]. Administration of reserve agent cat-
egories (aminoglycosides, colistin/polymyxin B, and tigecycline) 
and prevalence of aminoglycoside nonsusceptibility (intermedi-
ate/resistant) were compared across resistance phenotypes; the 
burdens of coresistance were compared across taxa.

Univariate and multivariable mixed-effect models were 
developed used modified Poisson regression with log-link func-
tion and robust error variances, controlling for facility-level 
random effects, to estimate adjusted relative risk (aRR) and 
95% confidence intervals (CIs) for factors significantly associ-
ated with GNBSIs with DTR (see Supplementary Data for full 
results) and in-hospital mortality. Separate models were devel-
oped to estimate the independent effects of resistance pheno-
type and the number of active first-line categories available on 
mortality risk. Multivariable models were adjusted for patient-, 
organism-, and hospital-level characteristics (covariates listed 
in the Supplementary Methods), for continuous reporting (see 
Supplementary Table 2 for hospital reporting patterns), and for 
previous episodes of bacteremia. Interactions between resistance 

phenotype and taxa or source of bacteremia were evaluated, as 
was possible multicollinearity. Among highly correlated vari-
ables (r > 0.8), those with the maximal effect on outcome were 
retained. Significance was assessed at the P < .05 level. Analyses 
were performed using SAS software (version 9.4).

RESULTS

Prevalence of DTR

At 173 institutions from 2009 to 2013, a total of 46 521 GNBSI 
isolates of interest were identified, spanning 45 011 unique 
episodes and 29 474 unique patients (Figure 2). Of these, 471 
GNBSIs (1.0%) exhibited DTR, compared with 1048 (2.3%) for 
CR, 4165 (9.0%) for ECR, and 10 240 (22%) for FQR (Figure 3). 
Characteristics of the 29 474 unique patients with GNBSI, 
21 410 with nonresistant phenotypes, are presented in Table 2 
and the Supplementary Data. The DTR prevalence was 1.1% 
when limited to hospitals with continuous reporting (n = 42). 
Among GNBSIs with minimum susceptibility testing, the prev-
alence was 1.5% (471 of 31 719) overall and 2.5% (336 of 13 445) 
among intensive care unit encounters. The prevalence of 
GNBSIs displaying DTR varied considerably across taxa, rang-
ing from 0.04% for E. coli to 18.3% for A. baumannii (Figure 3). 
P. aeruginosa had a CR/DTR prevalence ratio of 4.5, reflecting 
the underlying susceptibility of many CR isolates to piperacil-
lin-tazobactam (85.1% susceptible) and/or aztreonam (49.5% 
susceptible). Prevalence differences between CR and DTR were 
smaller but still significant for Klebsiella spp., Enterobacter spp., 

Figure 1. Schematic relationship between difficult-to-treat resistance (DTR) and Centers for Disease Control and Prevention (CDC)–defined coresistance phenotypes. As 
represented in this figure, DTR isolates fall completely within the CDC-defined multidrug-resistant (MDR) phenotype and overlap with the extensively drug-resistant (XDR) 
phenotype. Although pandrug-resistant (PDR) organisms all fall within the DTR phenotype, the DTR definition introduced here offers more clinical utility, in that it requires 
resistance only to all first-line agents, instead of all antimicrobial agents available. (Note that proportions of overlap among coresistance phenotypes are not displayed to 
scale. Refer to Magiorakos et al [6] for CDC definitions.) 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
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Figure 2. Flowchart showing selection process for inpatient encounters with gram-negative bloodstream infections (GNBSIs) exhibiting difficult-to-treat resistance (DTR) in 
the Premier Healthcare Database. To estimate DTR prevalence, all inpatient encounters reporting microbiology and in vitro antimicrobial susceptibility results were included 
if patients had ≥1 blood culture isolate belonging to 1 of 5 gram-negative bacterial taxa (see Methods). A GNBSI episode comprised all isolates of the same bacterial taxon 
within 30 days, and prevalence was calculated among episodes that met minimum testing requirements for DTR. For risk factor and outcome analysis, the most resistant 
phenotype from the last inpatient encounter was selected, given its proximity to the last known outcome for a given patient. Abbreviations: CR, carbapenem resistant; ECR, 
extended-spectrum cephalosporin resistant; FQR, fluoroquinolone resistant.
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and Acinetobacter spp. (P < .005). CR P. aeruginosa was nearly 
twice as likely to be susceptible to ≥1 alternative first-line cate-
gory as CR isolates in other taxa (Figure 4A).

The 173-hospital sample resembled geographic and teach-
ing status distributions in the American Hospital Association 
annual survey but was weighted toward larger hospitals 
(Supplementary Table  3). Ninety-two (53%) hospitals dis-
tributed across all 9 US census divisions had ≥1 GNBSI epi-
sode displaying DTR (Figure 4B and Supplementary Table 2). 
Likewise, 103 similarly distributed hospitals had ≥1 case of 
CR. Few hospitals had ≥10 GNBSIs classified as either DTR or 
CR over 5 years (Figure 4B). Model results for DTR risk fac-
tors, adjusted mortality risk, and proportional susceptibility of 
isolates to individual agents are reported by taxa for 2009 and 
2013 in the Supplementary Data (Supplementary Tables 4–7).

Impact of DTR

Of 29 474 patients with GNBSI, 3161 (15%) died in the hospi-
tal or were discharged to hospice. There were 190 deaths (or 
discharges to hospice) among the 440 patients with GNBSIs 
exhibiting the DTR phenotype (unadjusted mortality rate in 
patients with DTR,  43%; see Supplementary Data for predic-
tors of DTR). In comparison, the unadjusted mortality rate was 
35% for CR (183 of 526 patients), 22% for ECR (609 of 2756), 
and 18% for FQR (795 of 4342). This hierarchical pattern of 
mortality (DTR > CR > ECR > FQR) was observed for each GN 
taxa evaluated (Table 2). After adjustment for confounders, all 
resistant phenotypes remained individually associated with an 
increased mortality risk compared with nonresistant GNBSIs. 
Patients with GNBSIs and DTR had a 40% higher adjusted 
mortality risk than those with nonresistant GNBSI (aRR, 1.4; 
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Figure 3. Prevalence of difficult-to-treat resistance (DTR) compared with Centers for Disease Control and Prevention (CDC)–defined resistance phenotypes among gram-neg-
ative bloodstream isolates. The prevalences of DTR organisms and of CDC-defined phenotypes were compared across gram-negative bloodstream isolates for the 5 taxa of 
interest. Prevalence was calculated using all gram-negative bloodstream infection episodes, overall and for each respective organism. A, Overall prevalence of DTR compared 
with the CDC-defined phenotypes. B–F, Prevalence among Escherichia coli (B), Klebsiella spp. (C), Enterobacter spp. (D), Pseudomonas aeruginosa (E), and Acinetobacter 
baumannii (F) isolates. Abbreviations: CR, carbapenem resistant; ECR, extended-spectrum cephalosporin resistant; FQR, fluoroquinolone resistant; I, intermediate.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
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Table 2. Characteristics of Unique Inpatient Gram-negative Bloodstream Infection Encounters Classified by Resistance Phenotype at 173 US Hospitals 
From 2009 to 2013 (N = 29 474)

Characteristic

Mutually Exclusive Categories of Unique Encounters With GNBSI Isolates, No. (%)a

No First-line Agent Active ≥1 First-line Agent Active

DTR (n = 440) CR (n = 526) ECR (n = 2756) FQR (n = 4342)
Other (Nonresistant)

(n = 21 410)

Patient-level characteristics

 Patient demographics

  Age group, y

   <18 <5 (NR)b 9 (1.7) 50 (1.8) 30 (0.7) 634 (3.0)

   18–44 59 (13.4) 62 (11.8) 251 (9.1) 328 (7.6) 2284 (10.7)

   45–64 166 (37.7) 194 (36.9) 838 (30.4) 1259 (29) 5976 (27.9)

   >64 214 (48.6) 261 (49.6) 1617 (58.7) 2725 (62.8) 12 516 (58.5)

  Sex

   Male 222 (50.5) 292 (55.5) 1443 (52.4) 2253 (51.9) 9238 (43.2)

   Female 218 (49.6) 234 (44.5) 1313 (47.6) 2089 (48.1) 12 172 (56.9)

  Race

   White 280 (63.6) 352 (66.9) 1717 (62.3) 2985 (68.8) 15 240 (71.2)

   Black 101 (23.0) 119 (22.6) 537 (19.5) 815 (18.8) 3418 (16.0)

   Hispanic/other 59 (13.4) 55 (10.5) 502 (18.2) 542 (12.5) 2752 (12.9)

 Encounter characteristics

  Admission year

   2009 83 (18.9) 105 (20.0) 427 (15.5) 813 (18.7) 3529 (16.5)

   2010 101 (23.0) 110 (20.9) 564 (20.5) 984 (22.7) 4726 (22.1)

   2011 104 (23.6) 105 (20.0) 537 (19.5) 963 (22.2) 4773 (22.3)

   2012   84 (19.1) 117 (22.2) 558 (20.3) 822 (18.9) 4518 (21.1)

   2013 68 (15.5) 89 (16.9) 670 (24.3) 760 (17.5) 3864 (18.1)

  Elixhauser comorbidity index, median (IQR) 6 (4, 8) 5, (3, 7) 5 (3, 7) 4 (3, 6) 4 (3, 6)

  APR DRG risk of mortalityc

   Minor 5 (1.1) 16 (3.0) 169 (6.1) 357 (8.2) 2541 (11.9)

   Moderate 23 (5.2) 43 (8.2) 360 (13.1) 711 (16.4) 4315 (20.2)

   Major 99 (22.5) 127 (24.1) 845 (30.7) 1423 (32.8) 6926 (32.4)

   Extreme 313 (71.1) 340 (64.6) 1382 (50.2) 1851 (42.6) 7625 (35.6)

  ICU stay 321 (73.0) 328 (62.4) 1401 (50.8) 1845 (42.5) 8547 (39.9)

  Ventilator use 226 (51.4) 220 (41.8) 606 (22.0) 651 (15.0) 2919 (13.6)

  Neutropenia 12 (2.7) 19 (3.6) 60 (2.2) 122 (2.8) 663 (3.1)

  Isolated taxon

   Escherichia coli 10 (2.3) 18 (3.4) 1542 (56.0) 3777 (87) 12 595 (58.8)

   Klebsiella spp. 127 (28.9) 36 (6.8) 469 (17.0) 129 (3.0) 4280 (20.0)

   Enterobacter spp. 15 (3.4) 36 (6.8) 349 (12.7) 41 (0.9) 1535 (7.2)

   Pseudomonas aeruginosa 88 (20.0) 307 (58.4) 154 (5.6) 272 (6.3) 2219 (10.4)

   Acinetobacter baumannii 157 (35.7) 93 (17.7) 114 (4.1) 11 (0.3) 226 (1.1)

   Multiorganism 43 (9.8) 36 (6.8) 128 (4.6) 112 (2.6) 555 (2.6)

  Bacteremia sourced

   Urinary only 98 (22.3) 114 (21.7) 1135 (41.2) 2128 (49.0) 9599 (44.8)

   Respiratory only 70 (15.9) 93 (17.7) 232 (8.4) 300 (6.9) 1710 (8.0)

   Abdominal only 27 (6.1) 32 (6.1) 170 (6.2) 267 (6.2) 1433 (6.7)

   Skin and soft tissue only 13 (3.0) 29 (5.5) 84 (3.1) 85 (2.0) 456 (2.1)

   Other site 89 (20.2) 128 (24.3) 575 (20.9) 825 (19.0) 5318 (24.8)

   Multisite 143 (32.5) 130 (24.7) 560 (20.3) 737 (17.0) 2894 (13.5)

  Healthcare associatede 285 (64.8) 325 (61.8) 1118 (40.6) 1141 (26.3) 4835 (22.6)

  Discharge status

   Deathf 190 (43.2) 183 (34.8) 609 (22.1) 795 (18.3) 3161 (14.8)

   Discharge to an institution 230 (52.3) 276 (52.5) 1594 (57.8) 2162 (49.8) 8731 (40.8)

   Otherg 20 (4.6) 67 (12.7) 553 (20.1) 1385 (31.9) 9518 (44.5)

Hospital characteristics

 Bed capacity, No.

  ≤299 141 (32.1) 172 (32.7) 859 (31.2) 1596 (36.8) 8533 (39.9)

  300–499 158 (35.9) 159 (30.2) 1022 (37.1) 1421 (32.7) 6284 (29.4)
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95% CI, 1.2–1.6; P < .001). Adjusted risk did not differ signifi-
cantly among CR, ECR, or FQR phenotypes (P  ≥  .45 for all; 
Supplementary Table  5 and Figure  5A), whereas DTR had a 
20% higher adjusted mortality risk relative to CR (aRR, 1.2; 95% 
CI, 1.0–1.4; P = .02), ECR (1.2; 1.1–1.4; P = .001), and FQR (1.2; 
1.0–1.4; P = .008) (Figure 5B). Taxon-level distributions of DTR 
encounters and mortality rates, as well as taxon-specific crude 
and aRR of mortality are displayed in Figure 6A–6D.

In sensitivity analyses exploring whether observed taxon-level 
resistance differences affected outcome, adjusted mortality risk 
was higher for DTR than for CR among patients with P. aeruginosa 
(P =  .04). Enterobacteriaceae and A. baumannii had much fewer 
cases of CR not classified as DTR for this comparison and combined 
was not significant (P = .7; Supplementary Figure 3A and 3B). The 
adjusted risk of mortality for CR, ECR, and FQR was similar to non-
resistant cases for P. aeruginosa (all not significant), but higher for 
Enterobacteriaceae and A. baumannii (P < .001 for all). As empiric 
validation of the DTR concept, the aRR of mortality increased in a 
graded fashion with the stepwise loss of active first-line agent cate-
gories. Compared with patients with 3–5 active antibiotic catego-
ries (3–4 for A. baumannii; Supplementary Table 6 and Figure 5B), 
those with only 1–2 categories had a 20% higher adjusted mortality 
risk (aRR, 1.2; 95% CI, 1.1–1.3 and P = .001) and those with none 
(ie, DTR) had a 40% higher adjusted mortality risk (1.4; 1.2–1.6; 
P < .0001). Multicollinearity was not observed between DTR and 
other variables included in the model; interactions among variables 
did not significantly influence the effect of DTR on mortality risk.

Patients with DTR had longer hospital stays than those with 
nonresistant GNBSIs (median [interquartile range],  14 [7–29] 
vs 6 [4–11] days; P < .001). Aminoglycoside, tigecycline, and/or 
colistin/polymyxin-B use correlated with the degree of resistance 
(Figure 7A); reserve agents were administered to 79% of patients 
with DTR, 47% with CR, 31% with ECR, 21% with FQR, and 15% 
with nonresistant phenotypes. Tigecycline was nearly 3-fold and 
colistin/polymyxin-B nearly 4-fold more likely to be administered 
in DTR than in CR GNBSIs. Of DTR isolates, 74% were nonsus-
ceptible to gentamicin, 71% to tobramycin, and 54% to amikacin, 
all higher than among the CDC-defined phenotypes (Figure 7B). 
Of GNBSIs with susceptibility results for these 3 aminoglycosides 
(n  =  28 259), 1% overall versus 33% of DTR isolates displayed 
class resistance. Only 14% of CR, 4% of ECR, and 0.5% of FQR 
episodes were resistant to all aminoglycosides. Adjusted mortal-
ity risk did not differ significantly between patients with DTR 
and those who simultaneously met criteria for all 3 CDC-defined 
resistance phenotypes (CR, ECR, and FQR) but otherwise had ≥1 
active first-line agent (n = 176; P = .3). However, these patients 
still exhibited greater use of aminoglycosides (P =  .04), tigecy-
cline (P < .001), and colistin/polymyxin-B (P < .001).

DISCUSSION

DTR, nonsusceptibility to all first-line agents, is a clinically rel-
evant resistance paradigm that emphasizes the loss of high-ef-
ficacy, low-toxicity treatment options. Whereas traditional 

Characteristic

Mutually Exclusive Categories of Unique Encounters With GNBSI Isolates, No. (%)a

No First-line Agent Active ≥1 First-line Agent Active

DTR (n = 440) CR (n = 526) ECR (n = 2756) FQR (n = 4342)
Other (Nonresistant)

(n = 21 410)

  ≥500 141 (32.1) 195 (37.1) 875 (31.8) 1325 (30.5) 6593 (30.8)

 Urban hospital 426 (96.8) 487 (92.6) 2599 (94.3) 3924 (90.4) 19 249 (89.9)

 Teaching hospital 258 (58.6) 317 (60.3) 1267 (46.0) 2049 (47.2) 10 166 (47.5)

 Region

  East North Central 88 (20.0) 88 (16.7) 353 (12.8) 681 (15.7) 3540 (16.5)

  East South Central 31 (7.1) 19 (3.6) 74 (2.7) 219 (5.0) 797 (3.7)

  Middle Atlantic 91 (20.7) 135 (25.7) 502 (18.2) 545 (12.6) 2501 (11.7)

  Mountain 26 (5.9) 30 (5.7) 104 (3.8) 126 (2.9) 839 (3.9)

  New England 8 (1.8) 21 (4.0) 119 (4.3) 175 (4.0) 998 (4.7)

  Pacific 36 (8.2) 40 (7.6) 480 (17.4) 591 (13.6) 3249 (15.2)

  South Atlantic 112 (25.5) 133 (25.3) 735 (26.7) 1160 (26.7) 5275 (24.6)

  West North Central 13 (3.0) 25 (4.8) 128 (4.6) 301 (6.9) 1799 (8.4)

  West South Central 35 (8.0) 35 (6.7) 261 (9.5) 544 (12.5) 2412 (11.3)

Abbreviations: APR DRG, All Patient Refined Diagnosis Related Group; CR, carbapenem resistant; DTR, difficult-to-treat resistance; ECR, extended-spectrum cephalosporin resistant; FQR, 
fluoroquinolone resistant; GNBSI, gram-negative bloodstream infection; ICU, intensive care unit; IQR, interquartile range; NR, not reported.
aData represent No. (column %) unless otherwise specified. 
bSpecific counts <5 are not reported (NR) to maintain deidentification.
cProvided by 3M.
dDefined using International Classification of Diseases, Ninth Revision codes, listed in Supplementary Table 1.
eDefined based on infection detection day, admission source, and International Classification of Diseases, Ninth Revision codes, listed in Supplementary Table 1.
f”Death” as discharge status includes discharge to hospice.
g”Other” includes discharge to home/self-care, left against medical advice, discharged/transferred to court/law enforcement, and still a patient/expected to return.

Table 2. Continued

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy378#supplementary-data
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definitions of coresistance are essential epidemiologic tools 
calibrated for surveillance, the DTR concept was developed 
for select GN taxa to reflect how resistance impacts antibiotic 
decisions at the bedside. Our analysis demonstrates how shared 
electronic health record-based information systems integrating 
microbiology and susceptibility results with patient character-
istics can offer a meaningful avenue to understand real-world 
infections and the impact of antimicrobial resistance on a large 
scale. In this well-distributed cohort of US hospitals, 1% of GN 
bacteremia episodes were caused by DTR strains. 
Nearly 4 of 5 patients with DTR received reserve agents that are 
ordinarily avoided when first-line agents (ie, carbapenems, other 
β-lactams, and fluoroquinolones) are active. Aminoglycosides were 
the most frequently prescribed second-line agent for GNBSIs with 

DTR, yet one-third of DTR isolates were resistant to all 3 commonly 
available drugs in this class. Tigecycline and colistin/polymyxin-B 
were also used more frequently for DTR than non-DTR blood-
stream isolates. When susceptible to other first-line agents, isolates 
classified as CR, ECR, or FQR all had a surprisingly similar impact 
on mortality. In contrast, the risk of death significantly increased in 
a stepwise fashion as the number of active first-line agent categories 
fell to 0, supporting the clinical relevance of the DTR concept.

The 2015 White House National Action Plan for Combating 
Antibiotic-resistant Bacteria calls for reliable metrics to estimate 
the clinical impact of interventions to contain and decrease anti-
biotic resistance [20]. Seemingly specific traits, such as extend-
ed-spectrum β-lactamase and carbapenemase production, are 
heterogeneous entities that are difficult and costly to detect and 
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characterize [21]. These labels may help track transmission and 
guide therapy but do not directly address the high frequency of 
coresistance [22], which severely constrains treatment options. 
Global designations, such as MDR and XDR [6], fill this gap 
somewhat, but, unlike DTR, they do not account for the efficacy 
and safety of available antibiotic options. For example, some 
XDR isolates of P. aeruginosa might be susceptible to levofloxa-
cin or piperacillin-tazobactam. 

Likewise, highly resistant A. baumannii might be effectively 
treated with ampicillin-sulbactam. As such, XDR infections do 
not consistently result in worse outcomes than those caused by 
MDR isolates [7, 9–11]. More readily measurable than XDR, the 
DTR metric reflects how treatment-limiting resistance is under-
stood and managed at the bedside, particularly with regard to 
the use of reserve agents. Although DTR is familiar to infection 
specialists, explicitly defining DTR will ideally lead to wider 
recognition among all providers, easier-to-use and more rele-
vant resistance tracking, and improvements in both empiric and 
targeted treatment regimens.

GNBSIs can culminate in septic shock and death when anti-
microbial therapy is delayed or inappropriate [23]. It is common 
practice to administer an empiric aminoglycoside when clinical 
decline is observed during treatment with first-line antibiot-
ics. The high proportion of aminoglycoside resistance among 
DTR bloodstream isolates emphasizes the difficulty of choosing 

salvage antibiotics for clinical decompensation due to suspected 
resistance. DTR was associated with GNBSIs that were recur-
rent, polymicrobial, due to A.  baumannii, of urinary or mul-
tiple potential sources, and/or in urban hospitals. Notably, the 
antibiotics received were not included in our models; the DTR 
profile implicitly represents scenarios with severe treatment 
constraints, and we intended to isolate the effect of such profiles 
on mortality risk. However, we did adjust for previous blood-
stream infections to mitigate the impact of prior treatment for 
bacteremia on mortality.

The 2013 CDC national estimate of deaths attributable to 
antimicrobial resistance (6.1%) was derived from a single cen-
ter and was an average for all antimicrobial-resistant infections 
[24]. However, efforts to determine the impact of resistance on 
bloodstream infection outcomes have been hampered by access 
to linked microbiology and patient-level data, as well as variable 
definitions and methods for underlying diseases, pathogens, 
and treatment-related factors [25, 26]. Falagas et al [27] pooled 
multiple small studies on CR Enterobacteriaceae and found an 
association with mortality. 

In Enterobacteriaceae, CR is generally associated with resis-
tance to other high-efficacy, low-toxicity agents and therefore 
indirectly overlaps with our concept of DTR. Compared with 
DTR episodes, however, CR episodes not exhibiting DTR (ie, 
with ≥1 alternative active first-line agent) were associated with 
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Figure 5. Adjusted relative mortality risk among inpatients with gram-negative bloodstream infections across resistance phenotypes (A) and diminished active first-line 
agent categories (B) at 173 US hospitals from 2009 to 2013. Variables adjusted for in both models included age, sex, Elixhauser index, 3M All Patient Refined Diagnosis 
Related Group risk of mortality assignment, infection site, intensive care unit stay, neutropenia, and ventilator use at the patient level; taxa/species, healthcare-associated 
status, culture day relative to hospital admission, and year at the organism level; and region, bed capacity, urban location, teaching status, and hospital indicator at the 
hospital level. A, The reference category was “all other isolates.” The significance of differences between difficult-to-treat resistance (DTR) and the other phenotypes was 
also tested: DTR versus carbapenem resistant (CR), P = .02; DTR versus extended-spectrum cephalosporin resistant (ECR), P = .001; and DTR versus fluoroquinolone resistant 
(FQR), P = .008. *Not significant (NS) for all pairwise comparisons among CR, ECR, and FQR categories. B, The reference category was 3–5 active categories of first-line agents 
(and 3–4 active categories for Acinetobacter baumannii isolates). Categories included carbapenems, extended-spectrum cephalosporins, quinolones, β-lactam/β-lactamase 
inhibitors (piperacillin-tazobactam), and monobactam (aztreonam); for A. baumannii cases, monobactams were not included, and the β-lactam/β-lactamase inhibitor category 
also included ampicillin-sulbactam. P values for comparison of categories are as follows: 0 versus 3–5 categories, P < .001; 1–2 versus 3–5 categories, P = .001. *P = .01 for 
the comparison of 0 versus 1–2 categories. Abbreviation: FQ, fluoroquinolone.
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lower reserve agent use, lower aminoglycoside resistance, and 
lower aRR of mortality. We observed a greater preponderance 
of active first-line alternatives to treat CR P. aeruginosa, com-
pared with other taxa. Retention of more first-line agents for 
CR P. aeruginosa compared with other taxa may explain its rel-
atively large survival advantage over DTR. 

Similarly, GNBSIs due to MDR isolates empirically treated 
with appropriate antibiotics have not been associated with 
higher mortality rates [28]. A multicenter study of GNBSIs in 
European intensive care units using tracer phenotypes (ceftazi-
dime resistance for A. baumannii and P. aeruginosa; third-gen-
eration cephalosporin resistance for E. coli) also did not show 
a significant effect of resistance on survival, possibly owing to 
retained susceptibility to other β-lactams and/or fluoroquino-
lones. Furthermore, first-line antibiotic options have been 
shown to mitigate the adverse impact of resistance on survival 
in gram-positive infections [29, 30].

Owing to its simplicity and ease of recognition, our analysis 
of DTR should alert all providers to its serious implications, and 
ideally it will encourage infection specialists and clinical phar-
macists to help direct and monitor the use of agents that less fre-
quently used and more toxic and/or less effective. In addition to 
its patient management challenges, DTR is also a public health 
threat that contributes to antibiotic overuse, the international 
spread of plasmids, and the need for costly infection control 
measures in healthcare facilities. 

A similar threat from XDR tuberculosis was foreseen by 
global leadership, and, despite its relatively low prevalence, XDR 
tuberculosis was incorporated into regional and global surveil-
lance operations [31]. Although their overall burden is also low, 
GNBSIs displaying DTR was found in half of the hospitals in 
our sample across all 9 US census regions. For these reasons, 
the prevalence of DTR has important public health implications 
and might serve as a useful surrogate marker for the success or 
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failure of local and national measures aimed at controlling the 
spread of antimicrobial resistance.

Our study has several limitations. First, our cohort was 
derived from a convenience sample of hospitals, which may not 
be nationally representative. However, the included hospitals 
generally resemble US hospitals across a broad variety of char-
acteristics. Second, we were unable to assess strain virulence or 
adequacy of source control and used encounter-level diagnostic 
codes for source of bacteremia, which may not necessarily repre-
sent the true source. Third, despite controlling for a wide range of 
related variables, residual confounding for severity of illness may 
still exist; as expected from other studies, more resistant strains in 
our study occurred in patients who were sicker at baseline. 

Fourth, we are unable to comment on long-term outcomes 
or the generalizability of our estimates to non-US regions. 

Fifth, we were unable to report on trends in DTR due to break-
point changes and their piecemeal implementation at different 
hospitals. Testing practices varied across hospitals, potentially 
biasing the results of our classification system. Sixth, though 
DTR can be readily applied to other pathogens and infection 
sites, the classification scheme requires periodic revision as new 
antibiotics become available and patterns of resistance change. 
For example, future studies will need to incorporate recently 
approved agents (ceftazidime-avibactam, ceftolozane-tazobac-
tam, and meropenem-vaborbactam) into the matrix used here 
for defining DTR. As such, DTR is not a fixed phenotype but 
rather a flexible framework that will evolve with pathogens and 
our armamentarium for combating them.

In conclusion, DTR is a novel classifier of antimicrobial coresis-
tance that integrates the impact of resistance on antibiotic choices 
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and the effect of these choices on clinical outcome. This epidemi-
ologic tool reflects the bedside management challenge of treating 
GN bacterial infections resistant to all first-line antibiotics. One 
percent of GNBSIs exhibit DTR, that is, resistance to all carbap-
enems, other β-lactams, and fluoroquinolones. These highly resis-
tant strains are encountered in hospitals across the United States. 
As a category that considers the count, efficacy, and toxicity of 
available antibiotics, DTR more fully encompasses key aspects of 
antimicrobial resistance that affect mortality risk.
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