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Abstract

Experimental, theoretical and computational studies of small proteins suggest that inter-residue 

contacts not present in the folded structure play little or no role in the self-assembly mechanism. 

Non-native contacts can, however, influence folding kinetics by introducing additional local 

minima that slow diffusion over the global free-energy barrier between folded and unfolded states. 

Here we combine single-molecule fluorescence with all-atom molecular dynamics simulations to 

discover the structural origin for the slow diffusion that markedly decreases the folding rate for a 

designed α-helical protein. Our experimental determination of transition path times and analysis 

of the simulations point to non-native salt bridges between helices as the source, providing a 

quantitative glimpse of how specific intra-molecular interactions influence protein folding rates by 

altering dynamics and not activation free energies.

Summary

One 125 character sentence: Single-molecule experiments and all-atom MD simulations show 

how molecular interactions slow diffusion in protein folding.

One of the real surprises in studies of protein folding is that the rates for this complex self-

assembly process can be adequately described by Kramers’ theory for diffusion of a single 

Brownian particle over a barrier on a one-dimensional free energy surface (1–6). The 

transition path, which corresponds to the barrier-crossing process, is the rare event in an 

equilibrium trajectory when the transition between folded and unfolded states actually takes 

place, and contains all of the mechanistic information on how a protein folds and unfolds 

(Fig. 1). Thanks to recent advances in both experimental methods and computer simulations, 

we are beginning to gain a deeper understanding of transition paths and folding mechanisms. 

The average time to cross the barrier, the transition path time, can now be experimentally 

determined from a photon-by-photon analysis of single molecule fluorescence experiments 

(7, 8). The transition path time is an important property because, unlike rate coefficients (Eq. 
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1) (1), which depend exponentially on the free energy barrier height, it is insensitive to the 

barrier height and gives direct information on the Kramers diffusion coefficient (Eq. 2) (7–

11), i.e.

1
k f

= t f = 2π
βD* κ*κU

exp βΔG* , (1)

tTP = 1
βD*κ*ln 2eγβΔG* , (2)

where D* is the diffusion coefficient for motion along the reaction coordinate at the barrier 

top and appears in the pre-factor of both equations. ΔG* corresponds to the barrier height, 

and κU and κ* correspond to the stiffness (curvatures) of the unfolded well and barrier top.

The experimentally measured times can now be compared with those obtained from long 

trajectories containing many folding/unfolding transitions in all-atom molecular dynamics 

(MD) simulations of the folding process (12). These simulations also provide a wealth of 

atomistic detail on many aspects of the apparent mechanism of self-assembly, providing a 

structural basis for interpreting the experimental results (13–16). Analysis of the transition 

paths in simulations shows that for small proteins, non-native contacts appear to play little or 

no role in the mechanism (17) of folding. Such contacts, however, can influence the rates of 

folding in several ways. In addition to increasing the free energy barrier height, they can 

decrease folding rates by slowing diffusion over the barrier by introducing additional local 

minima and barriers in the underlying energy landscape, often called “roughness.” This 

latter effect reduces the Kramers diffusion coefficient (D*), which is a measure of the 

dynamics and appears in the pre-factor for both the rates and the transition path times (Eqs. 

1 and 2). Consequently, D* is a key parameter in the theory of protein folding kinetics. It 

determines transition path times and sets the intrinsic time scale for folding rates. D* and the 

curvatures of the free energy surface also provide an estimate of the maximum rate at which 

a protein can fold, the so-called protein folding “speed limit” (18, 19), analogous to the von 

Smoluchowski diffusion limited rate for a bimolecular chemical reaction.

In spite of the importance of understanding the determinants of D*, there is as yet no 

information from experiments or simulations on the effect of specific types of inter-residue 

interactions on D*. The designed protein, α3D (20, 21), a three-helix bundle, provides us 

with an opportunity to investigate this question because of its readily measurable, long 

transition path time at neutral pH (Fig. 2) (8). Analysis of previous simulations at neutral pH 

for α3D showed that many non-native contacts form during the transition paths (13, 17), 

suggesting them as the structural origin for a lower D* that produces the long transition path 

time (Fig. 2). Non-native contacts are theoretically predicted to be more important for the 

kinetics and dynamics of designed proteins compared to naturally evolved protein. (22). 

Previous kinetic studies of α3D showed that the folding rates are markedly increased when 

the carboxylates are neutralized at low pH (23) in urea solution at room temperature, 
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suggesting that non-native salt bridges may play an important role. To test this hypothesis, 

we report here transition path time measurements from single molecule FRET experiments, 

along with a comparison of inter-residue interactions during transition paths from long 

equilibrium molecular dynamics trajectories in the presence and absence of the salt bridges.

Experimental rates and transition path times

The FRET efficiency histograms in Fig. 3 show a marked increase in the folding rate for 

α3D as the pH is lowered (23), in spite of a small change in the stability (Table S2 and Fig. 

3). At neutral pH there are two clear peaks, one for the folded population at a high FRET 

efficiency and one for the unfolded population at a lower FRET efficiency. As the pH is 

lowered, the folded and unfolded peaks of the FRET efficiency histograms merge into a 

single peak at the average value for folded and unfolded molecules because there is a 

continuous increase in the number of transitions between the states that occur within the bin 

time of 1 ms (25). This phenomenon is similar to what is observed in nuclear magnetic 

resonance experiments where there are two peaks when structures exchange slowly 

compared to the difference in frequencies and a single peak when exchange is fast (25).

Using the maximum likelihood method of Gopich and Szabo (26), photon trajectories from 

which the histograms were constructed yield a relaxation rate (k = kf + ku, where kf and ku 

are folding and unfolding rate coefficients) that increases by 14-fold between pH 5.3 and 3.6 

(Fig. 3B, Table S2). The sharp increase near pH 4, the pKa of glutamic acid and aspartic acid 

residues, immediately suggests that protonation of the carboxyl groups, and therefore loss of 

salt bridges, is responsible for the rate increase, while the small change in the stability (Table 

S2) suggests that rate change does not come from a change in the free energy barrier height 

but from a change in D* in the pre-exponential factor of Kramers’ equation (Eq. 1).

We therefore studied the viscosity dependence of the folding relaxation rate at pH 3.6. 

Compared to neutral pH, where both the rate and transition path time exhibit a very weak 

viscosity dependence (8), much larger changes in rate were observed at pH 3.6. A relative 

viscosity change of 10-fold produces a 4.5-fold increase in the inverse relaxation rate 

without a significant change in the stability, suggesting that the friction associated with the 

local barrier crossings does not come from the solvent but is dominated by internal friction 

(Fig. 3D, E; Tables S1 and S3). (27, 28)

Even though the stability is unchanged upon lowering the pH, the rates could be increased 

by simply lowering the free energy barrier. To more convincingly determine whether the 

effect of lowering pH on the rate results primarily from an increase in D* rather than from a 

decrease in the free energy barrier height requires transition path time measurements, since 

the transition path time is insensitive to the barrier height (Eq. 2). If the change of the free 

energy surface is small, the transition path time would show the same pH and viscosity 

dependence as the inverse relaxation rate. The average transition path time for α3D in the 

absence of viscogen at pH 7.6 and room temperature was previously measured to be 12 ± 2 

μs in GdmCl solution (8), and is 13 ± 2 μs in the current measurements in urea solution at 

pH 5.3 (Fig. 4). (The relaxation rates and stability are similar at both conditions.) Assuming 

that all of the 14-fold increase in relaxation rate at pH 3.6 compared to pH 5.3 comes from a 
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larger D*, the data in Tables S1 and S2 indicate that the transition path time is predicted to 

be only ~ 1 μs at pH 3.6. We therefore collected photon trajectories at the highest possible 

illumination intensity (an average of 600 – 900 photons/ms) that allowed observation of 

photon trajectories containing transitions before photo-bleaching of one of the dyes 

occurred. As before, the Gopich/Szabo maximum likelihood method, with a kinetic model 

consisting of folded, unfolded, and an additional virtual intermediate state to simulate the 

transition path, was used for determining the average transition path times (7, 8).

Figure 4 shows that, unlike the experiments at pH 5.3 where the transition path time was 

readily measurable from a peak in the difference log likelihood plot at 13 μs, only an upper 

bound of ~ 4 μs could be obtained at pH 3.6. To lengthen the transition path time and 

possibly make it experimentally resolvable, viscogens (glycerol or trehalose) were added to 

produce viscosities relative to the absence of viscogen of 3.3 and 15 (the highest viscosity at 

which solutions could be prepared at low pH in the presence of the high concentrations of 

urea necessary to attain 50% unfolding). At the higher viscosities, where there is less 

bimolecular quenching of the dye triplet states that result in photochemistry, it was necessary 

to include the interfering effect of fluorophore blinking in the analysis by adding non-

fluorescent states to the kinetic scheme for determining the upper bound of the transition 

path time (29, 30). If the viscosity dependence is the same as found for the rate dependence 

at low pH (Fig. 3, Table S3), the predicted transition path times at these relative viscosities 

are ~ 2 μs and ~ 6 μs, below the current time resolution of these experiments, as judged by 

the analyses of simulated trajectories (Fig. S7). In keeping with this expectation, again no 

peak is observed and only upper bounds of 4 μs and 12 μs could be determined, even though 

the key parameters that determine the ability to observe a peak in the log likelihood plot are 

very similar to those at pH 5.3 -the photon detection rate, the number of observed 

transitions, and the difference in average FRET efficiencies between the folded and unfolded 

molecules.

Additional information was obtained by simulating trajectories with an assumed transition 

path time using the experimental parameters (Fig. S8) (30). The simulations, together with 

the present experimental results, lead to our best estimate for the average transition path time 

of ~ 1 μs. Consequently, we conclude that most, if not all, of the 14-fold increase in the 

relaxation rate upon protonating the carboxyl groups can be accounted for by increasing D* 

in the pre-exponential factor of Kramers’ equation (Eq. 1).

Simulations of rates and transition path times

MD simulations were used to provide an atomic-level structural interpretation of the 

experimental observations. We performed equilibrium reversible-folding simulations of α3D 

in water at both neutral pH (aspartate and glutamate ionized) and low pH (aspartate and 

glutamate protonated). Two independent simulations were performed for each condition. 

During both the neutral- and low-pH simulations, α3D reversibly folded several times to a 

structure less than 3 Å Cα RMSD from the experimentally determined structure (Fig. 5A, 

D). The calculated melting temperatures (~350 K at low pH and ~370 K at neutral pH) are 

consistent with the experimentally determined melting temperatures of 346 K at pH 2.2 and 

higher than 363 K at neutral pH (21). Folding times were calculated using a dual cutoff at 
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values of 0.20 and 1.50 of an optimized reaction coordinate (Fig. 5B) (13). The calculated 

folding times at 370 K (10 ± 3 μs at low pH and 20 ± 4 μs at neutral pH) can be compared to 

the experimental values of 6 μs (21) and ~10 μs (obtained by extrapolation of the denaturant 

dependence at 295 K (23) assuming no temperature dependence; if the folding time 

increases with temperature, as observed at low pH and commonly observed in single-domain 

proteins, the folding time would be longer and the agreement between simulation and 

experiment would be even better). This result indicates that, despite being less stable, α3D 

folds considerably faster at low pH than at neutral pH.

This difference in folding rate cannot be readily explained by assuming a lower activation 

free energy, as the estimated folding free energy barrier appears to be slightly higher in the 

low-pH simulations than in the neutral-pH simulations (Fig. 5B), a result that does not 

depend on the data used to optimize the reaction coordinate (Fig. S12). The diffusion 

coefficient calculated in the region within 0.5 kcal mol−1 of the top of the barrier, however, 

is approximately a factor of two larger at low pH with respect to neutral pH (1.33 ± 0.02 r2 

μs−1 at low pH and 0.76 ± 0.02 r2 μs−1 at neutral pH; Fig. 5C). Accordingly, the calculated 

transition path time is shorter at low pH (0.24 ± 0.05 μs) than at neutral pH (0.43 ± 0.07 μs), 

by about a factor of two. These results suggest that all of the decrease in both the folding 

time and transition path time at low pH is caused by a decrease in Kramers D*, and not 

changes in curvatures of the 1D free energy surface (Eqns. 1 and 2), consistent with the 

interpretation of the experimental results.

To investigate the influence of viscosity on the folding rates in the different pH conditions, 

we performed low- and neutral-pH simulations near the melting temperature using either a 

normal TIP3P water model or TIP3P_L, a water model with one third of the total mass of 

TIP3P (30) that is characterized by a ~1.7 times lower viscosity (31). The use of TIP3P_L 

alters the dynamics, but not the thermodynamics, of the system. Indeed, we observed that 

essentially the same folding free energy surface was obtained in normal- and low-viscosity 

simulations (Fig. 5B, E).

In the simulations, as the viscosity was lowered by a factor of ~1.7, the folding time at low 

pH strongly decreased, while at neutral pH it remained essentially unchanged (Fig. 6A). A 

similar trend is observed for the average transition path time, which is very strongly 

viscosity dependent at low pH but not at neutral pH. Similarly to what was observed when 

we lowered the pH, the increase in both the folding rate and the transition path time with the 

decrease in viscosity at low pH is at least partially reflected in the diffusion coefficient in the 

barrier top region, which increases from 0.55 ± 0.02 r2μs−1 at normal viscosity to 0.72 

± 0.02 r2μs−1 at low viscosity (Fig. 5F). These findings are again consistent with the 

experimental results, which show that the transition path time at neutral pH is weakly 

dependent on solvent viscosity and that the folding times are less dependent on solvent 

viscosity at neutral pH than they are at low pH (Fig. 3D, E) (8). The smaller effects of pH 

observed in the simulations results from the high simulation temperature, where the apparent 

internal friction is much less (8) and therefore a smaller change in D*.

Figure 6A summarizes the comparison of the experiments and simulations. The 

temperatures and solvent conditions are different between the experiment and simulation 
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because the objectives used in single molecule measurements cannot withstand the high 

temperatures of the simulations and folding is much too slow in denaturant at room 

temperature to obtain a sufficient number of transitions in the molecular dynamics 

simulations to draw any meaningful conclusions. Despite the differences in temperatures and 

solvent conditions, the overall trends in the experiments and simulations for both the rates 

and the transition path times are very similar under conditions in which there are nearly 

equal populations of folded and unfolded molecules.

Analysis of transition paths from simulations

Analysis of the formation of secondary structure and hydrophobic contacts shows that the 

folding transition path involves an initial collapse to a molten globule-like structure 

containing native and non-native contacts, followed by a gradual reorganization of the 

structure (17) (Fig. 2). Salt bridges and hydrophobic contacts appear to be the two most 

common and persistent types of side-chain interactions. We compared the average number 

and the average persistence time of these non-native contacts during the transition paths at 

the two different pH levels (Fig. 6B and Table S7). The persistence time is expected to be 

determined primarily by the height of the local barriers and, together with the number of 

contacts that form and break, reflect the overall roughness of the landscape due to non-native 

interactions.

In the neutral-pH simulations, four to five non-native salt bridges are formed, on average, at 

any given time during the transition paths between the positively charged lysine and arginine 

residues and the negatively charged carboxyl groups of the aspartates and glutamates. These 

salt bridges have an average persistence time of a few nanoseconds and occasionally may 

last for up to a few tens of nanoseconds. These interactions almost completely disappear at 

low pH—their population is reduced by an order of magnitude and their persistence time is 

two to three times shorter—because the addition of protons neutralizes the carboxylates and 

eliminates the Coulombic electrostatic attraction with the positively charged lysines and 

arginines (i.e., the salt bridges).

To analyze the relative importance of the total charge of the molecule, we performed 

simulations in which salt bridge interactions were either weakened or strengthened by 

slightly changing the nonbonded force field parameters while leaving the total charge of the 

system unchanged. When salt bridges are weakened, the native state is destabilized (ΔΔG 
~3.5 kcal mol−1, Fig. 5B), as was observed in the low-pH simulations. More importantly, 

diffusion along the optimized reaction coordinate is greatly increased (Fig. 5) and the 

transition path time decreases (Table S6). On the other hand, when the strength of salt 

bridges is increased, there is very little change in protein stability, but diffusion along the 

reaction coordinate becomes slower (Fig. 5), and the folding time and transition path time 

increase (Table S6). Taken together, these results support the idea that salt bridges directly 

influence the free energy landscape roughness, whereas the total charge of the molecule 

plays a minor role, if any.

Another interaction that in simulation is relatively persistent and disappears at low pH 

occurs between Asp and Glu side chains and the protein backbone. To elucidate the relative 
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contribution of this interaction to the roughness of the free energy landscape, we performed 

simulations in which we selectively weakened this interaction. In these simulations, the 

stability of the folded state is unchanged, but the folding free energy barrier increases 

slightly and diffusion on the free energy surface is slightly faster (Fig. S13). These results 

suggest that these non-native backbone–side chain interactions contribute to the stability of 

the transition state for folding, but also slightly increase the energy landscape roughness. 

This effect appears to be minor compared to that of salt bridge interactions.

Having established that salt bridges provide an important contribution to the energy 

landscape roughness, we investigated the underlying reasons for the weak viscosity 

dependence of the folding rate of α3D at neutral pH. To that end, we performed simulations 

of the viscosity dependence of the persistence times of ion-pair formation for systems of 

increasing complexity, ranging from the pairing of sodium chloride, to the pairing of Arg 

and Glu side chains, to the formation of Asp/Glu and Arg salt bridges in α3D. In all of these 

systems, we observed a weak viscosity dependence that strongly deviates from the simple 

power dependence with an exponent of 1.0 expected from Kramers’ theory (Fig. 7). Ion pair 

formation for the Arg and Glu side chain analogs involves a first step, in which the ions 

diffuse through the solvent until they come into close proximity, followed by a 

reorganization step, in which the ions reorient themselves to achieve an optimal interaction 

(Fig. S14). We find that the kinetics of the last step are affected very weakly by changes in 

solvent viscosity (Fig. S14).

Discussion

By combining single molecule experiments with extensive all-atom molecular dynamics 

simulations, we have gained quantitative insight into how a specific type of inter-residue 

interaction influences the kinetics and dynamics in protein folding. The experiments show 

that the slower folding and longer transition path times for α3D at neutral pH compared to 

low pH (Figs. 3 and 4), where the carboxyl groups are neutral, are due to a smaller D*, 

which appears in the pre-exponential factor for the folding time and the pre-logarithmic 

factor for the transition path time (Eqs. 1 and 2). In the molecular dynamics simulations, 

similar differences are also observed (Fig. 6A) and explained by changes in D* (Fig. 5C and 

5F), so we can use them to gain insight at an atomistic level into what interactions are 

responsible. While salt bridge interactions are almost completely eliminated at low pH in the 

experiments, this does not demonstrate that they are solely responsible for the larger 

landscape roughness at neutral pH as reflected in the smaller D*. Indeed, at low pH the net 

charge of the protein increases from approximately −1 to +11, leading to a slightly more 

expanded transition path ensemble featuring a smaller number of non-native hydrophobic 

interactions compared to neutral pH (Fig. 6B and Table S7). To disentangle the importance 

of these two contributions to the landscape roughness, we took advantage of the ability of 

simulations to selectively alter the strength of specific interactions while leaving the rest of 

the system unperturbed. Decreasing the strength of the salt-bridges at neutral pH markedly 

increases D* and shortens the transition path time, while increasing the strength has the 

opposite effect (Table S6). These results support the idea that salt bridges directly influence 

the landscape roughness, whereas the total charge of the molecule plays a minor role, if any.
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Understanding the dependence of the folding and transition path times on solvent viscosity 

in detail is a more subtle and difficult problem. At low pH, in both experiments (Figs. 3d and 

3e) and simulations (Fig. 5) the folding time is more sensitive to solvent viscosity than at 

neutral pH, but the dependence is less than the first power expected from Kramers’ theory if 

all of the friction (ζ* = kBT/D*) comes from the solvent and is linear in the solvent viscosity 

(Stokes law). Fractional power has been observed for isolated α-helices and other α-helical 

proteins (32–37). Jas et al. (32) suggested that the fractional power dependence for α-helices 

arises from a breakdown in Kramers’ theory due to barrier-top crossing times for the 

dihedral angle rotations that are faster than the solvent relaxation. In fact their exponent of 

0.6 for the folding relaxation rate is remarkably close to the value of 0.7 observed for the all-

α helical α3D at low pH (Fig. 3E). This interpretation has also been suggested on theoretical 

grounds by Portman et al.(38) and supported by simulations of Best, Papoian and their 

coworkers. (39–41). The more challenging result to explain, however, is the much smaller 

fractional exponent of 0.2–0.3 for the folding (Fig. 3D) and transition path times (8) at 

neutral pH. One possibility is that it is caused by internal friction due to collisions between 

atoms of the non-native salt bridges. However, in the simulations the non-native salt bridges 

are almost completely exposed to the solvent molecules, so internal friction can provide only 

a partial explanation. The simulations suggest a more plausible additional non-Markovian 

effect. As shown in Fig. 7, the persistence time of ion pairs show reduced viscosity 

dependence (~η0.5), a finding consistent with previous studies on the ion-pair association 

process of sodium chloride, where it has been shown that the reorganization step (in this 

case involving only the solvent shell) cannot be modeled accurately by Kramers’ theory (42, 

43). The weak viscosity dependence observed for α3D in the presence of non-native salt 

bridges may be the result of a combination of these two non-Markovian effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. One-dimensional free energy surface description of kinetics and dynamics of protein 
folding.
Protein folding dynamics are most often described by diffusion on a free energy surface 

obtained from a one-dimensional (1D) projection of a multidimensional free energy 

landscape. The folding transition path of a single molecule in an equilibrium trajectory is 

one that crosses q0 on the reaction coordinate and reaches q1 on the other side of the free 

energy barrier without recrossing q0. The transition path appears as a jump in the 

experimental property being monitored in a single molecule trajectory. The folding rate 

coefficient, kf, is the inverse of the average waiting (residence) time spent exploring the 

configurations of the unfolded well from which numerous unsuccessful attempts are made at 

crossing the free energy barrier.
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Fig. 2. α3D folding transition path at neutral pH from MD simulation (13).
Exemplar structures from the unfolded state, the folded state, and the transition path are 

shown. The side chains of charged residues are represented in sticks and colored in red if 

they are involved in a non-native salt bridge, or in blue if the salt bridge is native. All other 

side chains are omitted for the sake of clarity. The transition path is defined as the region of 

the free energy surface (black) enclosed between the two dashed lines that separates the 

unfolded from the folded basin. The average number of native (blue) and non-native (red) 

salt bridges is also reported as a function of an optimized reaction coordinate. Salt bridges 

are determined using the stable-state picture (24) with cutoff distances of 4.5 and 8.0 Å 

between the Cγ of Asp or the Cδ of Glu and the Nζ of Lys or the Cζ of Arg. Salt bridges 

are considered native if they are within the longest cutoff distance in the experimentally 

determined structure 20. Note that due to the large number of highly flexible charged side 

chains present, ~2 non-native salt bridges can be transiently formed, on average, even in the 

folded state.
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Fig. 3. pH and viscosity dependence of α3D folding kinetics close to the chemical denaturant 
midpoint.
(A) FRET efficiency histograms as a function of pH. The concentrations of urea are 5 M at 

pH 7.5 and 6 M at all other pHs (Table S2). The FRET efficiency histograms were 

constructed from 1 ms bins in the trajectories with the mean photon count rate > 50 ms−1. 

The near identity of the measured histograms (wide bars) and the histograms constructed 

from re-colored photon trajectories (red narrow bars), using the parameters obtained from 

the maximum likelihood method with the two-state model, indicate that this model is 

adequate (10, 26). (B) pH dependence of relaxation rate, k. (C) FRET efficiency histograms 

at different relative solvent viscosities. (D) Viscosity dependence of the inverse of the 

relaxation rate at pH 7.6 (Table S1) and (E) at pH 3.6 under conditions where the stability is 

only slightly altered (Table S3). The data was fitted to the power-law function A(η/η0)α 

(orange) or a linear equation A(σ + η/ η0) (green) (27), where A is an amplitude and σ is the 

internal viscosity, which reflects the internal friction. The blue dashed lines show the 

dependence expected when the folding times are proportional to the first power of the 

solvent viscosity.

Chung et al. Page 13

Science. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Analysis of single-molecule photon trajectories.
The difference of the log likelihood, Δln L = ln L(tTP) – ln L(0), is plotted as a function of 

the lifetime of the virtual intermediate state (= tTP), for folding and unfolding transitions. 

L(0) is the likelihood for a model with instantaneous folding and unfolding transitions. 

Therefore, Δln L quantifies how much better or worse a model with a finite transition path 

time describes the data than a model with an instantaneous transition (Fig. S4). The 

transition path time is determined from the maximum of the likelihood function above the 

upper 95% confidence limit (Δln L = +3, red dashed line), which is 13.3 (± 1.8) μs at pH 5.3. 

The error is the standard deviation obtained from the curvature at the maximum of the 

likelihood function. The upper bound of transition path time is determined by the time when 

the likelihood curve crosses the 95% confidence limit (Δln L = −3, red dashed line) (30).
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Fig. 5. Trajectories, free energy surfaces, and diffusion coefficients from MD simulations of 
reversible folding of α3D.
(A) Time series of the Cα RMSD from the experimental native structure for a 360-μs 

simulation of α3D performed at 370 K and neutral pH. (B) One-dimensional projection of 

the folding free energy surface along an optimized reaction coordinate (30). The cutoffs used 

for determining rates and transition path times in the analysis to define the folded and 

unfolded states are indicated by two vertical lines. The different simulations are 

distinguished using the color scheme described in panel C. (C) Diffusion coefficients along 

the optimized reaction coordinate for neutral-pH (black) and low-pH (red) simulations 

performed at 370 K. Results are also reported for simulations performed with weak (orange) 

or strong (blue) salt bridges and for a 370-K, neutral-pH simulation performed at low 

viscosity (black dashed line). (D) Time series of the Cα RMSD for a 65-μs simulation of 

α3D performed at 370 K and low pH. (E) One-dimensional projection of the folding free 

energy surface for low-pH simulations performed at 350 K and either normal viscosity 

(black solid line) or low viscosity (black dashed line). (F) Diffusion coefficients (350 K) 
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along the optimized reaction coordinate. The different simulations are distinguished using 

the same scheme employed in panel E.
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Fig. 6. Comparison of the effect of pH and viscosity on folding and transition path times from 
experiments and simulations and the average number and persistence time of non-native 
interactions during the transition path.
(A) The ratio of the folding and transition path times in simulation (yellow bars) were 

calculated from the values in Table S6. The experimental values (light blue bars) were 

calculated as follows. 1: The ratio of the relaxation times at pH 3.6 (low) and pH 5.3 

(neutral) at 295 K; 2: The ratio of the folding time of 6 μs at pH 2 and 346 K(21) and the 

folding time of 10 μs at pH 7.5 obtained from the GdmCl dependence (23); 3: The transition 

path time at pH 3.6 (low) is an upper bound; 4: The transition path time at pH 3.6 was 

assumed to be 1 μs at 295 K, and it was extrapolated to 370 K using the viscosity 

dependence of tTP ∝ η0.7 obtained from the viscosity dependence of the kinetics (Fig. 3E). 

The transition path time at pH 7.5 and 370 K was calculated by extrapolation using the 

super-Arrhenius temperature dependence (D ∝ exp[-ε2/ (kT)2]) with the roughness (ε2) of 

2.3 kT (T = 295 K) and tTP = 12.3 μs at 295 K (8). The experimental viscosity dependence 

was calculated using the power law dependence (ηα) with the powers (α) of 0.24 (tf, neutral 

pH, Fig. 3D), 0.30 (tTP, neutral pH) (8), and 0.70 (tf, low pH, Fig. 3E). See Table S6 for 

absolute times and additional details of the simulations. (B) Lowering pH significantly 

reduces the average number and persistence time of non-native salt bridges between 

positively charged side chains (Arg, Lys) and negatively charged side chains (Glu, Asp) and 

the non-native hydrophobic interactions during the transition path.
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Fig. 7. Viscosity dependence of persistence times for a number of ion pairs.
The persistence time is reported on a logarithmic plot as a function of viscosity relative to 

TIP3P for the Na…Cl ion pair (black), the guanidinum…acetate ion pair (red), the butyl-

guanidinum…butyric acid ion pair (green, representing the side chains of Arg and Glu), a 

butyl-guanidinum…butyric acid ion pair where the terminal carbon atoms have been 

restrained at a distance of 10 Å (blue), and the Arg…Glu/Asp salt bridges in the α3D 

transition path (purple). A power-law fit with exponents ranging between 0.51 and 0.56 is 

reported in solid lines, while the exponent of 1.0 predicted by hydrodynamic Kramers’ 

theory is shown as a dashed line.
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