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Abstract

Identifying chemicals that provide a specific function within a product, yet have minimal impact 

on the human body or environment, is the goal of most formulation chemists and engineers 

practicing green chemistry. We present a methodology to identify potential chemical functional 

substitutes from large libraries of chemicals using machine learning based models. We collect and 

analyze publicly available information on the function of chemicals in consumer products or 

industrial processes to identify a suite of harmonized function categories suitable for modeling. 

We use structural and physicochemical descriptors for these chemicals to build 41 quantitative 

structure–use relationship (QSUR) models for harmonized function categories using random forest 

classification. We apply these models to screen a library of nearly 6400 chemicals with available 

structure information for potential functional substitutes. Using our Functional Use database 

(FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a 

probability of 80% or greater. We demonstrate the potential application of the models to high-

throughput (HT) screening for “candidate alternatives” by merging the valid functional substitute 

classifications with hazard metrics developed from HT screening assays for bioactivity. A 

descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in 
vitro bioactivity screening assays. By applying QSURs, we were able to identify over 1600 

candidate chemical alternatives. These QSURs can be rapidly applied to thousands of additional 

chemicals to generate HT functional use information for combination with complementary HT 

toxicity information for screening for greener chemical alternatives.

Introduction

At the heart of green chemistry is the concept that throughout the development and 

production of chemicals, risk should be minimized by minimizing hazard.1 The most 

straightforward process for achieving this is by the design and selection of chemicals with 

reduced toxicity. This idea is emphasized in the fourth principle of green chemistry which 
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states that “Chemical products should be designed to preserve efficacy of function while 

reducing toxicity”.1 While this principle focuses on reducing toxicity as a hallmark of green 

chemistry, it also states that it is vital that the function of the chemical constituent is 

maintained while addressing toxicity concerns. In order to uphold this principle, not only is 

there a need to classify chemicals that may be used in the manufacture of consumer products 

by toxicity, but also by function. Approaches that evaluate both function and toxicity in a 

high-throughput manner would allow formulation chemists and process engineers to rapidly 

identify potential functional substitutes meeting some toxicity criteria for further evaluation.

A hindrance to the joint evaluation of toxicity and function is the lack of toxicity information 

for many chemicals in commerce: this makes it difficult to identify chemical alternatives on 

the basis of hazard. In the United States, there are 85 000 chemicals that are available for 

public use that are also controlled under the Toxic Substance Control Act (TSCA).2 When 

combined with chemicals that are not covered under TSCA (food additives, cosmetic 

ingredients, pharmaceuticals, and active ingredients in pesticides) there were, as of 2006, 

more than 100 000 unique chemicals in the U.S. market.3 In addition, there is no high-

quality in vivo toxicity data for roughly three quarters of these chemicals and there is not 

even limited toxicity data for one third of these chemicals.4–7 However, as described by 

Judson8 there are multiple approaches for characterizing the likely differential toxicities of 

green alternatives, including quantitative structure–activity relationships (QSARs) and high-

throughput screening (HTS). The cross-agency Tox21 consortium9 and the Toxicity 

Forecasting (ToxCast) program10 of the United States Environmental Protection Agency 

(EPA) to date have evaluated over 8000 chemicals using HTS to identify potential hazard as 

quantified by in vitro bioactivity. This library of tested chemicals includes consumer product 

ingredients, food additives, industrial process chemicals, and human and veterinary 

pharmaceuticals.

While the Tox21 and ToxCast HTS programs have focused efforts on prioritizing and testing 

chemicals for bioactivity, other programs both internal and external to the EPA have focused 

on the next logical step – how to replace chemicals that are considered hazards either to 

human health or to the environment with safer chemicals. Two such programs within the 

EPA are the Safer Choice Program (formerly the Design for the Environment Program)11,12 

and the Program for Assisting and Replacing Industrial Solvents (PARIS III).13 Safer Choice 

is a program within the EPA that aims to provide US consumers with a resource to find 

household products with formulations that are safer for the consumer and the environment. 

Products displaying the Safer Choice Label contain chemicals (all of which have known 

functional uses) that have met general and function-specific hazard criteria, (e.g., 
carcinogenicity, genetic toxicity, neurotoxicity). PARIS III uses chemical similarity with 

health and environment impact criteria to identify alternatives from a library of solvents.14,15 

While both of these tools are useful in aiding chemical alternatives assessments, they are 

currently applied in a relatively low-throughput fashion (i.e., a single chemical is evaluated 

and multiple alternatives are returned). A useful complementary approach would be the 

ability to screen large libraries of chemical structures for potential functional substitutes, 

analogous to how HTS of potential drugs is performed in the pharmaceutical industry. Such 

a screening process would identify sets of chemicals for further targeted evaluation.
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Tickner et al. recently described a framework for alternatives assessment formulated around 

the idea of “functional substitution” and proposed that grouping chemicals by their function 

enables comparative evaluation with regards to hazards and potential exposures.55

Here we develop classification models for identifying in a HT manner chemical functional 

substitutes from large libraries of chemicals that could then be screened for differential 

toxicity using HT approaches. To do this, we have used random forest classification on 

publicly available data and chemical descriptors to develop quantitative structure–use 

relationship (QSUR) models that are capable of predicting the function of a chemical, 

specifically, in consumer products. Just as QSARs have aided in high-throughput screening 

of in vivo potency for large libraries of molecules by correlating molecular activity with its 

structure and physicochemical properties,16 our QSURs should elucidate which features and 

properties of a chemical give rise to its function and identify chemicals with similar 

properties and features that could also fulfill that role. As an example case study, we apply 

our validated QSUR classifier models to chemicals in the Tox21 chemical library which 

contains structural and bioactivity information for non-pharmaceutical chemicals suspected 

of being prevalent in areas of human exposure.

Methods

Functional use data

We recently described the development of a chemical Functional Use (FUse) database for 

use in HT prediction of chemical functional use and weight fraction in consumer products 

by using physicochemical properties and broad use categories.17 These data were collected 

from publicly available chemical functional use lists; the largest source of information was 

the European Chemical Agency’s (ECHA) Cosmetic Ingredient (CosIng) database.18 Here 

we expanded the database to include additional functional use categories and chemical use 

sectors by collecting additional information from online government, industry, and 

manufacturer sources (Table 1). These sources were identified by internet searches of the 

words “chemical”, “function”, “role”, and “use”. Further, various consumer product 

websites were examined to determine if product ingredients were given functional uses by 

the manufacturer. While more information was available on functional use, some websites 

did not provide open access. As the intent was to make the data used in this work available 

to the public (ESI Table 1†), data from proprietary websites were not included in this 

database. Each source had a unique set of functional use categories; during an initial 

screening of the data, similar functional uses were combined to eliminate redundancy. For 

example, a “viscosity controller” and “viscosity controlling agent” were both considered to 

be a “viscosity controlling agent”. After this step, the data contained 32 263 records of 

chemical-functional use pairs, 14 272 unique chemicals, i.e., unique chemical abstract 

service registration numbers (CASRNs), and 224 unique functional use category 

descriptions. The functional use categories were then further harmonized as described below.

Harmonization of functional use

For the library of chemicals under study, 224 unique reported functions were identified in 

FUse. Many reported functions were considered redundant. For example, one source would 
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list a chemical as a surfactant, while another would list the same chemical as a cleaner. To 

prevent building many models for functional uses that are very similar, we first harmonized 

the functional uses of chemicals within FUse in order to obtain a one-to-one mapping of a 

chemical to a single functional use. In other words, after harmonization, each chemical had a 

unique harmonized function. We applied a hierarchical clustering analysis28 (HCA) to 

identify commonalities in reported functions for groups of chemicals, and reduce the 

dimensionality (i.e., redundancy) of the data for quantitative structure–use relationship 

(QSUR) modeling. HCA is a widely-used approach that has been used for grouping 

chemicals by properties or other descriptors for various chemometric analyses.29 A binary 

array – one value for each unique reported function – was assigned to each chemical. A 

value of one was assigned to an array element if a chemical had a particular reported 

function in any data source and a value of zero if not; this array can be thought of as a 

“fingerprint” of the chemical in terms of its likely function(s). Casting the dataset in this way 

allowed the pairwise distance between two chemicals’ reported function fingerprints to be 

computed; this was done via the Jaccard distance metric.30 The distances were then 

clustered using the centroid linkage method.28 An optimal number of clusters that described 

a significant proportion of the variance in distance (in essence, a significant amount of the 

variation among chemicals with respect to reported function) was determined from a scree 

plot.31 Each cluster was given a consensus label – a harmonized function (HF) – based upon 

the original reported functions represented in the cluster. The steps in the data curation 

(including reduction of the overall available records due to missing information) are shown 

in Table 2.

Chemical descriptors

The EPA’s Distributed Structure-Searchable Toxicity (DSSTox) Database Network contains 

highly curated mappings of CASRNs to two-dimensional, QSAR-ready structures of 

chemicals.32,33 DSSTox was used to match structures to each unique CASRN found in 

FUse. Structures in the form of simplified molecular-input line-entry system (SMILES) 

codes were found for 5806 of 14 272 CASRNs. Verified SMILES strings were used as input 

into the ChemoTyper34 application to obtain ToxPrint35 descriptors (ESI Table 2†). These 

publicly-available descriptors, annotating 729 chemical substructures, were created with the 

intent of providing better fragment coverage of chemical substructures contained within 

toxicity databases. In addition, predicted physicochemical descriptors (properties) for 4791 

of the 5806 chemicals were obtained using the U.S. EPA’s Estimation Program Interface 

(EPI) Suite.36 The physicochemical properties used were molecular weight, vapor pressure, 

water solubility, Henry’s Law constant, the log of the octanol–air partition coefficient – 

log(Koa), the log of the octanol–water coefficient – log(Kow), half-life of a chemical in soil, 

sediment, water, and air, and the persistence of a chemical in the environment (ESI Table 

3†). Thus, a full set of descriptors for a model using only structural descriptors had 729 

descriptors, while a full set of descriptors for a model using both structural and 

physicochemical properties had 740 descriptors (729 structural descriptors + 11 

physicochemical properties). Descriptors were removed if they had constant values across 

the entire dataset. Only HFs that contained at least ten chemicals were used in the model 
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training sets; the number of chemicals and functional uses in the training sets for both sets of 

descriptors are shown in Table 2.

QSUR models and validation

A suite of QSUR classification models for functional use were built using the random forest 

classification method.37 Random forests are grown by building multiple individual decision 

trees using randomly sampled subsets of training data descriptors. The classification 

returned by the final random forest model is the ensemble average of all decisions trees 

grown within this “forest” of trees; the fraction of the trees returning a positive result 

quantifies the probability, or confidence in the classification.

One-vs.-all balanced random forest models were constructed for each HF via the 

randomForest package38 of the R statistical software program.39 Two sets of QSUR models 

were constructed: one using only the structural descriptors, another using both structural and 

physicochemical descriptors. The workflow shown in Fig. 1 was used to validate both sets of 

models. Due to the large number of descriptors, 10 000 decision trees were grown for each 

model. As a one-vs.-all model implies, each HF was transformed into a binary variable 

(equal to 1 if the chemical had a given function and 0 if it did not have that functional use) 

and a model built for this binary variable. Most HFs had a small number of chemicals 

relative to the size of the overall dataset; to avoid bias in classification toward the negative 

class, balanced random forest was used (which samples the same number of positive and 

negative samples for each tree).40 An added benefit of using the random forest classification 

method to build our QSUR models is that we obtain information about the important 

features for classifying each HF, via the mean decrease in the Gini index41 which essentially 

measures the impurity of each parent node compared to the two children nodes. The purer 

the children nodes are, the lower the Gini index, and the higher the importance of a 

descriptor.

The performance of the HF models were evaluated with five-fold cross-validation (CV).42 

The data were split so that approximately the same number of chemicals in each functional 

use category were present in each fold. The model classification error (the number of 

incorrect predictions made by a model divided by the total number of predictions made by a 

model), sensitivity, specificity, and balanced accuracy43 were obtained for each fold, and 

summary statistics across folds were calculated.

The models were further validated using the method of Y-randomization.44 In this process, 

models for each function are built using randomly permuted descriptors to ensure that the 

success of the classification model was not due to a chance correlation between one or more 

descriptors and function. Models were built using 100 random permutations of the 

descriptors and the mean classification error was computed for comparison with the mean 

classification error calculated using 5-fold CV.

Validation of all QSURs began with an evaluation of the balanced accuracy of the resulting 

model; if this value was less than 75%, the models were immediately considered to be 

invalid. After this, two criteria dependent on each QSUR’s model, 5-fold CV, and Y-

randomization classification errors, were used to further validate the models: (1) the mean 5-
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fold CV error (ĒCV) must be less than the lower bound of the Y-randomization error (ĒYR – 

σYR) and (2) the model error Emodel must be less than the upper bound of the 5-fold CV 

error (ĒCV + σCV). If a model failed to meet any of these criteria, it was considered an 

invalid model. As there was no other set of data which allowed external validation of our 

QSURs, the average 5-fold CV error was used to evaluate the external predictability of these 

models rather than being used to optimize the parameters of the models.

In cases where both sets of models (i.e., those constructed using only structural descriptors 

and those constructed using both structural descriptors and physicochemical properties) 

yielded a valid model, the better of the two models was determined to be the model with the 

highest balanced accuracy. Balanced accuracy (the average of the true positive rate and the 

true negative rate) was selected as the deciding metric in order to optimize the ability of each 

model to make both true positive (chemical has a function) and true negative (chemical does 

not have a function) predictions.

Screening for functional substitutes with QSUR models and HTS bioactivity 
data—We demonstrate the application of our QSUR models for function in high-throughput 

alternative identification by applying them to a known library of chemical structures for 

which high-throughput bioactivity data are available. The Tox21 library of chemicals has 

been screened using a battery of in vitro assays for bioactivity in a concentration response 

format, with those chemicals causing reproducible, concentration-dependent bioactivity 

determined to be “hits”.45 All data are publically available from the Integrated Chemical 

Safety for Sustainability ToxCast dashboard.46 A full descriptor set (containing both 

structural and physicochemical descriptors) could be obtained for 6672 of the Tox21 

chemicals; of these, 2182 chemicals had an HF in FUse. Function classifications were made 

for all chemicals, even those present in FUse, since they may be functional substitutes for 

other HFs.

In order to ensure that predictions made on the structure library are within the same 

chemical structure space as the training set, and are thus valid predictions, we computed the 

domain of applicability of each model by using the method described by Golbraikh, 

Tropsha, and others.47,48 Using this method, the Tanimoto distance49 matrix between all 

chemicals with a given functional use in the training set is calculated. A cutoff distance 

(Dcutoff) for the domain of applicability is determined via the relationship Dcutoff = D̄ + Zσ, 

where D̄ and σ are, respectively, the average and standard deviation of the distance between 

chemicals of a functional use in the training set and Z is a similarity threshold, set at 0.5. We 

next computed the distance between each chemical in the Tox21 case study predicted to have 

a functional use and its nearest function neighbor in the training set. If the distance between 

these chemicals is less than the cutoff distance, then the model for that HF is considered 

valid for a given chemical.

Chemicals identified as functional substitutes using the QSURs were then assessed using a 

bioactivity index (BAI) previously developed for prioritization of chemicals identified in 

non-targeted analyses of environmental media.50 The BAI was calculated from assay results 

obtained from the EPA’s Tox21 repository (version 20141022).46 The index incorporated 

results from sixteen assays covering five pathways known to be altered upon exposure to 
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environmental contaminants (aryl hydrocarbon receptor, androgen receptor, estrogen 

receptor alpha, nuclear factor of kappa light polypeptide gene enhancer in B cells 1, and the 

peroxisome proliferator-activated receptor gamma).51 In order to achieve consistency across 

assay results for all five pathways, the number of hit calls (or positive assay results) for each 

chemical was averaged and normalized by the total number of hit calls for the assays in 

which that chemical was tested. This resulted in a BAI from 0% (no observed bioactivity) to 

100% (all assay tests indicate bioactivity).50

Results

Harmonization of functional use

Rather than building predictive models for redundant reported functions, we aimed to 

develop a smaller number of representative uses for modeling, which increased the number 

of example chemicals per functional use and led to some chemicals being identified as 

serving many different functional uses. After manually eliminating obvious redundancy, 

there were 244 reported functions and single chemicals still shared multiple functional uses; 

in one instance, a single chemical possessed 28 reported functions. We therefore applied 

hierarchical clustering analysis (HCA) to develop harmonized functions (HF). 269 HF 

clusters – i.e., clusters of similar reported functions – were identified by HCA. These 

particular clusters capture a significant amount of the variance in pairwise distance between 

chemicals as described in the Methods section. The most frequently occurring functional 

uses within each cluster were used to assign a unique HF category label to each cluster. 

There were several clusters that contained fewer than ten chemicals, and exhibited many 

reported functions for each chemical. These clusters were combined together to form a 

“ubiquitous” HF – that is, the chemicals had functional uses that were found in multiple 

places in functional use space. The creation of the ubiquitous function category was done to 

provide an opportunity consolidate chemicals that would otherwise be discarded due to 

small cluster size into a single cluster. In addition, a ubiquitous function allows investigation 

of chemical features that would contribute to a chemical being able to serve many functional 

roles. After this reduction there were 137 HF categories.

A subset of the resulting harmonized functions (HFs) using HCA are illustrated in Fig. 2. 

Reported functions (i.e., the function “fingerprints” used to group chemicals into 

harmonized categories) are shown for the ten largest HFs and the ubiquitous category. In 

some cases, an HF captured multiple reported functions, indicating that chemicals in that use 

category could serve multiple functional uses. For example, the “surfactant” HF has such 

commonly occurring reported functions as ‘surfactant’, ‘cleaner’, ‘hydrotrope’, and 

‘emulsifier’. In contrast, the ‘ubiquitous’ HF had no clear grouping of reported function, 

rather chemicals in this cluster have multiple uses across most of the functional uses listed 

from the sources. We also find that there are stark HFs such as ‘flavorant’, in which each 

chemical is known to be only a flavorant in contrast to the fragrance HF, which contains 

chemicals that are classified as flavorants in addition to fragrances and perfumers.
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QSUR models and validation

After matching all chemicals in the 137 HF categories to chemicals with available 

descriptors and eliminating HFs with fewer than 10 chemicals, quantitative structure–use 

relationship (QSUR) models could be constructed for 49 HFs. Model validation results for 

these 49 HFs using both structural and physicochemical descriptors are shown in Fig. 3. The 

bar graph for each model compares the mean 5-fold CV classification error, the mean Y-

randomization classification error, and the model classification error. As the balanced 

accuracies of either QSUR set was typically higher than balanced accuracies of models 

constructed with only physicochemical properties (see Isaacs et al.17), models using only 

physicochemical properties were not re-constructed for this analysis. Analyses were 

performed for each HF in each of the two QSUR sets (i.e., the set of QSURs using structural 

descriptors, and the set of QSURs using both structural and physicochemical property 

descriptors). When using only structural descriptors, our workflow yielded valid models for 

39 out of 49 HFs. By adding physicochemical descriptors to the QSURs we were able to 

obtain valid models for two additional HFs for a total of 41 valid models; these results 

improved upon our previous models that used solely physicochemical descriptors.17 As 

mentioned in the Methods, when both sets of QSURs gave valid models for an HF, the 

QSUR model with the highest balanced accuracy was chosen for application purposes.

There were 8 HFs for which no valid classifier model could be built using either set of 

descriptors: liquid system additive, masking agent, oral care, perfumer, pH stabilizer, 

solvent, ubiquitous, and viscosity controlling agent. In general, these categories are much 

broader than categories that had better models. For example, a viscosity controlling agent 

could be used to either thicken or thin a solution, which would require two different 

properties (a thickening or thinning property), however a chelating agent only requires one 

property (forming multiple single bonds to a single metal ion). It can be assumed that were 

there an ability, in some cases, to define more specific HFs (e.g., viscosity increasing agent 

and viscosity decreasing agent rather than viscosity controlling agent) these models would 

show improvement. It also draws attention to the need for improved, canonical classification 

of functional uses, either in product reporting or via harmonization methods. For example, 

the most commonly occurring reported functions within the HF viscosity controlling agent 

are “viscosity controlling”, “bulking”, and “skin conditioning”. In contrast, the HF labeled 

rheology modifier, a category that should be just as vague as viscosity controlling agent, has 

“viscosity modifier”, “thickener”, and “rheology modifier” as the most frequently occurring 

reported function. Having a large number of thickeners in the HF (as opposed to thickeners 

and thinners), is likely the reason for this QSUR’s validity. Indeed, property-based methods 

similar to those used in the field of solvent classification52–54 could be applied in tandem 

with our method to further refine our HF categorizations. These methods usually classify 

solvents into sub-categories (e.g., polar vs. non-polar, protic vs. aprotic, etc.). This sub-

classification of solvents could result in improved models for the prediction of solvents. As 

most of our solvents were only labeled as “solvent” in the data sources, further sub-

classification was not possible. This is the most probable cause for a poor QSUR for 

solvents. In the future, further refining of our HFs into subcategories based on properties or 

structure-based classification could result in better models.
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Aside from the power of validated QSURs to predict functions associated with large libraries 

of chemical structures, these models can aid in understanding the relationship between 

individual chemical descriptors and use (similarly to how QSARs are used to link biological 

activity to descriptors). This is readily done via the Gini impurity index, which in addition to 

aiding in the ensemble learning process of the random forest algorithm, also provides a 

measure of the relative importance of each descriptor used in a model. Using this model, we 

are able to identify key features of HFs. The most important descriptors for each of the valid 

HF models is given in ESI Fig. 1–11.† As an example, mean decrease of the Gini impurity 

index for the most important descriptors in the UV absorber QSUR are shown in Fig. 4. 

Here, it can be seen that using only structural descriptors, our models identify aromatic and 

nitrogen containing substructures as the most important, which are functional group 

requirements that respectively, make up antioxidants and hindered amines light stabilizers 

(HALS): two typical categories of industrial UV absorbers. Using this information, one 

could quickly identify key features of a HF and use these features to identify functional 

substitutes from other data sources for which full descriptor sets were not available.

Screening for functional substitutes using QSUR models and HTS bioactivity 
data—To demonstrate how the QSUR models could be used to screen large libraries of 

structures, we apply the 41 valid models to predict function of chemicals in the Tox21 

library, and assess the associated bioactivity of chemicals within each HF using available 

high-throughput screening (HTS) data. We then compare the bioactivity of each classified 

chemical (each “functional substitute”) in each HF with a threshold bioactivity index (BAI),
50 calculated as a fixed percentile of the bioactivity index (BAI) of chemicals with the same 

HF in the functional use database – FUse (i.e., known chemicals with a given HF). By doing 

so, we can identify in a high-throughput manner a suite of “candidate alternatives” 

associated with each HF and a given threshold BAI. Chemicals were said to be functional 

substitutes for an HF if (1) the classification probability returned by the HF QSUR was 

greater than or equal to a threshold probability (Pr) of 80%, (2) the chemical was not a true 

positive prediction, and (3) the chemical was within the domain of applicability for the HF 

model. A chemical was defined to be a candidate alternative for a given HF if it met the 

following two criteria: (1) the chemical met the criteria of a functional substitute and (2) the 

BAI for the chemical was below the threshold BAI. Here we selected a threshold BAI for 

each HF equal to the 75th percentile of the chemicals in the HF in FUse. The threshold BAI 

for each HF are given in ESI Table 4.† The benefit of using a threshold Pr (80%) and BAI 

(75th percentile) is that these values can be adjusted depending on the desired stringency of 

the screening process.

We applied these screening methods to the 6356 chemicals in the Tox21 library which were 

tested in our selected Tox21 assays (i.e., had a BAI value) and for which structural and 

physicochemical descriptors could be obtained (i.e., could obtain an HF prediction). Details 

of how many chemicals from the Tox21 library were unavailable for candidate alternative 

selection is provided in Table 3. Functional use predictions for each of the chemicals were 

made using the 41 valid HF classifier models, resulting in the 41-by-6356 matrix of Pr 

values depicted in the heat map in Fig. 5 (values of predictions with probabilities of at least 

80% are available in ESI Table 5†). Predictions were made for all chemicals, even the 2142 
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chemicals present in FUse, since they may be an alternative for other HFs. Approximately 

88% of the predictions yielded a probability less than or equal to 50%, which is consistent of 

the low false positive rates of the models (minimum false positive rate = 0, mean = 0.15, 

max = 0.46). The confusion matrices of each model is provided in ESI Table 4.† Of the 260 

596 predictions of Pr made, 4412 (roughly 50% of chemicals) returned a probability of 

≥80%. The chemicals with multiple HF classifications at a Pr ≥ 80% typically were assigned 

HFs that were very similar to one another such as emulsifier and surfactant, colorant and 

hair dye, or skin conditioner and skin protectant, which shows good consistency between 

models of similar HF. Of the 4412 predictions that classified a chemical to a HF at the 

threshold Pr, 1326 predictions were for chemicals that were known to have that function in 

FUse; that is, there were 1326 true positive predictions of HF out of 1544 chemicals in both 

FUse and Tox21 that had a valid HF model. As these chemicals were in the model training 

set, they were excluded as alternatives for further BAI screening. However, if that chemical 

was predicted to have another function aside from its known HF, it was still screened as a 

candidate alternative for that HF. The remaining 3086 predictions (2227 chemicals) were 

then screened to determine if they were functional substitutes. There were 2198 functional 

substitutes (1686 unique chemicals) identified by our screening process (ESI Table 5†).

The bioactivity indices (BAI) of the chemicals that passed the function screening for each 

HF were compared to the threshold BAI for that HF. As noted above, the threshold BAI was 

selected to be the 75th percentile of chemicals known to have each HF. For example, if a 

chemical predicted to be a colorant had a lower BAI than the 25% of chemicals reported to 

be a colorant with the highest BAI then that chemical was considered a candidate alternative 

for colorant. By applying the screening criteria, we found that we were able to identify 1674 

candidate alternatives spanning 39 of the 41 HF categories (ESI Table 5†). Table 4 shows 

how many chemicals were true positive HF predictions, functional substitutes, and candidate 

alternatives for each HF. The HF categories for which there were no identified functional 

substitutes were foam boosting agents or vinyls. As classification of a functional substitute is 

requirement for a chemical to be considered as a candidate alternative, there were no 

candidate alternatives identified for foam boosting agents or vinyls.

We demonstrate the utility of using this approach by examining the BAI distribution for the 

HF of flame retardants (shown in Fig. 6). There were 45 chemicals in the Tox21 Library that 

were identified in FUse to have an HF of flame retardant. The 75thpercentile BAI for these 

45 chemicals was 0.125. Table 4 shows that our models predicted 126 chemicals in that 

same library to be functional substitutes for flame retardants, and that from those substitutes, 

we were able to identify 77 candidate alternatives. Looking only at known and predicted 

flame retardants with a BAI less than 0.04 (that is, the lowest histogram bin in Fig. 6), we 

were able to expand the number of flame retardants in this bin from 24 to 43 (24 known + 43 

functional substitutes). Because the BAI in this bin is lower than the 75th percentile, we 

found that all 43 functional substitutes in this bin were also candidate alternatives.

Discussion

Arguments have been made that the method of “drop-in” replacements – replacing a 

chemical with a structurally similar chemical – can lead to regrettable substitution (that is, 
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replacement chemicals with similar toxicity due to similar structural features).55 Indeed this 

is the idea behind the International Chemical Secretariat’s (ChemSec) SINimilarity Tool, 

which identifies if a potential alternative’s structure is too similar to any chemicals on 

ChemSec’s Substitute It Now (SIN) List.56 Our approach to identifying alternatives based 

on structural and toxicological information, allows screening of any chemical likely to 

provide a functional use that is less bioactive than the chemical being replaced. In the case of 

UV absorbers, this would allow formulators to compare chemicals containing aromatic rings 

as well as those with sterically hindered amines, thus broadening the search for alternatives 

to other corners of chemical space.

Admittedly, our implementation of hierarchical clustering analysis (HCA) for functional use 

harmonization is not the only way to reduce the dimensionality of our FUse data set. The 

method was chosen because it is a cursory approach to high-throughput categorization, 

which can be easily automated, and thus allow thousands of chemicals to be incorporated 

into the FUse dataset. Indeed, other approaches based on grouping physicochemical 

properties by cluster analysis or principal components analysis (PCA) have been used to 

categorize solvents for evaluation or selection.52–54 However these methods were less 

desirable for our purpose, as they are not easily translatable to high-throughput 

classification.

The bioactivity index used here is intended merely as an illustrative example of potential 

bioactivity of interest.50 Although high-throughput screening (HTS) data are now available 

for over 1000 assay endpoints in the ToxCast project57 and greater than 50 assays in Tox21, 

we focused on five transcription factors known to play important roles in disease 

pathogenesis, plus a set of cytotoxicity/viability assays to account for general cell-stress and 

toxicity. The bioactivity index used when screening for alternatives could be broadened to 

include additional assay endpoints, or narrowed to answer focused questions (e.g., endocrine 

disruption).

This work demonstrated our ability to rapidly screen a chemical library of roughly 6400 

chemicals in order to identify 1674 chemicals that could undergo additional high-tiered 

screening for functional substitution and toxicity. The set of identified candidate alternatives 

could further be evaluated with additional in vivo toxicity data or high-level exposure data, 

or compared with refined information on chemicals previously excluded from a particular 

functional use (for toxicity, cost, or other reasons). The workflow for our screening methods 

is highly flexible, allowing one to not only build new models for new HFs, but to also tune 

the prediction probability and bioactivity index threshold to be more stringent or lax, 

depending on the user’s need. In addition, we demonstrated the applicability of the QSUR 

models in HTS by using one high-throughput (HT) metric of toxicity – bioactivity as 

measured by HTS assays. The functional substitutes identified here could also be screened 

for potential toxicity using bioactivity metrics developed using structure alerts from other 

HT tools (e.g., OECD’s QSAR Toolbox,58 and Lhasa’s Derek59). We have demonstrated the 

application of these approaches to a library of over 6400 chemicals. However, the real power 

of these methods is that they can be applied rapidly to any number of chemicals for which 

curated structures are available. The US EPA has recently made great progress in collecting 

and providing information on large numbers of chemicals, including curated structures, via 
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the Computational Toxicology (CompTox) dashboard.46 The DSSTox database underlying 

this dashboard currently contains data for over 720 000 chemicals, plans are in place to 

include the HF model predictions for all chemicals with curated structures as part of the 

CompTox dashboard in the near future, similar to how the results for QSAR models for 

physicochemical properties are already publicly available. In addition, raw FUse data 

(reported/harmonized functions and data sources) will be available on the CompTox 

dashboard in the near future.

In addition to screening for functional substitutes, the QSUR models developed here have 

several other promising applications. The models can be used to parameterize HT empirical 

and mechanistic models that predict the exposure of humans to thousands of chemicals for 

screening and prioritization, such as those being developed by EPA’s ExpoCast project. 

Wambaugh et al. developed a linear regression model from easily-obtained general chemical 

use heuristics that explained more than half the variability in parent chemical exposures 

inferred from CDC NHANES biomonitoring data.60 The QSUR models could be used to 

develop additional functional heuristics that could improve the characterization of exposure 

variability. Furthermore, Isaacs et al. recently developed property-based QSUR models for 

function and weight fractions for chemicals known to be in specific types of personal care 

products.17 The structure-based QSURs developed here will expand these methods to 

address additional function categories and consumer product types. The QSUR models are 

also being used to interpret the results of new non-targeted analyses of chemicals in various 

media in support of HT screening and prioritization of chemicals on the basis of exposure 

potential. For example, the EPA’s ExpoCast project is performing analyses of environmental 

media (e.g., house dust), biological media, and consumer products using high resolution 

mass spectrometry. These analyses return large numbers of tentatively identified chemical 

structures. Applying the QSURs to these structures can provide evidence of sources of 

chemicals found in the media via these HT analyses. Bioactivity indices created from 

structure alerts and these models can be applied to theorized chemicals (e.g., a database of 

molecules that could be synthesized using metabolic engineering). In addition, the important 

descriptors of each model provide insight into initial functional groups that should be 

included in the hypothetical molecules. In this way newer, greener functional substitutes 

could be prioritized for synthesis rather than chemicals that are more likely to be bioactive.

Conclusion

In keeping with the principles of green chemistry, we have developed methods for 

identifying lists of predicted functional substitutes that can be further screened using 

measures of differential toxicity (such as HTS or metrics predicted using QSAR or read-

across methods). The QSUR models expand the HT aspects of green design beyond these 

hazard criteria to include chemical use. We were able to build valid classifier models for 41 

harmonized function categories; the number of valid models will increase as we expand our 

function, property descriptor, and structural descriptor databases and further refine our 

definition categories. These models have promising potential for application in alternatives 

assessment and exposure-based chemical prioritization.
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Fig. 1. 
QSUR workflow used to create functional use predictions based on structural and 

physicochemical descriptors.
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Fig. 2. 
Overlap in reported functions and harmonized functions (HF). The function “fingerprints” of 

chemicals in the 10 largest HF clusters and the ubiquitous HF cluster in terms of the most 

frequently occurring original reported functions. Reported functions are on the horizontal 

axis; harmonized functions are on the vertical axis.
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Fig. 3. 
Mean 5-fold cross validation error (white), mean Y-randomization error (black), and model 

classification error (gray) for each of the 49 harmonized function models constructed. 

Standard deviations of the 5-fold CV and Y-randomization are shown in orange. Harmonized 

function QSURs constructed with structural descriptors have a black outline and QSURs 

constructed with both structural and physicochemical descriptors have a dashed gray outline. 

A green background indicates a valid model; a pale yellow background indicates an invalid 

model. The model with the highest balanced accuracy is shown.
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Fig. 4. 
Ranking of the mean decrease in the Gini index of descriptors for the UV absorber QSURs 

by importance. The rankings of structural descriptors are shown on the left axis (green 

circles), and the rankings using both structural and physicochemical descriptors is shown on 

the right axis (blue squares).
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Fig. 5. 
Prediction of harmonized function for 6356 chemicals from the Tox21 library. The 

horizontal axis represents each of the 41 harmonized functions that were deemed to be valid 

QSURs. The vertical axis of the lower heat map represents the unique 6356 chemicals for 

which function predictions were made. Pale yellow indicates a low probability for a 

chemical to have a functional use, while dark green indicates a high probability of a 

chemical having a function. The histogram above indicates how many true positive, 

functional substitutes, or candidate alternatives were predicted for each harmonized 

function.
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Fig. 6. 
Histogram of the bioactivity index for chemicals with either a known or predicted flame 

retardant function. Yellow indicates that a chemical was reported to be a flame retardant, 

violet represents chemicals that were predicted to be flame retardant functional substitutes, 

while teal indicates that chemicals were candidate alternatives to known flame retardants.
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Table 1

Number of unique pairings of a chemical with a reported functional use from each of the internet sources used 

to build the FUse dataset

Source Unique Chemical-functional use pairs

CosIng18 18 351

SpecialChem19 5994

 Adhesives 2192

 Coatings 538

 Polymer additives 3264

International Fragrance Association20 2993

Food Flavorings Database21 2685

ACToR UseDB22 1203

Safer Choice Ingredient List23 1065

America Cleaning Institute24 713

SC Johnson25 101

The Clorox Company26 98

method27 40
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Table 2

Details of the number of chemicals, reported functions for each step in the curation of the QSUR training set

Data curation step Unique chemicals Unique functions

FUse database 14 272 224

Function harmonization via cluster analysis 14 272 137

QSUR Set 1: Merged QSAR-ready structures with structural descriptors 5806 98

Filter QSUR Set 1 to functions containing at least 10 chemicals 5666 49

QSUR Set 2: Merged QSAR-ready structures with structural and physicochemical descriptors 4791 84

Filter QSUR Set 2 to functions containing at least 10 chemicals 4667 43
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Table 3

Number of chemicals available for candidate alternative screening using the developed BAI and harmonized 

function predictions

Data curation step Unique chemicals

Tox21 chemical library 8599

Full QSAR descriptor set available 6672

BAI available 6356
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Table 4

Summary of the number of chemicals from the Tox21 Library that were true positive predictions of chemicals 

in FUse, functional substitute predictions, and candidate alternatives for that functional use

Harmonized function True positive predictions of FUse Functional substitutes Candidate alternatives

Additive 11 37 27

Adhesion promoter 4 37 35

Antimicrobial 78 175 145

Antioxidant 33 60 40

Antistatic agent 6 8 5

Buffer 15 79 63

Catalyst 44 12 6

Chelator 5 14 13

Colorant 124 230 194

Crosslinker 61 33 28

Emollient 13 27 19

Emulsifier 3 10 5

Emulsion stabilizer 8 48 24

Film forming agent 23 18 14

Flame retardant 35 126 77

Flavorant 57 239 180

Foam boosting agent 3 0 0

Foamer 1 35 26

Fragrance 513 93 80

Hair conditioner 28 50 33

Hair dye 18 196 154

Heat stabilizer 1 11 6

Humectant 2 52 30

Lubricating agent 1 24 9

Monomer 46 30 27

Organic pigment 3 11 6

Oxidizer 4 6 4

Photoinitiator 6 16 12

Plasticizer 16 19 18

Preservative 13 95 86

Reducer 8 5 4

Rheology modifier 2 46 43

Rubber additive 3 17 16

Skin conditioner 54 143 123

Skin protectant 8 27 20

Soluble dye 2 4 2
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Harmonized function True positive predictions of FUse Functional substitutes Candidate alternatives

Surfactant 35 44 24

UV absorber 30 89 47

Vinyl 8 0 0

Wetting agent 1 27 24

Whitener 0 5 5
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