
Reversible Stochastically-Gated Diffusion-Influenced Reactions

Irina V. Gopich and Attila Szabo*

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney 
Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA

Abstract

An approximate but accurate theory is developed for the kinetics of reversible binding of a ligand 

to a macromolecule when either can stochastically fluctuate between reactive and unreactive 

conformations. The theory is based on a set of reaction-diffusion equations for the deviations of 

the pair distributions from their bulk values. The concentrations are shown to satisfy non-

Markovian rate equations with memory kernels that are obtained by solving an irreversible 

geminate (i.e., two-particle) problem. The relaxation to equilibrium is not exponential but rather a 

power law. In the Markovian limit, the theory reduces to a set of ordinary rate equations with 

renormalized rate constants.

Graphical Abstract

Introduction

In an influential paper,1 McCammon and Northrup generalized the Smoluchowski theory2 of 

diffusion-controlled irreversible reactions to the case when the reactivity turns on and off in 

a deterministic fashion. Specifically, they calculated the diffusive flux into a sphere, which 

changes from partially absorbing to reflecting at regular time intervals. Since this problem 

could not be solved analytically, it was subsequently modified3 so that the reactivity 

fluctuated stochastically. The transitions between “open” and “closed” states were described 

by two-state chemical kinetics. The resulting steady-state rate constant was then expressed 

in terms of the Laplace transform of the Smoluchowski time-dependent rate coefficient for 
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an ungated irreversible reaction evaluated at the sum of the opening and closing rate 

constants.

For the geminate reaction between an isolated macromolecule-ligand pair, it does not matter 

which partner is gated. However, in the pseudo-first order limit where the ligands are in 

excess, this is not the case for many-particle systems.4 The problem where the 

macromolecule’s binding site fluctuates between reactive and unreactive conformations 

turned out to be more difficult and a simple but rather ad hoc theory was proposed.4 The two 

cases considered here are shown in Fig. 1. A macromolecule reversibly binds to a ligand and 

the ligands are in excess. Figure 1A illustrates the case of gated macromolecules, where the 

macromolecule’s binding site switches between “open” (reactive) and “closed” (unreactive) 

states. The binding occurs only when the binding site is open. Figure 1B illustrates the 

situation where it is the ligands that switch between active and inactive states. The binding 

occurs only when a ligand is in its active conformation.

The purpose of this paper is to bring the full machinery of the modern theory of reversible 

diffusion-influenced reactions5–32 on both these problems. We will use a generalization of 

our particular formulation of the theory21,30,32 where the only approximation made is to 

assume that the deviation of the distribution functions from their bulk values satisfy 

reaction-diffusion equations with a physically transparent structure. This formalism is exact 

at short times and has been shown to give the exact long-time behavior of the concentrations 

for the reactions A + B ⇌ C and A + B ⇌ C + D.21,33,34 At the intermediate times, the 

simplest version of the theory has been found10,21 by comparison with simulations35 to be 

pretty accurate as long as the concentrations are not too large.

When we applied this formalism to the A + B ⇌ C reaction with B being in great excess, 

we noticed21 that the final result involved a quantity that had the same structure as the 

Laplace transform of the stochastically-gated rate coefficient of an irreversible reaction.3,4 

We suggested that, since A can react with B, but C cannot, then in some sense A is an 

“open” state and C is a “closed” one. In this paper we shall make this analogy more precise.

The outline of the paper is as follows. In the next section we consider fluctuating 

macromolecules and explain the key ideas behind the formalism. In Sec. III, the reversible 

non-Markovian rate equations for the concentrations are derived and the corresponding 

memory kernels are expressed in terms of the time-dependent rate coefficients for a certain 

irreversible stochastically gated reaction. Fluctuating ligands are considered in Sec. IV. 

Section V presents the results of illustrative calculations and some concluding remarks are 

made in Sec. VI. In Appendix A, our formalism is derived starting from the exact many-

particle equations corresponding to our microscopic model. In Appendix B, the 

stochastically-gated time-dependent rate coefficient for a system with 1 open and N – 1 

closed states is expressed in terms of the rate coefficient that describes the simplest 

irreversible reaction, M + L → C.
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Gated Macromolecules

We consider the binding of a ligand L to a macromolecule M with fluctuating reactivity 

(Figure 1A). The macromolecule can be in an open (reactive) and a closed (unreactive) state, 

which we denote as M1 and M2, respectively. The interconversion of these states are 

described by the rate constants a (M1 → M2) and b (M2 → M1). The corresponding 

chemical kinetics scheme is

M1 + L
κr

κ f
C

M1 b

a
M2

(1)

where κf and κr are the intrinsic forward (binding) and reverse (dissociation) rate constants. 

In the pseudo-first order limit when the ligand concentration is so high that it does not 

appreciably change with time, the corresponding rate equations for the concentrations, in 

matrix form, are:

d
dt

M1
M2
[C]

=
− a + κ f [L] b κr

a −b 0
κ f [L] 0 −κr

M1
M2
[C]

(2)

This description is valid only in the limit that the reactants diffuse so fast that there are many 

encounters between the reactants before the reaction actually occurs.

To see how diffusion influences the kinetics of this reaction, we adopt the simplest possible 

microscopic model. All reactants are spherical and have the same diffusion coefficients. 

When M1 and L come in contact and are separated by a distance rc independent of their 

orientation, they can react to form C with rate constant κf. The complex C can dissociate to 

form a contact pair with rate constant κr.

The exact rate equations that determine the bulk concentrations can be obtained from eq 2 

by simply replacing the bimolecular term [M1][L] by the pair distribution function between 

M1 and L at contact, ρM1L rc, t :

d M1
dt = − a M1 − κ f ρM1L rc, t + b M2 + κr[C]

d M2
dt = a M1 − b M2

d[C]
dt = κ f ρM1L rc, t − κr[C]

(3)
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The pair distribution function ρM1L(r, t) is the probability density of finding a 

macromolecule in the reactive state in one volume element and a ligand in another, a 

distance r apart, which has units (concentration)2. As r → ∞, macromolecules and ligands 

are uncorrelated, so that ρM1L(r, t) M1 [L]. In Appendix A, we derive this equation 

starting from the many-particle description of the model.

The problem is to find ρM1L rc, t , but unfortunately no closed equation exists for this 

quantity even for our simple microscopic model. However, the boundary condition that must 

be satisfied by this distribution function can be found exactly by equating the diffusive flux 

at contact to the rate of complex formation and dissociation:

D 4πrc
2 ∂

∂r ρM1L(r, t) r = rc
= κ f ρM1L rc, t − κr[C] (4)

where D is the sum of diffusion coefficients of M1 and L.

The pair distribution function changes because of the relative diffusion of the reactants. It 

also changes because of reaction. For example, if M1 is transformed to M2, then the M1 − L 
pair is changed into the M2 − L pair. Similarly, if the macromolecule in a M1 − L pair reacts 

with a ligand from the bulk, then it is converted into a C − L pair. Thus we need to consider 

not only ρM1L(r, t), but also ρM2L(r, t) and ρCL(r, t). Instead of trying to find an equation for 

the pair distribution functions themselves, we consider the difference between these 

functions and their values in the bulk, δρXL(r, t) = ρXL(r, t) − [X][L], X = M1, M2, C. Since 

X and L become uncorrelated at large r, ρXL(r, t) → [X][L] and thus δρXL(r, t) → 0 as r → 
∞. The deviations δρXL can be regarded as the fluctuation of the pair distribution function 

from its bulk value. In the spirit of Onsager’s Regression Hypothesis, we assume that these 

fluctuations relax due to reaction in the same way as the corresponding bulk concentrations 

do.36,37 The simplest description of the time course of the bulk concentrations is ordinary 

chemical kinetics. Then it follows that, in the framework of this approximation, the 

fluctuations of the pair distribution functions satisfy

∂
∂t

δρM1L

δρM2L

δρCL

= D∇2

δρM1L

δρM2L

δρCL

+
− a + κ f [L] b κr

a −b 0
κ f [L] 0 −κr

δρM1L

δρM2L

δρCL

(5)

The term involving the Laplacian describes changes of the pair distribution functions due to 

diffusion, while the other term describes changes due to reaction. Note that the above rate 

matrix is identical to that in eq 2, which describes the evolution of the bulk concentrations 

according to ordinary chemical kinetics.
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This equation has a simple physically transparent structure and can be formally derived in a 

number of ways. Perhaps the simplest way is to truncate the hierarchy of equations satisfied 

by the many-particle distributions using a linearized superposition approximation. For the 

simpler reaction A+B ⇌ C, this was implicitly done in Ref.10 The triple distribution 

function involving a molecule X (X = M1, M2, C) and two ligands separated from X by 

distances r1 and r2 is denoted by ρXLL(r1, r2, t). The standard superposition approximation 

is8,38–40 [X]ρXLL(r1, r2, t) = ρXL(r1, t)ρXL(r2, t) = (δρXL(r1, t) + [X][L])(δρXL(r2, t) + [X]

[L]). The linearized superposition approximation neglects the non-linear term δρXL(r1, 

t)δρXL(r2, t) and thus can be written as ρXLL(r1, r2, t) = (δρXL(r1, t) + δρXL(r2, t))[L] + [X]

[L]2. Using this to close the equations satisfied by the pair distribution functions leads to eq 

5 as shown in Appendix A. Another way to get the above approximation for ρXLL(r1, r2, t) is 

based on the cluster representation of the distribution functions.41 This representation has 

been used in the development of various forms of encounter theory.24,42,43

The above formalism is the simplest one that leads to the correct power-law time course of 

the concentrations as they relax to equilibrium. This was rigorously proved for A+B ⇌ C 
and A+B ⇌ C +D for all possible values of the diffusion coefficients of the reactants.34 The 

formalism based on eqs 3–5 can be improved by using a better description of how the pair 

distribution functions change because of chemical reaction. The simplest way of doing this 

is to replace the chemical rate constants κf and κr in eq 5 by effective rate constants kf and 

kr. To find these, we need two conditions. The first is to insist that the equilibrium constant 

is unchanged: kf/kr = κf/κr. The second condition21 is to require that the relaxation time 

calculated from chemical kinetics is the same as that obtained from the diffusion-influenced 

formalism. This leads a non-linear equation that must be solved iteratively to obtain self-

consistent values of the effective rate constants.

Rate Equations with Memory

Our problem is to solve eqs 3 and 5 subject to the boundary condition for ρM1L(r, t) in eq 4. 

In addition, since M2 and C cannot bind a ligand, both ρM2L and ρCL satisfy reflecting 

boundary conditions at contact, ∂ρM2L(r, t)/ ∂r = ∂ρCL(r, t)/ ∂r = 0 at r = rc. Initially all 

reactants are uncorrelated and uniformly distributed, so that 

δρM1L(r, 0) = δρM2L(r, 0) = δρCL(r, 0) = 0. We shall now reduce the solution of this problem 

to that of finding the time-dependent stochastically-gated rate constant for an irreversible 

reaction involving one open state (M1) and two closed states (M2 and C).

This can be done most simply in Laplace space where f (r, s) = ∫ 0
∞ f (r, t)exp( − st)dt for any 

function f. The Laplace transform of eq 3 that determines the bulk concentrations can be 

written in matrix form as

sc − c0 = Kc + Eδρ rc, s (6)
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where c (s) is a column vector of the concentrations [M1], [M2] and [C], c0 is the vector of 

initial concentrations, δρ rc, s  is the vector of pair distribution deviations at contact with 

elements δρM1L, δρM2L, and δρCL, K is the rate matrix of chemical kinetics and E is a matrix 

defined as follows:

K =
− a + κ f [L] b κr

a −b 0
κ f [L] 0 −κr

, E =
−κ f 0 0

0 0 0
κ f 0 0

(7)

When δρ = 0 in eq 6, we recover the ordinary chemical kinetics. Laplace transforming eq 5, 

we find that δρ(r, s) satisfies

sδρ = D∇2δρ + Kδρ (8)

subject to the boundary condition that

D 4πrc
2 ∂

∂r δρ r = rc
= vκ f δρM1L rc, s + [M]1[L] − κr[C]/κ f (9)

where v is a column vector with elements 1, 0, 0.

The above boundary condition is unusual because the right hand side contains both δρ and 

the Laplace transforms of the bulk concentrations. One can eliminate the latter in both eqs 8 

and 9 using the transformation δρ(r, s) = h(r, s) [M1][L] − κr[C]/κ f . However, the boundary 

condition remains unusual because the right hand side is of the form vκ f h1 + 1 . Because the 

derivative of a constant is zero, the substitution h g − 1 would cast the boundary condition 

into a standard form, but would mess up eq 8 because now it would have the strange term 

K1. However, if 1 were replaced by a vector proportional to the equilibrium probability 

distribution, p, that satisfies Kp = 0, this difficulty would disappear. This suggests that we try 

a substitution of the form h = α f + β p and choose α and β so that both eqs 8 and 9 are nice. 

In this way one can show that the transformation

δρ(r, s) = s f (r, s) − p
p1

[M1][L] − κr[C]/κ f (10)

reduces the problem to solving an irreversible stochastically-gated problem for an isolated 

ligand-macromolecule pair. Here p1 = [M1]eq = (1 + a/b + κf[L]/κr)−1, p2 = [M2]eq = p1a/b, 

and p3 = [C]eq = p1κf[L]/κr.

Substituting eq 10 into eq 8 and using Kp = 0, we find that the new function f  satisfies
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s f − p = D∇2 f + K f (11)

In the time domain, this equation implies that f(r, t) satisfies the equilibrium initial 

condition, f(r, 0) = p. Substituting eq 10 into eq 9, we find that f 2 and f 3 satisfy reflecting 

boundary conditions and f 1 satisfies the “radiation” or partially absorbing boundary 

condition

D 4πrc
2 ∂

∂r f 1 r = rc
= κ f f 1 rc, s (12)

Unlike eq 9, this boundary condition does not involve bulk concentrations. It is the same as 

the boundary condition introduced by Collins and Kimball44 to generalize Smoluchowski’s 

work2 from diffusion-controlled to irreversible diffusion-influenced reactions.

By substituting the transformation in eq 10 into eq 6, one finds that the rate equations can be 

rewritten as

sc − c0 = 𝓚c (13)

where

𝓚 =
− a + 𝒦 f (s)[L] b 𝒦r(s)

a −b 0
𝒦 f (s)[L] 0 −𝒦r(s)

(14)

Here we have defined

𝒦 f (s) = κ f s f 1 rc, s / p1
𝒦r(s) = 𝒦 f (s)κr /κ f = κrs f 1 rc, s / p1

(15)

Note that 𝓚(s) can be obtained from the chemical kinetics rate matrix, K, eq 7, by simply 

replacing κf by 𝒦 f (s) and κr by 𝒦r(s). Since these kernels satisfy 𝒦 f (s)/𝒦r(s) = κ f /κr, it 

follows that the equilibrium solution of eq 13 is the same as that found from chemical 

kinetics.

In the time domain, the rate equations in eq 13 are non-Markovian involving the memory 

kernels 𝒦 f (t) and 𝒦r(t). Since the inverse Laplace transform of f (s)g(s) is ∫ 0
t f (t − τ)g(τ)dτ, it 

follows that in the time domain
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dc
dt =

−a b 0
a −b 0
0 0 0

c + ∫
0

t
−𝒦 f (t − τ)[L] 0 𝒦r(t − τ)

0 0 0
𝒦 f (t − τ)[L] 0 −𝒦r(t − τ)

c(τ)dτ (16)

The first term on the right-hand side, which describes gating, is the same as in the 

conventional rate equations, eq 2. The terms corresponding to association and dissociation 

are replaced by convolutions with memory kernels, which depend both on diffusion and 

gating. The memory kernels appear because different M – L pairs need different times to 

diffuse together and react.

The reaction kernels 𝒦 f (s) and 𝒦r(s) are related to the function f 1 (see eq 15), which is 

found by solving eqs 11 and 12. This function also describes an irreversible geminate 

reaction between a ligand and macromolecule with one open state (labelled by the index 

“1”) and N – 1 closed (unreactive) states that interconvert via an N × N rate matrix K. For 

the model without any closed states (K = 0), the Collins-Kimball time-dependent rate 

coefficient, kirr(t), is κf f1(rc, t). This theory was extended to the simplest irreversible 

stochastically-gated reaction (where K is a 2 × 2 matrix) in Refs.,3,4 where the Laplace 

transform of the stochastically-gated rate coefficient ksg(t) was defined as

k sg(s) = κ f f 1 rc, s (17)

Thus by solving eq 11 subject to the initial condition f(r, 0) = p and the boundary condition 

in eq 12, we can find the rate coefficient for an irreversible stochastically-gated reaction, in 

which there is one open but many closed states interconverting via a rate matrix K. In 

Appendix B we show that when the open state is speci ed by the index “1”, then

p1
sk sg(s)

= ∑
i = 1

N [T]1i T−1
i1

s + λi k irr s + λi
(18)

where T is the transformation that diagonalizes K, KT = TɅ, where Ʌ is a diagonal matrix 

with elements −λi, and k irr(s) is the Laplace transform of rate coefficient kirr(t) for simple 

diffusion-influenced irreversible binding. For uniformly reactive spheres, it is the Collins-

Kimball rate coefficient given later in eq 36. However, it is shown in Appendix B that this 

relation between ksg and kirr remains valid in the presence of an interaction potential and for 

long-range (i.e., non-contact) as well as anisotropic reactivities within the framework of the 

Wilemski-Fixman45 or the constant flux46,47 approximations.

After this aside, let us return to the reaction kernels. They are simply related to the 

stochastically-gated rate coefficient, as follows from eqs 15 and 17:
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𝒦 f (s) = sk sg(s)/ p1 (19)

and consequently,

1
𝒦 f (s)

= ∑
i = 1

N [T]1i T−1
i1

s + λi k irr s + λi
(20)

Now for the gated model described by the kinetic scheme in eq 1 (N = 3) one can show after 

a bit of algebra that

1 + a/b + Keq[L]
𝒦 f (s)

= 1
𝒦irr(s)

+ a/b + x
𝒦irr s + kg − k

+
Keq[L] − x

𝒦irr s + k0 + k
(21)

where

Keq = κ f /κr

kg = a + b

k0 = κ f [L] + κr

2k = kg − k0 + kg − k0
2 + 4aκ f [L]

x =
(k − a)Keq[L] − k + κ f [L] a/b

k0 − kg + 2k

(22)

where we have defined

𝒦irr(s) = sk irr(s) (23)

As mentioned above, these results are not restricted to uniformly reactive spheres, but under 

certain conditions are valid quite generally (i.e., for anisotropic reactivity where only a part 

of the macromolecular surface is active as depicted in Fig. 1).

An interesting prediction of this theory is that the concentrations relax to equilibrium as a 

power law rather than exponentially as expected from the ordinary chemical kinetics. To find 

the long-time behavior, we expand the Laplace transforms of the kernels 𝒦irr(s), eq 23, and 
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𝒦 f (s), eq 21, about s = 0, collecting the terms involving s. For a simple irreversible 

reaction, it has been shown quite generally47,48 that

lim
s 0

𝒦irr(s) = 𝒦irr(0) + 𝒦irr(0)2 s/D
4πD (24)

Using this in eq 21, we find

lim
s 0

𝒦 f (s) = 𝒦 f (0) + 𝒦 f (0)2 s/D
4πD 1 + a/b + Keq[L]

(25)

Finally, using this in eq 13 and the fact that 𝒦 f (0)/𝒦r(0) = Keq, we find that as t → ∞ the 

concentrations decay to their equilibrium values as

M1(t) − M1 eq
[C]eq − [C(0)]

Keq

1 + a/b + Keq[L] 2
1

(4πDt)3/2

M2(t) − M2 eq
[C]eq − [C(0)]

Keqa/b

1 + a/b + Keq[L] 2
1

(4πDt)3/2

[C(t)] − [C]eq
[C(0)] − [C]eq

Keq(1 + a/b)

1 + a/b + Keq[L] 2
1

(4πDt)3/2

(26)

While the above formalism leads to analytic expressions for the concentrations in the 

Laplace domain, it is of interest to obtain approximations that can be implemented more 

easily. The most straightforward one is the so-called Markovian approximation where 𝒦 f (s)

and 𝒦r(s) are replaced by their values at s = 0, 𝒦 f (0) and 𝒦r(0). Within the framework of 

this approximation, the concentrations can be calculated just as in chemical kinetics after κf 

and κr are replaced by 𝒦 f (0) and 𝒦r(0). To make contact with the original paper on 

stochastic gating,3 let us take the low concentration limit of these effective rate constants. 

When [L] → 0, it follows from eq 21 (x → 0, k → 0 when kg < k0, or x → −a/b, k → kg 

− k0 when kg > k0) that

lim
[L] 0

𝒦 f (0) = (1 + a/b)ksg (27)

where ksg is given by
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1
ksg

= 1
k∞

+ a/b
(a + b)k irr(a + b)

(28)

where k irr is the Laplace transform of the rate coefficient of irreversible binding without 

gating, and k∞ = lims 0sk irr(s) = kirr(∞). The above expression for ksg turns out to be 

identical to the stochastically-gated rate constant of reference.3 In this approximation, the 

concentrations are calculated as in chemical kinetics but with κf replaced by ksg/(1 + a/b) 

and κr by κrksg/[κf(1 + a/b)]. It is interesting that this low concentration result is different 

from the “naïve” approximation in which the chemical forward and reverse rate constants 

are simply replaced by their diffusion-influenced counterparts (κf → kirr(∞) and κr 

→κrkirr(∞)/κf) for an ungated reaction.

Gated Ligands

Now we consider the case where it is the ligand that can be in two conformational states, L1 

and L2. The ligand can bind to the receptor and form a ligand-receptor complex C only when 

it is in the open or active (L1) state. The transitions between these states are described by 

two rate constants, a (L1 → L2) and b (L2 → L1). This process corresponds to the kinetic 

scheme

M + L1 κr

κ f
C

L1 b

a
L2

(29)

If we assume as before that the ligands are in excess and initially in equilibrium, then their 

concentrations do not change with time, [L1] = [L2]b/a. The rate equations for the 

macromolecule and complex concentrations in the presence of diffusion are, as before, 

obtained by replacing [M][L1] in the ordinary rate equations by ρML1
rc, t :

d[M]
dt = − κ f ρML1

rc, t + κr[C]
d[C]

dt = κ f ρML1
rc, t − κr[C]

(30)

where ρML1
(r, t) is the pair distribution function of the macromolecule M and a ligand in the 

open state, L1, separated by distance r. The boundary condition for ρML1
(r, t) is the same as 

eq 4 since M − L1 can react at contact:
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D 4πrc
2 ∂

∂r δρML1
(r, t) r = rc

= κ f ρML1
rc, t − κr[C] (31)

The pair function ρML1
(r, t) is coupled to three other pair functions, ρML2

(r, t), ρCL1
(r, t), and 

ρCL2
(r, t), that satisfy reflecting boundary condition at contact since the partners cannot 

react.

The equations for the deviations of the pair distribution functions from their bulk values, 

δρML j
(r, t) = ρML j

(r, t) − [M][L j] and δρCL j
(r, t) = ρCL j

(r, t) − [C][L j], j = 1, 2, are analogous to 

the corresponding equation for gated receptors, eq 5. The deviations of the pair distribution 

functions change due to diffusion, ligand interconversion between open and closed states 

and reaction with the ligands in the bulk. For example, the macromolecule from the M − L1 

pair can react with some other ligand in the active state to generate a C − L1 pair. The latter 

may disappear due to dissociation of C, producing an M − L1 pair. Thus the Laplace 

transform of the vector of deviations δρ(r, t) with the elements (δρML1
, δρML2

, δρCL1
, δρCL2

) 

satisfies eq 8, but now K is the 4 × 4 rate matrix:

K =

− a + κ f L1 b κr 0

a − b + κ f L1 0 κr

κ f L1 0 − a + κr b

0 κ f L1 a − b + κr

(32)

Using a similar substitution as in eq 10 (with [M1] [M] and [L] → [L1]), it can be shown 

that the rate equations in the Laplace space are the same as eq 13, where c  is a vector with 

elements [M] and [C] and

𝓚 =
−𝒦 f (s) L1 𝒦r(s)

𝒦 f (s) L1 −𝒦r(s)
(33)

Here the reaction kernels 𝒦 f (s) = κ f s f 1 rc, s / p1 and 𝒦r(s) = κrs f 1 rc, s / p1 are again related 

by detailed balance and are given by eq 20, where T is the matrix of the eigenvectors of the 4 

× 4 matrix in eq 32 and −λi are the corresponding eigenvalues. One can show after a bit of 

algebra that

1 + a/b + Keq[L]
𝒦 f (s)

= 1
𝒦irr(s)

+ a/b
𝒦irr s + kg

+
Keq L1

𝒦irr s + k0
+

Keq L1 a/b
𝒦irr s + kg + k0

(34)
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where kg = a + b, k0 = κf[L1] + κr, with 𝒦irr given by eq 23, and [L] is the total ligand 

concentration (i.e., [L1] = b[L]/(a+b)). This expression for the reaction kernel for fluctuating 

ligands differs from eq 21 for fluctuating macromolecules. However, in the limit of small 

ligand concentration, it can be shown that they are the same.

Relaxation to equilibrium at long times is a power law

[M(t)] − [M]eq
[M(0)] − [M]eq

=
[C(t)] − [C]eq
[C(0)] − [C]eq

Keq(1 + a/b)

1 + a/b + Keq[L] 2
1

(4πDt)3/2 (35)

Note that the amplitude of the relaxation of the bound state [C] is the same as that for 

fluctuating macromolecule given in eq 26.

Illustrative Calculations

As an illustration, consider the kinetics of binding to fluctuating macromolecules. The 

kinetics are found by solving the equations for the Laplace transform of the concentrations, 

eqs 13–14, with the kernels 𝒦 f (s) and 𝒦r(s) = 𝒦 f (s)/Keq in eqs 21–23. For uniformly 

reactive spheres, k irr(s) is given by the Collins-Kimball rate coefficient:44

1
sk irr(s)

= 1
κ f

+ 1
4πDrc 1 + src

2/D
(36)

Solving eq 13 for the concentrations and inverting the Laplace transform numerically, say, 

by using the Stehfest algorithm,49 one can find the time dependence of the concentrations.

Figure 2 shows the time dependence of the relaxation function, ([C(t)] − [C]eq)/([C(0)] − 

[C]eq), obtained using time-dependent memory kernels (red circles). Initially, all 

macromolecules are unbound and at equilibrium, [M1(0)]/[M2(0)] = b/a, [C(0)] = 0. The 

kinetics is compared with that obtained using conventional rate equations, eq 2, with various 

sets of modified forward, kf, and reverse, kr, rate constants. These include the intrinsic rate 

constants kf = κf (black), the diffusion-influenced rate constants, kf = κf4πrcD/(κf + 4πrcD) 

(green), the stochastically-gated rate constants, kf = (1 + a/b)ksg with ksg obtained from eqs 

28 and 36 (magenta), and the Markovian limit (blue), k f = 𝒦 f (0). The reverse rate constant 

in all cases is found using detailed balance, kr = kfκr/κf. When the ligand concentration is 

small (Fig. 2A), the rate equations with the stochastically-gated rate constants provide an 

accurate description of the kinetics at short and intermediate times. The naive approach of 

simply using diffusion-influenced rate constants performs surprisingly poorly. At long times, 

the relaxation becomes a power law (dashed lines) (see eq 25). At a high ligand 

concentration (see Fig. 2B), the kinetics is intrinsically non-Markovian, so descriptions with 

time-independent rate constants are inadequate essentially at all times (see Fig. 2B).
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Concluding Remarks

In this paper we derived non-Markovian rate equations that describe the kinetics of 

reversible ligand binding when the reactivity of either the macromolecule (see eq 1) or the 

ligand (see eq 29) fluctuates. We were able to express the memory kernels for association 

and dissociation in terms of the time-dependent rate coefficient that describes the simplest 

irreversible binding reaction. Consequently, our formalism is not restricted to reactants that 

are non-interacting spheres with isotropic reactivity. One can immediately handle any 

geometry for which the time-dependent rate coefficient for the irreversible reaction between 

two species is known to a good approximation. These include reactive sites of arbitrary 

shape embedded in an otherwise inert planar surface,50 the presence of an arbitrary 

centrosymmetric interaction potential,51 a buried active site connected to the surface of the 

macromolecule by a tunnel,52 and, finally, reactive patches on a plane, cylinder and sphere 

in the presence of surface diffusion due to nonspecific binding.23
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Appendix A:: Many-Particle Formulation with the Superposition and 

Linearised Superposition Approximations

Consider a reversible ligand binding to a macromolecule fluctuating between open (M1) and 

closed (M2) states. In the open state, it can bind a ligand L. Ligands are in excess, so that we 

can consider just one macromolecule in states M1, M2, and C surrounded by many (N) 

ligands in a volume V. We will be interested in the thermodynamic limit, where N → ∞, V 
→ ∞ in such a way that N/V approaches to the ligand concentration, [L]. The many-body 

problem in this case simplifies because only the state of the macromolecule (i.e., open, 

closed, or bound) changes. For simplicity, we assume that the system is homogeneous, the 

macromolecule is at the center and does not move, the ligands are noninteracting points 

diffusing with diffusion coefficient D.

Let PM1
r1, …, rN, t PM2

r1, …, rN, t  be the probability densities that the macromolecule is 

in state M1 (M2) and the ligands are located at distances r1,…,rN from the center of a 

spherical macromolecule. PCi(r1,…, ri −1; ri+1,…, rN, t) is the probability density that the 

macromolecule is bound to the ith ligand. The normalization condition is

∫ PM1
+ PM2

dr1…drN + ∑
i = 1

N ∫ PCi dr1…dri − 1dri + 1…drN = 1 (37)

where dri = 4πri
2dri, so that ∫ dri = V.
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The intrinsic association rate constant at contact (i.e., when ri = rc) is κf. The macromolecule 

bound to the ith ligand can dissociate with the rate constant κr, leading to the appearance of 

the ligand i at contact. M1 and M2 interconvert with rate constants a and b. The probability 

densities satisfy the master equations:

∂
∂t PM1

= ∑
i = 1

N
D∇i

2PM1
− aPM1

+ bPM2
(38a)

∂
∂t PM2

= ∑
i = 1

N
D∇i

2PM2
+ aPM1

− bPM2
(38b)

∂
∂t PCi = ∑

j = 1, j ≠ i

N
D∇ j

2PCi + κ f PM1 ri = rc

− κrPCi (38c)

with the boundary conditions

D∇iPM1 ri = rc

= κ f PM1 ri = rc

− κrPCi (39a)

∇iPM2 ri = rc

= 0 (39b)

∇iPC j ri = rc
= 0, i ≠ j (39c)

Here ∇i
2 and ∇i are the three-dimensional Laplacian and gradient in polar coordinates of the 

ith ligand. Eq 39a means that the diffusive and reactive fluxes are equal at contact. The two 

other boundary conditions imply that neither M2 or C can react with a ligand. At this stage, 

the volume of the system is finite, so that the above probability distributions obey reflecting 

boundary conditions at the outer boundary.

The concentrations are related to the probability densities by
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M1(t) = Mtot lim
N, V ∞∫ PM1

dr1…drN (40a)

M2(t) = Mtot lim
N, V ∞∫ PM2

dr1…drN (40b)

[C(t)] = Mtot lim
N, V ∞

∑
i = 1

N ∫ PCidr1…dri − 1dri + 1…drN (40c)

where Mtot = [M1] + [M2] + [C] is the total macromolecule concentration, which does not 

change. Here the limit N → ∞ and V → ∞ is taken in such a way that N/V = [L] = const. 
The initial conditions for the P’s in terms of the initial concentrations are 

PM1
(t = 0) = V−N M1(0) /Mtot, PM2

(t = 0) = V−N M2(0) /Mtot, 

PCi(t = 0) = V−(N − 1)[C(0)]/ MtotN .

The pair distribution functions are defined as

4πr2ρM1L(r, t) = Mtot lim
N, V ∞∫ ∑

i = 1

N
δ r − ri PM1

dr1…drN (41a)

4πr2ρM2L(r, t) = Mtot lim
N, V ∞∫ ∑

i = 1

N
δ r − ri PM2

dr1…drN (41b)

4πr2ρCL(r, t) = Mtot lim
N, V ∞∫ ∑

i, j = 1, i ≠ j

N
δ r − ri PC jdr1…dr j − 1dr j + 1…drN (41c)

where δ(r) is the one-dimensional delta function, ∫ δ r − ri 4πri
2dri = 4πr2. Note that ρXL(r, 0) 

= [X(0)]N/V = [X(0)][L], where X = M1, M2, C, which follows from eq 41 using the initial 

values for P’s.

We will also use the three-particle distribution function:
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4πrr′ 2ρM1LL r, r′, t = Mtot lim
N, V ∞∫ ∑

i, j = 1; i ≠ j

N
δ r − ri δ r′ − r j PM1

dr1…drN (42)

Now we derive the exact equations for the concentrations and pair distributions. Multiplying 

the master equation for PM1
 in eq 38 by Mtot, integrating with respect to all ligand 

coordinates and using eq 40a, we get the rate equation for [M1]. To simplify the right-hand 

side, we use the following two equalities that can be derived using eqs 39a, 40c, and 41a:

D∫ ∇i
2PM1

dri = − D∇iPM1 ri = rc

= − κ f PM1 ri = rc

+ κrPCi

Mtot ∑
i = 1

N ∫ κ f PM1 ri = rc

− κrPCi dr1…dri − 1dri + 1…drN = κ f ρM1L rc, t − κr[C]

(43)

The equation for [M2] is found similarly but using the reflecting boundary condition in eq 

39b. To find the equation for [C], one needs to integrate the equation for PCi over all 

coordinates except i and to sum over i (see eq 40c). In this way, we find that the 

concentrations [M1(t)], [M2(t)], and [C(t)] satisfy:

d M1
dt = − κ f ρM1L rc, t + κr[C] − a M1 + b M2

d M2
dt = a M1 − b M2

d[C]
dt = κ f ρM1L rc, t dr − κr[C]

(44)

in agreement with eq 3 of the main text.

These equations involve the pair distribution function ρM1L rc, t  in contact. The equation for 

ρM1L(r, t) is obtained by multiplying eq 38a for PM1
 by Mtot ∑j δ(r − rj)/4πr2 and integrating 

with respect to all coordinates (see eq 41a). In the right-hand side, the terms 

Mtot∑i ≠ j∫ δ r − r j D∇i
2PM1

dr1…drN /4πr2 are rearranged using eqs 41c, 42, and 43 and 

result in the term −κ f ρM1LL r, rc, t + κrρCL(r, t). The terms with i = j can be simplified using 

∑i∫ δ r − ri D∇i
2PM1

dr1…drN = D∇r
2∑i∫ δ r − ri PM1

dr1…drN. This leads to the term 

D∇2ρM1L in the right-hand side. The equations for ρM1L and ρCL are obtained similarly, so 

we have:
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∂
∂t ρM1L(r, t) = D∇2ρM1L − κ f ρM1LL r, rc, t + κrρCL − aρM1L + bρM2L

∂
∂t ρM2L(r, t) = D∇2ρM2L + aρM1L − bρM2L

∂
∂t ρCL(r, t) = D∇2ρCL + κ f ρM1LL r, rc, t − κrρCL

(45)

The boundary condition for ρM1L is found by integrating eqs 39 with respect to all 

coordinates except ri, summing over i and then using eqs 40c and 41a. In this way we find

D ∇ρM1L
r = rc

= κ f ρM1L rc, t − κr[C] (46)

in agreement with eq 4 in the main text. Similarly, we find that ρM2L and ρCL satisfy 

reflecting boundary conditions at contact.

Equations 44–46 couple concentrations and pair distribution functions to the three-particle 

distribution function ρM1LL r, rc, t  of the macromolecule and two ligands located in r and rc. 

These equations are exact for the model adopted above.

To obtain a closed equation for the three-particle distributions, we use the so-called 

superposition approximation:

ρM1LL r, r′, t ≈
ρM1L(r, t)ρM1L r′, t

M1(t) (47)

Using this in eq 45 leads to a rather ugly set of non-linear equations. The same is true if they 

are written in terms of the pair correlation functions, gXL(r, t) (X = M1, M2, C), defined as 

ρXL(r, t) = gXL(r, t)[X(t)][L].10 However, the corresponding equations for the deviations of 

the pair distribution functions from their bulk values,

δρXL = ρXL − [X][L], X = M1, M2, C (48)

turn out to have remarkably simple structure:

∂
∂t

δρM1L

δρM2L

δρCL

= D∇2

δρM1L

δρM2L

δρCL

+
− a + k f (t)[L] b κr

a −b 0
k f (t)[L] 0 −κr

δρM1L

δρM2
L

δρCL

(49)
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where we have defined a time-dependent association rate coefficient kf(t) by

k f (t) ≡ κ f

ρM1L rc, t

M1(t) [L] (50)

In terms of this rate coefficient, eq 44, which exactly describes the time evolution of the 

concentrations, can be rewritten as:

d
dt

M1
M2
[C]

=
− a + k f (t)[L] b κr

a −b 0
k f (t)[L] 0 −κr

M1
M2
[C]

(51)

Note that the matrices in eqs 49 and 51 are the same. Thus, the deviations of the pair 

distribution functions from their bulk values relax due to reaction (eq 49) in precisely the 

same way as do the bulk concentrations (eq 51).

For an irreversible reaction (κr = 0), kf(t) can be interpreted as the diffusion-modified 

association rate coefficient. However, for reversible reactions, this interpretation cannot be 

correct because it implies a violation of detailed balance.

Since kf(0) = κf, if we were to replace kf(t) by its initial value in eq 51, we would recover the 

rate equations of ordinary chemical kinetics, eq 2. The same approximation (kf(t) → κf) in 

eq 49 that determines the pair distribution function would lead to the set of linear equations, 

eq 5, in the main text. To obtain this approximation directly, one can use the linearized 

version of the superposition approximation in eq 45:

ρM1LL r, r′, t = M1 [L]2 + δρM1L(r, t)[L] + δρM1L r′, t [L] (52)

This approximation can be obtained by rewriting the superposition approximation in eq 47 

in terms of δρM1L and then neglecting the nonlinear term δρM1L(r, t)δρM1L r′, t  as mentioned 

in the main text.

Appendix B:: Stochastic gating with N states

In this Appendix we derive eq 18, which expresses the stochastically gated rate coefficient 

k sg(s) for a system with one open state and N − 1 closed states in terms of the rate coefficient 

k irr(s) for the much simpler system where there is only a single open state. For uniform 

reactivity at contact and noninteracting particles, this amounts to solving eq 11 for f 1(r, s)

subject to the boundary condition in eq 12. Here we will show that eq 18 holds more 

generally. Specifically, we assume that all pairs interact with the same potential U(x), where 
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x can depend both on distance and orientation. The dynamics (including rotational diffusion) 

of all pairs is described by an operator ℒ with the property that ℒ exp( − βU(x)) = 0. Finally, 

we describe the reactivity of the open state by a non-local sink function σ(x), which is 

normalized ∫ σ(x)dx = 1. This sink function can depend, say, exponentially on r or be 

localized in a small region of configuration space. For isotropic reactivity, the boundary 

condition in eq 12 is equivalent to the sink function σ(r) = δ r − rc /4πrc
2 in conjunction with 

a reflecting boundary condition at contact.53 For this microscopic model, eq 11 must be 

replaced by

s f − pe−βU(x) = ℒ f + K f − κ f σ(x)v f (53)

with reflecting boundary conditions at contact. Here p is the equilibrium distribution 

corresponding to K (i.e., Kp = 0) and v is a vector with its first element equal to 1 and the 

rest equal to 0. The Laplace transform of the stochastically gated rate coefficient is given by

k sg(s) = κ f∫ σ(x) f 1(x, s)dx (54)

By introducing the matrix Green’s function G(x, s | x′) that satisfies

sG − Iδ x − x′ = ℒG + KG (55)

where I is the identity matrix, one can recast eq 53 into the integral equation

f 1(x, s) = p1e−βU(x)/s − ∫ G11(x, s | x′)κ f σ x′ f 1 x′, s dx′ (56)

where G11 is a matrix element of G.

In general, eq 56 can be solved analytically only using the Wilemski-Fixmann 

approximation.45 In this approximation, the dependence of f 1 on x and s is decoupled 

assuming that the equilibrium distribution is maintained in the volume where the reaction 

occurs, but with s-dependent amplitude. This amounts to replacing f1 under the integral sign 

in eq 56 by

f 1(x, s) ≈ e−βU(x)∫ σ x′ f 1 x′, s dx′
∫ σ x′ e−βU x′ dx′

(57)

This approximation is exact for the contact reactivity.
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Multiplying eq 56 by κfσ(x), integrating it with respect to x, and using eq 57 in the right 

hand side of this equation, we get an algebraic equation for k sg(s), defined in eq 54:

k sg(s) = κ f p1/s − κ f Γ (s)k sg(s) (58)

where we have defined 〈κf〉 as

κ f = κ f∫ σ(x)e−βU(x)dx (59)

and Γ (s) is the Laplace transform of the sink-sink autocorrelation function:

Γ (s) =
κ f

2

κ f
2∫ σ(x)G11(x, s | x′)σ x′ e−βU x′ dxdx′ (60)

Rearranging eq 58, we find

p1
sk sg(s)

= 1
κ f

+ Γ (s) (61)

which determines the stochastically-gated rate coefficient.

To proceed further, we diagonalize the rate matrix, K = T Diag(−λi)T−1, where Diag(−λi) is 

the diagonal matrix of eigenvalues −λi defined so that λi are positive or 0. Then it follows 

from eq 55 that G = TDiag g s + λi T−1, where the diagonal elements are 

g s + λi ≡ g x, s + λi | x′ , where g(x, s | x′) satisfies eq 55 with K = 0:

sg − δ x − x′ = ℒg (62)

with reflecting boundary condition at contact.

Using this representation in eqs (60)–(61), we get

p1
sk sg(s)

= 1
κ f

+ ∑
i = 1

N
[T]1i T−1

i1γ s + λi (63)

where γ (s) is given, similar to eq 60, by
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γ (s) =
κ f

2

κ f
2∫ σ(x)g(x, s x′)σ x′ e−βU x′ dxdx′ (64)

The stochastically-gates rate coefficient in eq 63 can be related to the Laplace transform of 

the rate coefficient k irr(s) for the irreversible binding without gating (i.e., to the open state 

with index 1). k irr(s) can be obtained using eqs 53 and 54 with K set to 0. In the framework 

of the Wilemski-Fixmann approximation, it is given by eq 63 with N = 1, p1 = 1, and T = I:

1
sk irr(s)

= 1
κ f

+ γ (s) (65)

Using this in eq 64 and noting that Σi[T]1i[T−1]i1 = 1, we recover eq 18 in the main text.
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Figure 1: 
Reversible binding with stochastic gating. (A) A macromolecule fluctuates between the 

open, M1 (red), and closed, M2 (blue), states. A ligand L reversibly binds to the 

macromolecule in the open state M1 and forms a complex C. (B) A ligand fluctuates 

between the reactive, L1 (red), and unreactive, L2 (blue), states. The ligand in the reactive 

state L1 binds to the macromolecule M and forms a complex C. The open (or reactive) states 

are labeled by the index “1”.
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Figure 2: 
Relaxation function of reversible binding to a fluctuating macromolecule. The relaxation 

function ([C(t)] − [C]eq)=([C(0)] − [C]eq) is calculated using eqs 13–14 (red circles) and 

plotted against dimensionless time t/τD, where τD = rc
2/D. It is compared with the relaxation 

function obtained from conventional chemical kinetics with various choices for the rate 

constants: intrinsic (black), diffusion-influenced (green), diffusion-influenced with 

stochastic gating (magenta), Markovian limit (blue). The black dashed lines show the power-

law asymptotics, eq 26. The insets show behavior at short times. The parameters are (A) 

v[L] = 0.1, κf/kD = 1, aτD = bτD = 1, and (B) v[L] = 0.5, κf/kD = 10, aτD = bτD = 5, where 

v = 4πrc
3/3 and kD = 4πDrc = 3v/τD. In both plots, Keq[L] ≡ κf[L]/κr = 1, all macromolecules 

are initially unbound with equal population in the open and closed states.
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