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Abstract

Intracellular transport of organelles is fundamental to cell function and health. The mount-

ing evidence suggests that this transport is in fact anomalous. However, the reasons for

the anomaly is still under debate. We examined experimental trajectories of organelles

inside a living cell and propose a mathematical model that describes the previously

reported transition from sub-diffusive to super-diffusive motion. In order to explain super-

diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the

cargo: the rate of detachment is inversely proportional to the time since the last attach-

ment. Recently, we observed the non-Markovian detachment rate experimentally in

eukaryotic cells. Here we further discuss different scenarios of how this effective non-Mar-

kovian detachment rate could arise. The non-Markovian model is successful in simulta-

neously describing the time averaged variance (the time averaged mean squared

displacement corrected for directed motion), the mean first passage time of trajectories

and the multiple peaks observed in the distributions of cargo velocities. We argue that

non-Markovian kinetics could be biologically beneficial compared to the Markovian kinet-

ics commonly used for modelling, by increasing the average distance the cargoes travel

when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to

reach neighbouring filaments with higher probability, which promotes active motion along

the microtubules.

Introduction

A variety of large structures and assemblies inside living cells, such as organelles, are now

thought to experience sub-diffusive and/or super-diffusive motion rather than diffusive,

Brownian motion [1–17]. Thus the successful statistical models that describe Brownian

motion developed by Einstein and Smoluchowski (among others) to describe the thermal

fluctuations in the position of dilute colloidal particles (first demonstrated by J.B. Perrin)

need to be adapted to describe motion in congested environments. Furthermore, this
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congested thermal motion is superposed on the non-equilibrium active transport that drives

long distance organelle movement inside the cell [18]. This organelle transport is essential

for cell function. Active organelle transport is mediated by molecular motors which move

processively along microtubules in the direction of their polarity. As an example, cyto-

plasmic dynein moves towards the minus ends of microtubules [19, 20]. Molecular motors

move by hydrolysing ATP molecules at rates of the order 100 s−1. The functioning of molec-

ular motors may involve multiple states and it is regulated by a complex biochemical net-

work [21, 22]. It is believed that multiple motors moving collectively are required to

transport large organelles [23–28]. However, the actual number of engaged motors in vivo is

still unknown, although some fluorescence microscopy experiments indicate there can be up

to 5 dyneins and 5 kinesins engaged simultaneously on large cargoes [29], and these num-

bers are expected to be dependent on the cargo type, cell type and the organism considered.

Crucial unsolved questions in cellular biology include how anomalous motion impacts on

the majority of processes inside a cell (both during mechanical interactions and in chemical

reactions), how these processes can be modelled and how sub-diffusive transport combines

with active motility driven by motor proteins [30].

Recently, we experimentally found that the dynamics of cargo-motors complexes in eukary-

otic cells is better described by a model with an effective non-Markovian kinetics [31]. Namely,

we found that the rate of detachment is inversely proportional to the time since the last attach-

ment. Consequently the longer a cargo moves along a microtubule, the less likely it will detach

from it. As a result, the movement of cargoes is non-Markovian and involves a memory. In

this paper we analyze individual lipid droplet tracks [32] and compare with the non-Markov-

ian and the Markovian models of cargo transport. We focus on implications of non-Markov-

ian dynamics for the physical properties of cargo transport. We show that in contrast to the

Markovian model, the non-Markovian model is able to describe the process of super-diffusion

previously reported in [32].

The motion of the organelles in [32] was observed to be often paused, displaying a run-rest

behaviour. The nature of the rest states is not fully understood. Pauses can be caused by

detachments of the motor from the microtubule. However, organelles were not found to dif-

fuse away from the microtubule. Cytoplasmic dynein binds to the microtubule via a repeated

cycle of detachment and reattachment. It was previously found that association with accessory

proteins like dynactin may promote additional weak binding to the microtubule [33, 34]. This

prevents the motor-cargo complex from diffusing away while the dynein motor is detached,

and facilitates the reattachment. Theoretically it was suggested that switching between free dif-

fusion and active transport could enhance reaction kinetics [35, 36] and significantly improve

signalling precision [37, 38].

The behaviour of the time averaged mean squared displacement (TAMSD) of organelles

was found to be sub-diffusive at short time intervals Δ� 1 s in an experiment with liquid

droplets [32], TAMSD * Δα with α< 1. The exact physical origin of sub-diffusion is still

under investigation [39–45]. Sub-diffusion caused by cytoplasmic crowding or temporal bind-

ing could obstruct the movement of the organelle [39, 40]. Motors which drive the organelle

could cycle unproductively at junctions of three or more filaments leading to sub-diffusive

behavior [41]. However, sub-diffusion also can be biologically beneficial since it restricts

organelles from moving far away from their microtubules. Thermally driven sub-diffusion can

be attributed to visco-elastic properties of the cytoplasm [46], as observed for the thermal

motion of colloidal tracer particles in entangled actin filament networks [47]. Mathematically

it can be modeled using the fractional Langevin equation which fulfills the fluctuation-dissipa-

tion relation (FDR) [48–50]. In the context of intracellular transport, thermal sub-diffusive

behaviour of non-interacting cargo-motor complexes was studied in [51–55]. On the other
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hand, non-thermal sub-diffusion can be modelled as the Langevin equation with an external

fractional Gaussian noise (fGn) which does not fulfill the FDR [56–58]. Previously it has been

used to describe the dissociation dynamics of biopolymers from a bound state, particle sub-dif-

fusion under molecular crowding conditions and bulk chemical reactions of larger particles

under super-dense conditions [59–62].

In the long-time limit with the lipid droplet experiments, the TAMSDs become super-dif-

fusive: TAMSD * Δα with 1 < α� 2 where α = 2 corresponds to ballistic motion [32].

Although it is clear that organelle transport is driven by molecular motors, there could be

various reasons for sub-ballistic and super-diffusive behaviour in living cells. The highly vis-

cous, dissipative environment could be one of them [53]. Transient super-diffusion was sug-

gested to be caused by geometry in driven crowded systems [63], fluctuations [64],

competition of opposite polarity motors [51, 55], heterogeneity of the substrate [65, 66], the

motion of microtubules [67] or asymmetry in attachment and detachment rates [68]. In the

later model it was assumed that the motor remains attached, but stationary, to the filament

during the pause state, or that it detaches, but stays immobile, at the detachment point until

it attaches again.

To understand organelle motion, various models of motor protein dynamics and those of

cargo-motor complexes were developed [21–24, 35, 51–55, 64, 68]. Several of them incorpo-

rate sub-diffusive and/or super-diffusive behaviour for the cargo-motor complexes [51–55,

64, 68]. All these models assume Markovian attachment and detachment rates of motor pro-

teins from filaments. We suggest that non-Markovian kinetics of motors could be the reason

for the cargo-motor behaviour observed in our experiments [32]. We introduce the effective

detachment rate for motors which is not constant as it is commonly used for modelling (see

also the Markovian rate model defined below), but inversely proportional to the time inter-

val since the last attachment event. Recently we observed the non-Markovian detachment

rate experimentally in the dynamics of cargo-motors complexes in eukaryotic cells [31]. One

of the possible origins of the non-Markovian rate is based on the natural assumption of a

heterogeneous population of motors. Cargo movement frequently involves a mixed popula-

tion of motors with diverse properties of speed, detachment rate, etc. Therefore the detach-

ment rate for a motor should be thought of as describing the effective rate of many different

types of motors. The non-Markovian unbinding rate corresponds to a power-law distribu-

tion of running times of motors walking along filaments [69–71]. Power-law distributions of

running times differ from the usually assumed exponential (Poisson) distribution, which fol-

lows for a constant unbinding rate [22–24]. Recently power-law distributions of running

times have been observed in experiments for molecular motors in living cells [2]. We also

base our assumption of non-Markovian kinetics on the mounting evidence of anomalous

internal dynamics of proteins [72, 73]. Non-Markovian internal kinetics have been discov-

ered in a range of enzymes based on single molecule experiments [74–76]. Reaction kinetics

of polymers also demonstrate non-Markovian effects [77]. Previously, a model which incor-

porates some non-Markovian effects in terms of the memory in time of the averaged force

acting on the cargo was considered in [78].

The proposed non-Markovian model is successful in simultaneously describing the time

averaged mean squared displacement, the mean first passage time of trajectories and the multi-

ple peaks observed in the distributions of cargo velocities. Based on the analysis of our model,

we find that non-Markovian motor kinetics could be biologically beneficial by allowing a

cargo to reach from one microtubule to another with much higher probability, and therefore

promoting active transport. We also show that the non-Markovian kinetics could increase the

average distance that the cargoes travel when microtubules are blocked by another filament, so

promoting long range transport.

Non-Markovian intracellular transport
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Results and discussion

The individual lipid droplet tracks were obtained using high speed bright-field microscopy

[32]. Combined with sophisticated tracking software [79], it provided nanometre resolution of

organelle positions at sub-millisecond time scales in live cells. The motion was imaged at 10

000 frames per second. Details of experimental settings and methods are described in [32]. In

the experiment, 2D projections of 3D trajectories were recorded. Therefore, in theoretical

modelling we ignore the third dimension. However, the 2D approximation of trajectories

could be well justified. Firstly, the microtubules effectively reduce the dimensionality. Sec-

ondly, if trajectories had big z-components, they would quickly go out of the focal plane of the

microscope and stop being recorded. In this way only trajectories that were close to 2D were

recorded. In general, resolving the third dimension is an open experimental and theoretical

problem. Some spurious artifacts caused by 3D projection into 2D which transiently mimic

superdiffusion in the projected coordinate were discussed in [80, 81].

It was observed in experiments [32] that organelles move along microtubules in straight or

slightly curved trajectories. Several sample trajectories are shown in Fig 1(a). Since vesicles

were found to move predominately in one direction towards the cell centre, we conjectured

that only dynein motors were engaged and there was no tug-of-war between motors of oppo-

site polarity. We observed steps of 8 and 18 nm typical for dynein motors in the cargo trajecto-

ries (Figs A and B in S1 File). It is not clear how many motors were engaged simultaneously.

The number of working motors is difficult to determine even in vitro [82]. Therefore, in our

modelling we pursue the mean-field approach assuming that the cargo is attached to an effec-

tive motor with effective detachment and attachment rates (see below).

Anomalous transport properties

To analyse experimental trajectories we calculated the time averaged mean displacement

(TAMD, Eq (14)), the mean squared displacement (TAMSD, Eq (11)) and the time averaged

variance (TAVAR, the time averaged mean squared displacement corrected for directed

motion, Eq (15)) of individual trajectories. The TAMD for experimental trajectories of the

lipid droplets grow linearly as a function of time interval Δ (Fig C in S1 File) and therefore the

TAMSD grows ballistically, TAMSD(Δ) * Δ2 for approximately Δ> 0.02 s (Fig D(a) in S1

File). Therefore, instead of TAMSD we calculated the TAVAR of a single trajectory (Fig 1(b))

and found a power-law dependence with the anomalous exponent α:

TAVARðDÞ � D
a
: ð1Þ

Fig 1. (a) Distance LðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
traveled by single lipid droplet cargoes as a function of time, extracted from experimental

trajectories [32]. (b) Time averaged variance (TAVAR) for single experimental trajectories of the lipid droplets as a function of time

interval Δ. (c) The mean first passage time (MFPT) as a function the displacement L for single experimental trajectories.

https://doi.org/10.1371/journal.pone.0207436.g001
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TAVAR shows a clear transition from sub-diffusion 0< α< 1 at short time scales with the

exponent α’ 0.7 to super-diffusive motion 1< α< 2 at large times with the average exponent

α’ 1.6. For different experimental trajectories anomalous exponents of experimental trajecto-

ries were found to be in the range from α = 1.35 to α = 1.77. We suggest that this super-diffu-

sive behaviour is asymptotic and biologically beneficial compared to normal diffusion (α = 1).

Super-diffusion helps lipid droplets to overcome obstruction of motion caused by sub-diffu-

sion, e.g. [17]. The transition from sub- to super-diffusion occurs at approximately a 20 ms

time interval and was reported in [32]. The TAVARs of some trajectories saturates at small

time scales (Fig 1(b)). We show that this small time saturation can be explained by the mea-

surement errors in recording of trajectories.

Mean first passage time

To analyse the experimental trajectories further we calculated the mean first passage time

(MFPT) for each organelle to reach a certain distance L for the first time. Fig 1(c) shows a con-

siderable spread of the MFPTs among the trajectories and a transition from saturated to fast

growth for small L to almost linear growth at longer distances. The time which corresponds to

this transition (t* 0.1 s) is significantly different from the crossover time between sub- and

super-diffusive behaviour of the TAVAR and the TAMSD, at approximately 20 ms. The satu-

ration behaviour at short times and fast growth of the MFPT for small L are captured by mea-

surement errors included in our model.

Observed cargo velocities

Experimental trajectories have been analysed by extracting velocities of the cargoes. We calcu-

lated the distribution of average velocities (see Methods for definition). The distributions of v
in Fig 2 have several peaks corresponding to average velocities of different parts of the trajec-

tory. The velocity of the cargo in one trajectory varies from 0 to 2 μm/s. We checked that this

method accurately estimates velocities of a cargo (Figs E and F in S1 File). More examples of

distributions of cargo velocities are shown in Fig G in S1 File. Peaks in the distributions which

correspond to different cargo velocities confirm the method.

Results of mathematical modelling

To explain the experimental findings, we modelled the dynamics of a cargo complex, which is

moving along a microtubule. For simplicity we do not consider the heterogeneity of the cell

cytoplasm. We propose a mean-field approach where we assume the cargo is driven by an

effective motor. Below we discuss how such a mean-field description could arise from the

dynamics of multiple motors. A schematic illustration of the set-up used in simulations is

shown in Fig 3. To better understand the implications of non-Markovian motor kinetics, we

constructed non-Markovian and Markovian rate models (see Methods for definition and

parameters) and compare them. Several sample trajectories are shown in Fig 4. In the non-

Markovian rate model we consider a Markov attachment rate and non-Markovian detachment

rate. The second model involves a Markov rate for the cargo detachment and attachment from

and to the microtubule. Our numerical results suggest that contrary to the Markovian rate

model, the non-Markovian rate model is able to describe asymptotic super-diffusive cargo

transport. An investigation of the dynamics of a group of interacting motors and the further

impact of the cytoskeletal network morphology on the intracellular transport [68, 83] will be

given in a future study.

The non-Markovian model reproduces super-diffusive behaviour. To explain the tran-

sition from sub-diffusive to super-diffusive behaviour observed in the experiment, we

Non-Markovian intracellular transport
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proposed a model which involves a run-length dependent non-Markovian detachment rate of

the motor from the microtubule instead of a more commonly used Markovian detachment

rate. The run-length dependent non-Markovian detachment rate is defined by inverse func-

tions of the time interval τ between two detachment/attachment events (this time interval is

Fig 2. Probability distribution function (PDF) of velocities along one experimental trajectory of a lipid cargo.

https://doi.org/10.1371/journal.pone.0207436.g002

Fig 3. Schematic illustration of the set-up used in simulations. (a) The cargo of radius R moves along the filament driven by the

effective motor, which is attached to the cargo by the elastic tether of length d. The microtubule is oriented along the x-axis. (b)

Another microtubule located at distance l1 from x = 0 and oriented along the y-axis perpendicular to the x-axis, blocking the

movement of the cargo. (c) The motor-cargo complex located at the end of one filament (x = 0) is targeted to reach another filament

at distance x = l2.

https://doi.org/10.1371/journal.pone.0207436.g003
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called a run):

TdðtÞ ¼
m

td þ t
exp ðF=FdÞ; ð2Þ

where F is the absolute value of the load force acting on the motor, Fd is the detachment force,

1< μ< 2 is the anomalous exponent and τd is the characteristic time scale. Since Eq (2) is not

a constant but depends on τ, the detachment rate is non-Markovian. Notice that the non-Mar-

kovian detachment rate Eq (2) is different from an inhomogeneous Poisson process since it

depends on the interval τ between two detachment/attachment events, while for an inhomoge-

neous Poisson process the rate depends on the time from the beginning of observation. The

switching dynamics from and to the microtubule in our model is similar to a Lévy walk (LW)

model interrupted by rests [4] so that our model has super-diffusive behaviour in TAVAR for

the exponent of the detachment rate 1< μ< 2 in Eq (2)

TAVARðDÞ � D
3� m
: ð3Þ

We note, however, that in the standard sub-ballistic super-diffusive LW model the time

average mean displacement (TAMD) is zero, whereas in our model it grows linearly with time.

The TAMSDs in our model are ballistic. To distinguish the motion which we study from the

standard super-diffusion which is commonly associated with the super-linear sub-ballistic

behaviour of MSDs or TAMSDs, we shall call it super-diffusion in TAVAR. We also note that

super-diffusion in TAVARs is equivalent to the super-diffusion in TAMSDs if the trajectories

are detrended before TAMSDs are calculated. The combination with fGn, which is indepen-

dent of the non-Markovian detachment rate, leads to sub-diffusion at small times. We per-

formed extensive simulations of the non-Markovian model for different parameters of the

model, namely, the anomalous exponent μ and the characteristic time scale td defined in Eq

(2). The time scale td controls the transition from sub-diffusive to super-diffusive behaviour

and was chosen from 1 to 0.0001 seconds. Such a wide range of parameters might help to

maintain robust transport inside living cells. The TAVARs show a clear transition from sub-

diffusion to super-diffusion (Fig 5(a)). For μ = 1.4, the power-law exponents α = 3 − μ = 1.6.

So, the non-Markovian rate model reproduces the super-diffusive behaviour of experimental

trajectories with the average anomalous exponent α = 1.6 (Fig 1(b)). In contrast, for the

Fig 4. (a) Distance LðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
travelled by cargoes as a function of time extracted from trajectories generated by the

non-Markovian rate model with the parameters Ta ¼ 1 s� 1, μ = 1.4, τd = 1 s (Eq (2)) and (b) for the Markovian rate model. Other

parameters are given in the Methods. Trajectories were generated with fractional Gaussian noise (fGn) and Gaussian noise (GN).

One trajectory for each model is shown without fGn and GN for comparison.

https://doi.org/10.1371/journal.pone.0207436.g004
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Markovian rate model, the TAVAR grows linearly with the time interval Δ (Fig 5(b)). The

TAVAR clearly distinguishes the non-Markovian rate model from the Markovian rate model

(defined below). The MFPT of numerically generated trajectories by the non-Markovian rate

model and the Markovian rate model shown in Fig 6(a) and 6(b) behaves similar to the MFPT

of the experimental trajectories (Fig 1(c)).

To our knowledge there exist only a few mathematical models for super-diffusive intracellu-

lar transport in the literature. On of them, [64], modeled the super-diffusive behaviour as a

correlated motion. In [51, 53, 55], transient super-diffusion occur due to highly viscous, dissi-

pative environment. The nature of super-diffusive behaviour in our model which is introduced

below is the non-Markovian effective detachment rate of the motors from a filament experi-

mentally observed in [31]. Below we suggest several possible scenarios for how the non-Mar-

kovian detachment rate could emerge from the dynamics of multiple motors.

Possible origins of the non-Markovian detachment rate. Cargo movement frequently

involves a mixed population of dyneins with diverse properties such as speed, detachment

rate, etc. Therefore the detachment rate Td in the Eq (2) describes an effective rate. Below we

Fig 5. (a) TAVAR for trajectories generated by the non-Markovian rate model and (b) by the Markovian rate model. Parameters of

the models were the same as in Fig 4. Power-law scaling trends are shown with * Δ0.7 for sub-diffusion (black dashed-dotted line),

Δ1.6 for super-diffusion (red dashed-double dotted lines), Δ for normal diffusion (green dashed-double dotted lines) and Δ2 for

ballistic motion (blue dashed line).

https://doi.org/10.1371/journal.pone.0207436.g005

Fig 6. (a) The mean first passage time (MFPT) as a function the displacement L for single trajectories generated by the non-

Markovian rate model and (b) the Markovian rate model. Parameters of the models were the same as in Fig 4. All the MFPTs have

similar behaviour. For trajectories generated by models without fGn and GN, the MFPT saturates at small distances.

https://doi.org/10.1371/journal.pone.0207436.g006
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discuss different scenarios of how the effective non-Markovian detachment rate could arise

from the dynamics of multiple motors.

Case 1. We assume that the cargo is attached to N motors and only one motor is engaged

with the microtubule. We also assume that there are N types of motors such that a single

motor with the probability pi has an exponential distribution of engagement times with a con-

stant detachment rate λi. The motors with the higher rate λi are detached rapidly and the

motors with the lower rates will dominate in the long time limit. In what follows we explain

theoretically why the decreasing rate in Eq (2) is a good approximation and justify it in numer-

ical simulations. The crucial question is: what is the effective detachment rate Td in this case?

To find this rate, we define the probability density function of the cargo engagement time ψ(τ)

on microtubule and the corresponding survival function CðtÞ ¼

Z 1

t

cðtÞdt. In our case:

cðtÞ ¼
XN

i¼1

pilie
� lit; CðtÞ ¼

XN

i¼1

pie
� lit: ð4Þ

According to the definition of the detachment rate [84]:

TdðtÞ ¼
cðtÞ

CðtÞ
: ð5Þ

It follows from these formulas that TdðtÞ is a decreasing function of the running (engage-

ment) time τ. At τ = 0, the effective detachment rate takes the maximum value and this is just

the mean value Tdð0Þ ¼
PN

i¼1
pili: In the long time limit the detachment rate TdðtÞ tends to

the smallest value of λi. One can choose the parameters N, pi and λi to have a perfect fit with

the formula:

TdðtÞ ¼
m

td þ t
; ð6Þ

within any time interval. For simplicity we consider F = 0 here. The exponential term exp(F/

Fd) in Eq (2) does not depend on τ and therefore plays the role of a scaling factor. In Fig 7(a)

the probability density function (pdf) of residence times of a cargo on a microtubule ψ(τ) gen-

erated using N = 6 motors with a heterogeneous set of exponential detachment rates is shown.

The residence time pdf is well approximated by the power law ψ(τ) * Aτ−μ−1 with μ = 1.4

and A = 0.012 within a broad time interval. This power-law pdf corresponds to the rate

TdðtÞ � m=t, which is consistent with the long time behaviour of Eq (6). The TAVARs of tra-

jectories calculated with these residence times grow as Δ3−μ = Δ1.6 (see Fig 7(b)) similar to

TAVARs of experimental trajectories (Fig 1(b)) and to TAVARs of trajectories generated by

the non-Makovian rate model (Fig 5(a)). We note that the trajectories of the model with N = 6

motors consist of several hundreds of detachment-attachment events therefore the use of the

time average quantities is justified in our mean-field approach. In our numerical simulation

we generate trajectories as follows: at t = 0, we select a motor with the detachment rate λi with

the probability pi. Then we chose a random number T drawn from exponential the distribu-

tion with the mean 1/λi. During this time the cargo moves with the velocity v a distance vT.

After this time the cargo detaches from the microtubule and rests during the random time T�

drawn from another exponential distribution with the rate Ta ¼ 1=s (see Methods). After this

period of time the attachment process repeats.

Case 2. To obtain the detachment rate TdðtÞ as the inverse function of the engagement

time, τ Eq (6), we extend the formula (4) by allowing λi to be continuously distributed with the
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gamma density [85, 86]:

pðlÞ ¼
t
m

dl
m� 1e� tdl

GðmÞ
: ð7Þ

This function gives the proportion of motors with the detachment rate λ in the population

of motors. The gamma distribution has a single peak (μ> 1) which decays exponentially at

long times and has a negligible probability for instantaneous detachment; both assumptions

seem physically reasonable. Therefore, the probability density function of the cargo engage-

ment time ψ(τ) on microtubule and the survival function C(τ) are:

cðtÞ ¼

Z 1

0

le� ltpðlÞdl ¼
m

td þ t

td
td þ t

� �m

; ð8Þ

and

CðtÞ ¼

Z 1

0

e� ltpðlÞdl ¼
td

td þ t

� �m

: ð9Þ

Substitution of Eqs (8) and (9) into Eq (5) leads to Eq (6). The numerically obtained resi-

dence time distribution shown in Fig 8(a) follows Eq (8). Therefore, the justification of the

non-Markovian rate (6) is based on the natural assumption of the heterogeneous population

of motors. As it follows from Eq (9), the unbinding rate Eq (5) corresponds to a power-law dis-

tribution of running times of motors walking along filaments [69–71].

Case 3. Another scenario is that the cargo is pulled by up to N motors in a cooperative man-

ner (the Klumpp-Lipowsky model [26]). Then the binding time probability density function ψ
(τ) is the linear combination of exponential functions as in Case 1 (see Eq (4))

cðtÞ ¼
XN

i¼1

Resð� ziÞe
� zit; ð10Þ

where −zi are the poles of the Laplace transform of ψ(τ) and Res(−zi) are the corresponding

Fig 7. (a) The probability density function (pdf) of residence times of a cargo on a microtubule, ψ(τ), for an ensemble of N = 6

motors (solid curve) calculated using Eq (4) with a particular set of pi and λi. We chose pi such that ∑i pi = 1. The dashed curve is the

power-law fit ψ(τ) * Aτ−μ−1 with μ = 1.4 and A = 0.012. This power-law pdf corresponds to the rate TdðtÞ � m=t, which is

consistent with the long time behaviour of Eq (6). Notice that 12 parameters (pi and λi) are parametrized by only two parameters A
and α. (b) The time averaged variances TAVARs (the time averaged mean squared displacements corrected for the drift) calculated

along single trajectories generated with the residence times of the cargo on the microtubule shown in (a) grow as Δ3−μ = Δ1.6 (red

dashed-double-dotted curve).

https://doi.org/10.1371/journal.pone.0207436.g007
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residues. These parameters are the functions of the binding and unbinding rates. Although the

parameters −zi are real and negative, the essential difference between Eqs (4) and (10) is that

Res(−zi)/zi are no longer probabilities as pi in Eq (4) and they do not all belong to the interval

[0, 1]. By using Eq (10) together with Eq (5) one can show that the effective detachment rate

TdðtÞ is again a decreasing function of the running time τ. Our numerical experiments for

N = 3 (see Fig 8(b)) demonstrate a good agreement with formula (6) in a broad time interval.

However, eventually the dynamics of this model is Markovian (due to the exponential tail of

the probability density of the residence times in Fig 8(b))) and therefore it can not explain the

long-time super-diffusive behaviour of cargoes observed experimentally.

We note that only Case 3 involves multiple motors. However, it does not reproduce the

super-diffusive behaviour of cargoes observed experimentally. In Case 1 and 2 it is assumed

that only one motor is engaged from the ensemble of motors. We will consider the effect of

relaxing this assumption in the future work. Further generalizations of these three cases are

possible that could involve a range of distributions and different mechanisms of attachment

and detachment. The advantage of our non-Markovian rate model Eq (6) is that it involves

only two parameters: the non-dimensional anomalous exponent μ and the time scale τd.
The Markovian rate model leads to normal diffusion. To insure that the non-Markovian

effective detachment rate is the reason for super-diffusive behaviour, we investigated the Mar-

kovian rate model and find that it leads to normal diffusion. In the Markovian rate model the

binding and unbinding rates of a motor are constant which results in an exponential distribu-

tion for the residence times in attached and detached states. The ensemble averaged mean

squared displacement (EAMSD) for this model has an asymptotic ballistic behavior [68]. The

TAMSD of single trajectories is also ballistic at large time intervals (Fig D(c) in S1 File). As

expected, the TAVAR grows linearly with the time interval Δ, see Fig 5(b). The fGn leads to

sub-diffusion at small times. Thus, the model demonstrates a transition from sub-diffusive to

normal diffusive behaviour. Additive measurement noise leads to saturation of the TAVAR at

short times also observed in TAVARs of experimental trajectories (Fig 1(b)). The MFPT of

numerically generated trajectories (Fig 6(b)) shows a good agreement with the MFPT of the

experimental trajectories (Fig 1(c)).

The non-Markovian model could be beneficial in overcoming a blockage on a microtu-

bule. One can ask about the difference between the non-Markovian and Markovian rate

Fig 8. (a) The probability density function ψ(τ) (black solid curve) of resident times of cargo on a microtubule for a heterogeneous

ensemble of motors with λ distributed with the gamma density Eq (7) with μ = 1.4 and τd = 1 s (Case 2). The blue dashed curve is

given by Eq (8). (b) The probability density function ψ(τ) of resident times of cargo on a microtubule (black solid curve) for N = 3

cooperative motors (Case 3). Other parameters are given in Ref. [26]. The blue dashed curve is given by Eq (8) with μ = 1.4 and τd =

0.18 s.

https://doi.org/10.1371/journal.pone.0207436.g008
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models besides their different asymptotic transport behaviour. The transport in the Markovian

rate model is asymptotically normal in TAVAR, while it is super-diffusive in TAVAR in the

non-Markovian rate model. Can non-Markovian motor kinetics be biologically beneficial for

intracellular transport? To address this question, we considered a cargo moving along the

microtubule oriented along y = 0. The microtubule was blocked by another perpendicular fila-

ment. The diameter of the blocking microtubule was 24 nm (Fig 3(b)). In simulations the

cargo was interacting with the MT through the effective motor: the motor could not make fur-

ther steps once it reached the blocking MT. The only possibility for the cargo to overcome the

blocker was to first detach from the microtubule and then reattach to the (possibly different

but pointing in the same direction) MT. We did not consider the possibility that an effective

motor switches direction by attaching to the blocking MT, which is sometimes observed

experimentally.

The question is how to compare the Markovian and the non-Markovian rate models? To do

this, we have chosen their parameter values in such a way that the average distance by a cargo

without any blockers over a fixed time period would be the same for both models. We took this

time period to be 2 seconds which was motivated by the average duration of experimental tra-

jectories. For the Markovian model the load free detachment rate was fixed to � = 0.25/s. For

the non-Markovian model parameters for the detachment rate Eq (2) could be chosen over a

wider range. For the simulations in Fig 9 we have used μ = 1.4, τd = 1 s which gives the load free

detachment rate (2) Td = 1.4 s−1. This is 5.6 times bigger than the load free detachment rate for

the Markovian model. We assumed that the only possibility for the cargo to overcome the

blocker is first to detach from the microtubule and then to reattach and that the blocker is

located close to the origin x = 0. For the non-Markovian model the cargo will detach from the

MT quicker than in the Markovian model because of larger detachment rate at the beginning.

These factors cause a bigger distance to be travelled with blocking filaments over a fixed

amount of time. We note that if the detachment rates of the Markovian and the non-Markovian

model are the same or the blocker is far away from the origin x = 0, there will be no effect.

We calculated the average distance hLi travelled by the cargo over the time period Δ s nor-

malized by the average distance h�Li travelled by the cargo in the absence of the blocker. The

Fig 9. Average distance hLi the cargo travelled over a time interval Δ on the microtubule with a blocking filament

located at distance l1 = 0.1 μm (curves with open symbols) and l1 = 0.5 μm (curves with filled symbols) from x = 0,

Fig 3(b). The distance hLi was normalized by the average distance h�Li the cargo travelled without the blocking

filament. We used 3000 trajectories generated by the Markovian rate model (red squares) and the non-Markovian rate

model (black circles) to calculate the average distances. Parameters of the models are the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0207436.g009
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average distances were calculated using 3000 trajectories by sliding the time window Δ along

the trajectories. Results shown in Fig 9 suggest that the non-Markovian rate model allows car-

goes to be transported longer distances for the same period of time compared to the Markov-

ian rate model. An investigation of the influence of complex cytoskeletal network morphology

will be given in a future study.

Sub-diffusion helps the cargo to reach a neighbouring filament. To show this we calcu-

lated the probability for the motor-cargo complex located at x = 0 to reach a neighbouring

microtubule located at some distance l2 from it, in a finite time interval Δt (Fig 3(c)). The

microtubule has a diameter of 24 nm. For simplicity we consider no force acting on the cargo

as it moves between microtubules. The cargo diffused (for the fGn with the Hurst exponent of

H = 0.5) or performed sub-diffusion (for H< 0.5) in 2D until it reached a neighbouring

microtubule located at distance l2 along x axes. Fig 10 shows the probability of reaching the

neighbouring microtubule as a function of the distance l2 between filaments. Sub-diffusion

generated by independent fGn increases the probability of reaching the target [60]. It does not

allow the cargo to drift far away and thus increases the probability of reaching another fila-

ment. Notice that in order to compare fractional Brownian motions with different Hurst expo-

nents, H, we followed the procedure proposed in [60]. Namely, we fix parameter D� and chose

the mean squared displacement of walkers for a single time step δt = 1 to be equal for all simu-

lations. Physically this corresponds to an equal amount of energy consumed by walkers to

complete a single time step. With such a choice we ensure a fair comparison between fractional

Brownian motions with constant D� but different H.

Cargo velocities. Finally we find the cargo velocity in simulations has a value in the range

of 0 to 2 μm/s (for an unloaded motor velocity v0 = 4 μm/s) with the multiple peaks in the

velocity PDF (Fig 11(a)), similar to the cargo velocities measured in the experiments (Fig 2).

The multiple peaks in the velocity PDF are due to the non-Markovian nature of the model and

do not require additional molecular details to be invoked to explain them e.g. different gears of

the motor proteins. By contrast, the velocity PDF for the Markovian model (Fig 11(b)) has a

few smaller peaks and a dominant peak corresponding to the average velocity of the cargo (see

also Fig H in S1 File).

Fig 10. Probability Prob(l2) for a cargo to reach a neighbouring filament located at distance l2 μm (see Fig 3(c)) in

the time interval ΔT = 16.4 s. The probability is calculated for Hurst exponents of H = 0.25 (black), H = 0.35 (red) and

H = 0.5 (blue) (see the arrows for the trend) using 3000 trajectories generated by the Markovian rate model (symbols)

and non-Markovian rate model (curves). Parameters of the models were the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0207436.g010
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Methods

Analysis of experimental data

Time averaged mean squared displacement. Two-dimensional trajectories of organelles,

r(t) = {x(t), y(t)}, were analyzed using the time averaged mean squared displacement

(TAMSD) defined as [45, 87]:

TAMSDðDÞ ¼
1

T � D

Z T� D

0

½rðt0 þ DÞ � rðt0Þ�2dt0; ð11Þ

where T is the total duration of a trajectory and Δ is the time interval which defines the width

of the window slid along the trajectory. In the experiment with liquid droplets [32], trajectories

were obtained at sampling time-intervals δ = 10−4s. The discrete version of Eq (11) reads:

TAMSDðDÞ ¼
PT=d� n

i¼0
½rðidþ DÞ � rðidÞ�2

T=d � n
; ð12Þ

where the averaging window is Δ = nδ. The TAMSDs grow as a power law TAMSD = DαΔα

where Dα is the fractional diffusion coefficient and the exponent α = 1 corresponds to Brown-

ian diffusion, α< 1 sub-diffusion, α> 1 super-diffusion, and α = 2 ballistic motion. The

anomalous exponent α can be calculated as [88]

a ¼
log ðTAMSDÞ

logD
: ð13Þ

The time averaged mean displacement (TAMD) along a trajectory is given by:

TAMDðDÞ ¼
1

T � D

Z T� D

0

rðt0 þ DÞ � rðt0Þ½ �dt0; ð14Þ

The time averaged variance is defined as [89]:

TAVARðDÞ ¼ TAMSDðDÞ � ðTAMDðDÞÞ2: ð15Þ

Here the TAMSD is defined in Eq (11) and the TAMD is given by Eq (14). The definition

of the TAVAR Eq (15) is equivalent to the path-wise correction for directed motion which can

be realized by subtracting the mean increment from each trajectory in such a way that the

Fig 11. (a) Probability distribution function (PDF) of velocities along typical trajectory generated by the non-Markovian rate model

and (b) for a trajectory generated by the Markovian rate model. Parameters of the models were the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0207436.g011
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modified trajectory is constrained to begin and end at the same spatial position. The TAMSD

Eq (11) of the modified trajectory then coincides with the TAVAR Eq (15) of the original tra-

jectory. We note that other definitions of time-average variance exist. One of them uses the

mean defined as

Z T

0

rðt0Þdt0=T [90]. However, this definition does not suite our problem since

TAVAR for a super-diffusive trajectory defined in this way shows linear growth in Δ.

Mean first passage time. Next we calculated the time needed to reach a point at distance

L along a single trajectory for the first time [91, 92]

T ¼ inf fD : RðDÞ ¼ Lg; ð16Þ

where R(Δ) = |r(t0 + Δ) − r(t0)| and inf is the infimum. The mean first passage time (MFPT) is

defined as the average of T i.e. MFPT = hTi.
Observed cargo velocities. To extract cargo velocities from experimental trajectories we

avoided manual or automatic segmentation of trajectories into segments of constant veloc-

ity, which would require using some (arbitrary) threshold. Instead, we calculated the distri-

bution of cargo velocities defined as v = (r(t0 + Δ) − r(t0))/Δ along a trajectory. To attain

better statistics, the time increments Δ was varied from its minimal value Δ = 0.0001 seconds

to the maximal value which we set to 1/10th of the length of a trajectory. We note that the

unweighted histograms were calculated. Since we have considered only 1/10th of the length

of each trajectory, the total number of velocities for different Δ did not change dramatically.

We checked that the method accurately estimates velocities of a cargo (see Figs F and G in

S1 File).

Stochastic models

For the sake of simplicity, we do not address the question of the actual number of engaged

motors or the heterogeneity of the cellular environment. We also ignored motor detach-

ments from the cargo since they occur much less frequently than motor detachments from

the microtubule and did not affect our calculations. When the motor detached from the

microtubule, a circular cargo of radius R performs two-dimensional sub-diffusion which we

modelled with fractional Gaussian noise. When the motor is attached to the microtubule, it

moves along the microtubule which was modelled as a linear filament oriented along the x-

axes i.e. y = 0. Assuming that the microtubule plus end was located at x = y = 0, the effective

motor placed at the origin at t = 0 moved in the positive direction towards the minus end of

the microtubule. The effective motor was modelled as a point particle connected to the

cargo by a spring with a natural length l and stiffness k (see the illustration of the set-up in

Fig 5(a)). The load force acting on the motor is a restoring force of the spring Fr(t) when it is

stretched beyond l. Its value is given by Hooke’s law, |Fr(t)| = k(d(t) − l), where d(t) is the dis-

tance between the effective motor and the cargo. The force acting on the cargo is F = −Fr(t).

No force is exerted when the tether is compressed or the motor is disengaged with the fila-

ment. In what follows we will denote F = |F| = |Fr(t)|. The steps of 5 nm, 8 nm and 18 nm

were also observed experimentally (Fig B in S1 File). However, since they are relatively rare

and do not influence the anomalous nature of the transport, in our simulations we consid-

ered only steps of 8 nm. It is known that the dynein under load can make backward steps in

the opposite direction to the direction of movement [93]. We introduced a 25 probability for

the effective motor to step in the opposite direction and also found no influence on anoma-

lous transport phenomena.

In our model the motor randomly binds to the microtubule with a constant attachment

rate Ta and walks along the microtubule with the stepping rate which depends on the
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force [94]:

kðFÞ ¼

(
v0=dð1 � ðF=FsÞ

1=2
Þ; F < Fs;

0; F > Fs

ð17Þ

where v0 is the unloaded velocity of the single motor, d is the stepping length of the motor

(8 nm) and Fs is the stall force. The constant attachment rate Ta in our case can be justified

by the quasi one-dimensional nature of the motion. Unfortunately, in the experiment which

we analyzed [32], the positions of the microtubules were not measured, therefore it was not

possible to determine how far the vesicle travelled from the microtubule after the detach-

ment. However, due to the dense nature of the cytoskeletal network, we assume that after

the detachment, a new microtubule pointing in the desired direction is available.

The motor detaches from the microtubule with detachment rate Td. The observed velocity

of the cargo differs from the unloaded velocity of the motor. The velocity of the cargo derives

from the velocity of the motor and the friction coefficient of the cytoplasm. We chose the

unloaded dynein velocity such that the cargo velocity is similar to the experimentally measured

cargo velocities. For an unloaded motor velocity v0 = 4 μm/s, we find the cargo velocity in the

range of 0 to 2 μm/s. The typical velocity of the cargo in this case is 0.8 − 1.1 μm/s. For v0 = 2

μm/s the typical velocity of the cargo is 0.4 − 0.8 μm/s. Making specific assumptions about

attachment and detachment rates Ta and Td, we defined two models: the Markovian rate

model and the non-Markovian rate model.

Markovian rate model. We considered the Markovian rate model with the attachment

rate Ta ¼ 1=s. The detachment rate depends on the force acting on the motor and follows an

exponential dependence due to Arrhenius kinetics [94]

Td ¼ � exp ðF=FdÞ; ð18Þ

where � is the load-free detachment rate and Fd is the detachment force. We also considered a

variant of the Markovian rate model when the detachment rate is constant and does not

depend on the force. Results obtained for cargo transport in both models are similar and there-

fore are not reported.

Non-Markovian rate model. For the non-Markovian rate model we take the attachment

rate in the range from Ta ¼ 1 s� 1 to Ta ¼ 100 s� 1. The novelty of our approach is that we

introduce the detachment rate Eq (2) for a effective motor defined by inverse functions of the

time interval τ between two detachment/attachment events. We also considered a modification

of this model with a non-Markovian attachment rate defined similar to the Eq (2) (but without

the force dependence). Results for this model are similar to the non-Markovian rate model

with a constant attachment rate and are therefore not shown.

Having specified the stepping behaviour, attachment and detachment kinetics of the effec-

tive motor and the force acting on the cargo, we described the motion of the cargo using the

overdamped Langevin equation [57]:

b
drðtÞ
dt
¼ Fþ

ffiffiffiffiffiffi
D�
p

ξHðtÞ; ð19Þ

where r = {x, y} is the position of the cargo center of mass, F is the force exerted by the effective

motor and D� is the intensity of the fGn. The stepping rate Eq (17) defines how frequently the

motor make 8 nm steps. β is the friction constant for dragging the cargo through its viscoelas-

tic environment and ξH ¼ fx
x
H; x

y
Hg is the fractional Gaussian noise (fGn). FGn is independent

of the attachment and detachment kinetics of the effective motor. It is a zero-mean stationary
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Gaussian process and the auto-correlation function decays in the long time limit as:

hxHð0ÞxHðtÞi � 2Hð2H � 1Þt2H� 2; ð20Þ

where H is the Hurst exponent, 0<H< 1. The slow decay of the auto-correlation function

leads to anomalous dispersion proportional to t2H, which for 0<H< 1/2 implies sub-diffusive

behaviour. We note that the Langevin equation with external fGn Eq (19) does not fulfill the

fluctuation-dissipation relation. Therefore, there is no relation between β and D�. The reason

why we considered the external fGn is that the medium inside living cells is highly non-equi-

librium. It is well known that microrheology does not work universally inside living cells

where passive viscoelastic behaviour is superposed on active phenomena due to motor pro-

teins, see [95] section 4.7. The cytoskeleton is also a complex non-equilibrium network driven

by cross-linking proteins and motors [96]. One could not expect the FDR to be universally ful-

filled in such an active environment. A different approach to sub-diffusion which is based on a

fractional Langevin equation (FLE) that fulfills the FDR is pursued in [51–55].

To show that our results are robust, we implemented the FLE which fulfils the FDR into

our non-Markovian rate model. Results are shown in Fig I in S1 File. In particular, for single

trajectories of cargo-motor complex we plotted the distance travelled as a function of time and

the time averaged variances. The results are similar to those obtained with the external fGn:

the short time behaviour is sub-diffusive while on the longer time scale the behaviour is super-

diffusive in TAVAR due to the non-Markovian detachment rate. Therefore we showed that

the super-diffusive behaviour in the non-Markovian rate model is not affected by the nature of

sub-diffusive motion. Based on these indications, we expect our other results to be robust.

In addition to fGn we also considered fluctuations which are due to errors in the measure-

ment of the position of the cargo. These fluctuations were modelled as Gaussian noise added

to the recorded coordinate of the cargo and lead to saturation of the TAVAR, the TAMSD and

the MFPT at small time intervals (Figs 2 and 3).

Parameters of the models. First we list the values of all parameters used in the models

and discuss their choice. Following [97], we chose l = 100 nm and k = 0.32 pN/nm for the elas-

tic tether on the cargo. The motor was moving via discrete increments of 8 nm equal to the

tubulin spacing along a microtubule with an unloaded velocity v0 = 4 μm/s. The load-free

detachment rate was � = 0.25/s, the detachment force Fd = 3 pN and the stall force Fs = 2.5 pN.

To generate the sub-diffusive behaviour in the Markovian rate and the non-Markovian rate

models we simulated the fractional Gaussian noise using the exact Hosking method [98]. The

Hurst exponent H = 0.35 was chosen to match the observed sub-diffusive exponent in the

experimental trajectories. The frictional coefficient was β = 0.72 pN s/μm and the intensity of

the fractional Gaussian noise was chosen for a single trajectory from the range D� = 0.001

− 0.005 μm2/s2H.

Conclusion

We have studied high quality experimental data of long range transport of individual organ-

elles inside a living cell which is driven by molecular motors. Analysis of experimental trajecto-

ries revealed the anomalous nature of transport in the form of a transition from sub-diffusive

behavior on short time scales to super-diffusive behavior as previously observed in [32]. In this

paper we propose a mathematical model that describes such a transition. The key ingredient of

our model is the inclusion of non-Markovian kinetics: the detachment rate for an effective

motor is not constant as it is commonly used for modelling, but inversely proportional to the

time interval since the last attachment event. Biologically the non-Markovian detachment rate

can originate from the complex interactions between dynein motors and dynactin complexes,
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from interactions between separate dyneins, mixed population of dyneins with diverse proper-

ties as speed, detachment rate or from non-Markovian internal dynamics of the dynein pro-

teins. Non-Markovian internal kinetics have been discovered in a range of enzymes based on

single molecule experiments [74–76]. We have shown that with the assumption of non-Mar-

kovian kinetics we can not only reproduce the experimental findings, but also there are biolog-

ical implications for anomalous motor kinetics. Particularly, we have demonstrated that non-

Markovian detachments increase the average distance the cargo travels in crowded environ-

ments when the microtubule is blocked by another filament. We also suggest that sub-diffu-

sion could be biologically beneficial by increasing the probability of a cargo transiting from

one microtubule to another, therefore promoting active motion along the microtubules.

There is a recurrent debate as to whether the observed super-diffusive behaviour is asymp-

totic. From the experimental point of view it is difficult to define, since every experiment is of

a finite duration, all the cells are finite sized and the microtubules have finite length. All this

could restrict the longest flight duration, truncate the power law and lead to super-diffusion

that appears to be transient. However, depending on the size of the cell, this transient behav-

iour could be very long and even last for the whole duration of the experiment. Also microtu-

bules are grouped in bundles and the finite length of individual microtubule may play no role.

In this case one would consider a transient behavior which is of the duration of the whole

experiment as the asymptotic result. We did not observe any transition from super-diffusion

to normal or sub-diffusion in experimental trajectories which we analysed in this work.

Finally, an interesting question arises. Dyneins have been shown to have a catch-bond

mechanism when the detachment rate decreases with the increased load [94, 99, 100].

Although, in our model the non-Markovian detachment rate is a decreasing function of the

time the cargo travelled along the microtubule and the force experienced by a single dynein

decreases when multiple motors are engaged, it would be interesting to investigate whether the

catch-bond mechanism for dyneins could lead to similar behaviour as the non-Markovian

detachment rate.

Supporting information

S1 File. S1 File contains 7 figures. Fig A, A single motor stepping in a part of experimental

trajectory. The distance L travelled by a cargo is shown as a function of time. Fig B, The distri-

bution of cargo position increments d r = r(t + Δ) − r(t) in experimental trajectories calculated

at time interval Δ = 0.1 s. The probability density function (PDF) is shown as a function of the

displacement (d r). Fig C, Time averaged mean displacement (TAMEAN) for experimental

trajectories of the lipid droplets as a function of time interval D together with linear trend D

(dashed line). Fig D, (a) Time averaged mean squared displacement (TAMSD) for experimen-

tal trajectories of the lipid droplets as a function of time interval D, (b) TAMSD for trajectories

generated by the non-Markovian rate model and (c) by the Markovian rate model. Power-law

scaling trends are shown with * Δ0.7 (dashed-dotted line) and Δ2 (dashed line). Fig E, The

average velocity of a cargo manually estimated from the experimental trajectory. Parts of the

trajectory with different average velocity are marked with capital letters. The figure legend pro-

vides with the values of the average velocities (v) corresponding to different parts of trajectory

(units μm/s). Fig F, The distribution of average cargo velocities in the experimental trajectory

shown in Fig E. Peaks in the distribution correspond to different velocities of the cargo at parts

of the trajectory indicated with capital letters next to the arrows. Fig G, Distribution of average

cargo velocities in two experimental trajectories (a) and (b). Peaks in the distributions corre-

spond to different cargo velocities. Fig H, Distribution of average cargo velocities in trajecto-

ries generated by the non-Markovian rate model (a) and (b) and the Markovian rate model (c)
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and (d). Fig I, (a) Distance LðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
travelled by cargoes as a function of time for

the non-Markovian rate model with the FGE. Parameters are given in the text. (b) Time aver-

aged variances (TAVAR) for single trajectories as a function of time interval Δ. Trajectories

were of 32 s duration. TAVAR for several longer trajectories of 72 s duration are also shown.

(PDF)
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